

Received 11 October 2017 Accepted 19 October 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; Na₃ZnB₅O₁₀; solid solution; borate; isotypism.

CCDC references: 1580783; 1580782

Supporting information: this article has supporting information at journals.iucr.org/e

BO₄ BO₄

OPEN d ACCESS

Crystal structures of the solid solutions $Na_3Zn_{0.912}Cd_{0.088}B_5O_{10}$ and $Na_3Zn_{0.845}Mg_{0.155}B_5O_{10}$

Xue-An Chen,^a* Ya-Hua Zhang,^a Xin-An Chang^a and Wei-Qiang Xiao^b

^aCollege of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100124, People's Republic of China, and ^bInstitute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Ping Le Yuan 100, Beijing 100124, People's Republic of China. *Correspondence e-mail: xueanchen@bjut.edu.cn

Two new pentaborates, trisodium zinc cadmium pentaborate, Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀, and trisodium zinc magnesium pentaborate, Na₃Zn_{0.845}Mg_{0.155}B₅O₁₀, have been synthesized by high-temperature solution reactions at 1023 K. Their crystal structures were determined by single-crystal X-ray diffraction. Both solid solutions crystallize in the orthorhombic form of the parent compound Na₃ZnB₅O₁₀ (space group type *Pbca*, *Z* = 8) and contain the double ring $[B_5O_{10}]^{5-}$ anion composed of one BO₄ tetrahedron and four BO₃ triangles as the basic structural motif. The anions are bridged by tetrahedrally coordinated and occupationally disordered M^{2+} (M = Zn/Cd, Zn/Mg) cations *via* common O atoms to form $[MB_5O_{10}]_n^{3n-}$ layers. The intralayer intersecting channels and the interlayer voids are occupied by Na⁺ cations to balance the charge.

1. Chemical context

Over the past few decades, borate materials have attracted increasing interest owing to their promising applications in non-linear optical materials, birefringent materials, ferroelectric and piezoelectric materials, and host materials for luminescence (Becker, 1998; Chen et al., 1999). In general, boron atoms can be coordinated by either three or four oxygen atoms forming BO3 or BO4 groups, respectively. These groups may interconnect with each other via common oxygen atoms to produce polyborate anionic groups that can adopt different coordination modes to bind to metal cations. The crystal chemistry of the resultant borates is rich, including infinite chains, sheets or networks for the anionic groups. For instance, in a series of pentaborates with general composition $A_3MB_5O_{10}$ (A = Na, K; M = Mg, Zn, Cd, Co, and Fe), at least three kinds of structure types have been reported, including $K_2NaZnB_5O_{10}$ in space group C2/c (Chen et al., 2010), α - $Na_3ZnB_5O_{10}$, $Na_3CoB_5O_{10}$ and $K_3MB_5O_{10}$ (M = Zn, Cd) in space group P2₁/n (Chen et al., 2007a; Strauss et al., 2016; Wu et al., 2012; Yu et al., 2011), and β -Na₃ZnB₅O₁₀ as well as $Na_3MB_5O_{10}$ (M = Mg, Fe) in space group Pbca (Chen et al., 2007b, 2012; Strauss et al., 2016). All of the structures contain polyborate anionic groups $[B_5O_{10}]^{5-}$, which combine with different A^+ and M^{2+} cations. During our exploratory syntheses of novel borate materials to study their structureproperty relationships, we have obtained two new members of this family of compounds, viz. the solid solutions

 $Na_3Zn_{0.912}Cd_{0.088}B_5O_{10}$ and $Na_3Zn_{0.845}Mg_{0.155}B_5O_{10}$. Single crystal X-ray structure analyses revealed that these two compounds crystallize in the orthorhombic $Na_3MB_5O_{10}$ (M = Mg, Fe, Zn) structure type. Herein we describe their syntheses and crystal structures.

2. Structural commentary

Since Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ and Na₃Zn_{0.845}Mg_{0.155}B₅O₁₀ have similar structures, the discussion will be based mainly on the cadmium-containing compound. The fundamental building blocks in this structure are $[(Zn/Cd)O_4]$ tetrahedra and $[B_5O_{10}]^{5-}$ groups, as illustrated in Fig. 1. Each $[B_5O_{10}]^{5-}$ group has one BO₄ tetrahedron (T) and four BO₃ triangles (Δ) condensed to a double ring *via* a common tetrahedron, the connectivity of which can be formulated as $4\Delta 1T:<2\Delta T> - <2\Delta T>$ according to the nomenclature introduced by Burns et al. (1995). The pentaborate group comprises four terminal O atoms in its isolated form. Each $[B_5O_{10}]^{5-}$ group is linked to four different $[(Zn/Cd)O_4]$ tetrahedra and likewise each [(Zn/Cd)O₄] tetrahedron is connected to four neighbouring $[B_5O_{10}]^{5-}$ groups through sharing all of the terminal O atoms, thus forming infinite sheets with an overall composition of $[(Zn/Cd)B_5O_{10}]_n^{3n-}$, as depicted in Fig. 2. The symmetry-equivalent (zinc/cadmium) borate sheets propagate in the *ab* plane and stack along the c axis. The sheets also afford intersecting open channels running parallel to the *a*- and *b*-axis directions. Fig. 3 shows a projection of the structure along [100]. Na2⁺ cations reside in these channels and Na1⁺ and Na3⁺ cations are situated at the voids between the sheets to provide charge compensation.

Figure 1

The asymmetric unit of Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ supplemented by additional oxygen atoms to show the full coordination around the disordered *M* site ($M = Zn_{0.912}$ (4)Cd_{0.088} (4)). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, *z*; (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, *z*; (iii) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.]

View of the $[(Zn/Cd)B_5O_{10}]_n^{3n-}$ layer approximately along [001]. (Zn/Cd) site: green spheres; BO₃ groups: navy triangles; BO₄ groups: magenta tetrahedra.

The crystal structure of $Na_3Zn_{0.912}Cd_{0.088}B_5O_{10}$ projected along [100]. Na1 atoms: violet spheres; Na2 atoms: blue spheres; Na3 atoms: grey spheres; (Zn/Cd) atoms: green spheres; BO₃ groups: navy triangles; BO₄ groups: magenta tetrahedra.

research communications

The asymmetric unit of Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ comprises 19 independent sites, *i.e.* three Na, one disordered (Zn/Cd). five B, and ten O sites, all occupying general positions. Of the three unique Na sites, Na1 is surrounded by seven O atoms with Na-O distances divided into two sets: a set of five short ones is in the range 2.310 (3)-2.700 (3) Å, while another set includes two longer separations [3.054 (3)-3.059 (3) Å, Table 1]. Bond-valence-sum (BVS) calculations using Brown's formula (Brown & Altermatt, 1985) gave a BVS value of 0.89 valence units (v.u.) for the seven-coordinated Na1 cation, confirming that the long bonds participate in the overall metal coordination sphere. The coordination environment can be described as an irregular polyhedron. Similarly, Na2 and Na3 atoms have also adopted the seven-coordinated irregular polyhedral arrangement. This is different from the situation in monoclinic α -Na₃ZnB₅O₁₀, where three distinct Na sites have coordination numbers of six, seven, and eight, respectively (Chen *et al.*, 2007*a*). In the Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ structure, the Na–O distances fall in the range 2.273 (3)–3.059 (3) Å (average range for the three sites 2.553–2.657 Å), which is similar to the value reported for the seven-coordinated Na⁺ cation in α -Na₃ZnB₅O₁₀ [2.318 (2)–2.859 (3) Å, average 2.531 Å] (Chen *et al.*, 2007*a*), and in agreement with the value of 2.50 Å computed from crystal radii sums for seven-coordinated Na^+ and four-coordinated O^{2-} ions (Shannon, 1976). In the $Na_3Zn_{0.912}Cd_{0.088}B_5O_{10}$ structure, the *M*1 site is statistically disordered with Zn^{2+} and Cd^{2+} cations. The $[Zn_{0.912} (4)Cd_{0.088} (4)O_4]$ tetrahedron exhibits a mean O-M1-O angle of 109.14° , close to the ideal value of 109.5° . M1-Obond lengths [1.974(2)-2.000(2) Å] are normal when compared with those observed in the related structures of $CdZn_2(BO_3)_2 [(Zn_{0.67}Cd_{0.33})-O = 1.995 (14)-2.130 (15) Å, CN$ = 4] (Zhang et al., 2008), $Cd_3Zn_3(BO_3)_4$ [($Zn_{0.5}Cd_{0.5}$)-O = 2.015(3)-2.131(4) Å, CN = 4] (Sun et al., 2003), and $Cd_{1.17}Zn_{0.83}B_2O_5$ [($Zn_{0.753}Cd_{0.247}$)-O = 1.997 (7)-2.109 (6) Å, CN = 4] (Yuan et al., 2005). Of the boron sites, B3 has a tetrahedral configuration, while other B sites are in triangular configurations. The BO₄ and BO₃ groups are rather regular, with average O-B-O angles being close to 109.5 or 120° , respectively. The B–O bond lengths in the tetrahedron cover the range between 1.467 (4) and 1.472 (4) Å, and those in the triangles between 1.305 (5) and 1.407 (4) Å. The average B-O bond lengths (1.469 Å and 1.366–1.373 Å, respectively) are in good agreement with the data reviewed by Hawthorne et al. (1996). The calculated BVS values concerning B atoms are around 3 v.u., ranging from 2.99 v.u. for B1 to 3.07 v.u. for B3.

A comparison between the Na₃Zn_{0.845}Mg_{0.155}B₅O₁₀ and Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ structures reveals that the isovalent substitution of Mg²⁺ for Cd²⁺ ions in Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ leads to a significant decrease in the cell volume [V = 1749.7 (3) Å³ for the (Zn/Mg) vs 1763.7 (5) Å³ for the (Zn/Cd) phase; V = 1745.50 (17) Å³ for unsubstituted Na₃ZnB₅O₁₀ (Chen *et al.*, 2012)]. In the two solid solutions, the [B₅O₁₀]⁵⁻ groups show a similar configuration, with the dihedral angles between two hexagonal ring planes being identical within the experimental error [84.7 (1) vs 84.9 (1)°]. The geometric parameters of BO₃ triangles and BO₄ tetrahedra remain

 Table 1

 Selected geometric parameters (Å, $^{\circ}$) for (I).

Na1-O1 ⁱ	2.310 (3)	Zn1-O5 ⁱⁱⁱ	1.974 (2)
Na1-O9 ⁱⁱ	2.404 (3)	$Zn1-O9^{iv}$	1.985 (2)
Na1-O4	2.487 (3)	Zn1-O10	2.000 (2)
Na1-O7	2.587 (3)	$Zn1-O1^{vi}$	2.000 (2)
Na1-O3 ⁱⁱⁱ	2.700 (3)	B1-O1	1.335 (4)
Na1-O3 ⁱ	3.054 (3)	B1-O2	1.384 (4)
Na1-O8 ⁱⁱ	3.059 (3)	B1-O3	1.400 (4)
Na2-O2 ^{iv}	2.355 (3)	B2-O5	1.324 (4)
Na2-O6 ⁱⁱⁱ	2.381 (3)	B2-O4	1.376 (4)
Na2-O10 ⁱⁱ	2.388 (3)	B2-O3	1.407 (4)
Na2-O6 ^{iv}	2.550 (3)	B3-O4	1.467 (4)
Na2-O4 ⁱⁱⁱ	2.618 (3)	B3-O2	1.468 (4)
Na2-O10	2.719 (3)	B3-O7	1.468 (4)
Na2-O8	2.859 (3)	B3-O6	1.472 (4)
Na3-O5 ^v	2.273 (3)	B4-O9	1.337 (4)
Na3-O9	2.361 (3)	B4 - O6	1.369 (4)
Na3–O7 ⁱⁱ	2.438 (3)	B4 - O8	1.395 (4)
Na3-O1 ^{iv}	2.458 (3)	B5-O10	1.305 (5)
Na3-O3 ^v	2.786 (3)	B5-O7	1.388 (4)
Na3-O10 ⁱⁱ	2.868 (3)	B5 - O8	1.405 (5)
Na3–O2 ⁱⁱ	2.910 (3)		
O5 ⁱⁱⁱ -Zn1-O9 ^{iv}	111.39 (10)	O4-B3-O2	110.6 (3)
O5 ⁱⁱⁱ -Zn1-O10	103.73 (11)	O4-B3-O7	109.8 (3)
$O9^{iv}$ -Zn1-O10	112.42 (10)	O2-B3-O7	109.4 (3)
$O5^{iii}$ -Zn1-O1 ^{vi}	110.40 (9)	O4-B3-O6	107.9 (3)
$O9^{iv}-Zn1-O1^{vi}$	120.23 (10)	O2-B3-O6	108.8 (3)
$O10-Zn1-O1^{vi}$	96.64 (12)	O7-B3-O6	110.4 (3)
O1-B1-O2	121.5 (3)	O9-B4-O6	123.6 (3)
O1-B1-O3	120.0 (3)	O9-B4-O8	118.8 (3)
O2-B1-O3	118.4 (3)	O6 - B4 - O8	117.6 (3)
O5-B2-O4	123.4 (3)	O10-B5-O7	123.2 (3)
O5-B2-O3	117.4 (3)	O10-B5-O8	118.1 (3)
O4-B2-O3	119.1 (3)	O7-B5-O8	118.7 (3)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

basically unchanged from the (Zn/Cd) to the (Zn/Mg) phase, while the [NaO₇] polyhedra in the (Zn/Mg) compound are slightly smaller compared with the corresponding ones in the (Zn/Cd) compound. In contrast, a remarkable difference in the coordination geometry around the divalent metal ions exists. The average (Zn/Mg)–O bond length is 1.962 Å, shorter than the average (Zn/Cd)–O bond length of 1.990 Å. The O–(Zn/Mg)–O angles are 98.11 (13)–119.58 (11)°, distinctly narrower than the O–(Zn/Cd)–O angles of 96.64 (12)–120.23 (10)°. The [(Zn/Mg)O₄] tetrahedron appears to be smaller and more regular than the [(Zn/Cd)O₄] tetrahedron, which follows the general trend of the respective ionic radii [$r(Mg^{2+}) = 0.72 < r(Zn^{2+}) = 0.74 < r(Cd^{2+}) = 0.92$ Å, CN = 4] (Shannon, 1976).

As mentioned above, Na₃ZnB₅O₁₀ was reported to exist in two structural variants, which we name in the following the α and β -phases, respectively. The α -form crystallizes in space group $P2_1/n$, while the β -form in space group Pbca (Chen *et al.*, 2007*a*, 2012). The relationship between their crystal structures follows a group–subgroup relation: β -Na₃ZnB₅O₁₀ (*Pbca*, **a**, **b**, **c**, Z = 8) $\rightarrow \alpha$ -Na₃ZnB₅O₁₀ (*P2*₁/*n*, which is a maximal non-isomorphic subgroup of index 2 of *Pbca*, 0.5**a** + 0.5**b**, **c**, 0.5**a** - 0.5**b**, Z = 4). β -Na₃ZnB₅O₁₀ is isotypic with Na₃MB₅O₁₀ (M = Mg, Fe), and the title compounds which are substitutional solid solutions of β -Na₃ZnB₅O₁₀. All

Table 2Experimental details.

	$Na_{3}Zn_{0.912}Cd_{0.088}B_{5}O_{10}$	$Na_{3}Zn_{0.845}Mg_{0.155}B_{5}O_{10}$
Crystal data		
M _r	352.53	342.03
Crystal system, space group	Orthorhombic, Pbca	Orthorhombic, Pbca
Temperature (K)	293	293
a, b, c (Å)	7.9407 (14), 12.293 (2), 18.0684 (19)	7.8931 (12), 12.2555 (12), 18.0874 (11)
$V(A^3)$	1763.7 (5)	1749.7 (3)
Z	8	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.95	2.60
Crystal size (mm)	$0.30 \times 0.10 \times 0.10$	$0.30 \times 0.20 \times 0.20$
Data collection		
Diffractometer	Rigaku AFC-7R	Rigaku AFC-7R
Absorption correction	ψ scan (Kopfmann & Huber, 1968)	ψ scan (Kopfmann & Huber, 1968)
T_{\min}, T_{\max}	0.703, 0.752	0.532, 0.603
No. of measured, independent and	3006, 2562, 1557	2982, 2542, 1496
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.061	0.053
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.703	0.703
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.072, 0.91	0.044, 0.113, 0.87
No. of reflections	2562	2542
No. of parameters	174	173
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.45, -0.45	1.59, -0.70

Computer programs: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1994), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ATOMS (Dowty, 1999) and publcIF (Westrip, 2010).

structures comprise identical $[MB_5O_{10}]_n^{3n-}$ (M = Zn, Mg, Fe, (Zn/Mg), (Zn/Cd)) layers constructed by $[B_5O_{10}]^{5-}$ groups and MO_4 tetrahedra *via* common O atoms, and the coordination environments around all cationic sites are very similar. The main differences pertain to the $[MO_4]$ tetrahedra. For example, the average M-O bond lengths are 1.963, 1.963, 1.962, and 1.990 Å for β -Na₃ZnB₅O₁₀, Na₃MgB₅O₁₀, Na₃Zn_{0.845}Mg_{0.155}B₅O₁₀, and Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀, respectively. The cell volumes show a similar trend.

For $Na_3ZnB_5O_{10}$, the present study indicates that a partial replacement of Zn^{2+} by Cd^{2+} or Mg^{2+} is favourable for the formation of the orthorhombic *Pbca* phase. However, keeping the Na⁺ ions unchanged, the complete replacement of Zn^{2+} by larger Cd²⁺ ions does not result in the isotypic cadmium analogue. We have attempted to prepare a hypothetical compound with nominal composition 'Na₃CdB₅O₁₀' via a standard solid-state synthetic route by mixing stoichiometric amounts of Na₂CO₃, CdO, and H₃BO₃ powders followed by annealing the mixture at a temperature of 873 K in air for several weeks. No 'Na₃CdB₅O₁₀' has been obtained, only a mixture of known phases, viz. NaBO2 and Cd2B2O5, was formed instead, according to powder X-ray diffraction analyses. This indicates that the structural variants in the family of compounds A₃MB₅O₁₀ depend strongly on sizes of A^+ and M^{2+} cations.

3. Synthesis and crystallization

In a typical synthesis of the cadmium-containing compound, a powder mixture of the starting materials $Na_2B_4O_7$ ·10H₂O, ZnO, CdO, H₃BO₃ in the molar ratio Na:Zn:Cd:B = 3:2:1:7 was

transferred to a platinum crucible of 40 mm in diameter and 40 mm in height. The sample was melted at 1023 K for one week, then cooled down to 773 K at a rate of 0.5 K h^{-1} , to 573 K at 1.0 K h⁻¹, followed by cooling to room temperature at 20 K h⁻¹. Colourless prismatic crystals were isolated from the solidified melt. Energy-dispersive X-ray analyses (EDX) in a scanning electron microscope confirmed the existence of the heavy elements zinc and cadmium with an approximate atomic ratio of 8.2:1.5, close to the refined composition of the crystal (9.12: 0.88) (see Figs. S1-S2 and Table S1 in the Supporting information). The magnesium-containing compound was prepared in the same way, except that the starting materials were Na₂B₄O₇·10H₂O, ZnO, MgO, H₃BO₃ in the molar ratio Na:Zn:Mg:B = 2:2:1:6. EDX measurements for the $Na_3Zn_{0.845}Mg_{0.155}B_5O_{10}$ crystal gave an approximate atomic ratio of Zn:Mg = 4.9:3.8, deviating significantly from the refined composition (8.45:1.55) (see Figs. S3-S4 and Table S2). This may be due to the fact that the Mg-peak in the EDX spectrum is very close to the main peak of Zn, which leads the calculations of the integrated intensities of the Zn and Mg peaks to be inaccurate, consequently producing an inaccurate Zn/Mg atomic ratio. The powder X-ray diffraction pattern of the ground crystals are in good agreement with those calculated from the single-crystal data.

The infrared spectra exhibit the characteristic absorption bands of both BO₃ and BO₄ groups for $Na_3Zn_{0.912}Cd_{0.088}B_5O_{10}$ ($Na_3Zn_{0.845}Mg_{0.155}B_5O_{10}$), *i.e.* BO₃ asymmetric stretching vibrations in the frequency range 1400–1206 (1400–1201) cm⁻¹, BO₄ asymmetric stretching modes from 1077 to 1025 (1079 to 1026) cm⁻¹, BO₃ symmetric stretching modes lying at around 938 (939) cm⁻¹, BO₄ symmetric stretching

mixed with BO₃ out-of plane bending modes locating at about 776 (777) cm⁻¹, and the overlapped BO₃ and BO₄ bending vibrations occurring below 722 (723) cm⁻¹. These values correspond well to those reported in the literature (Filatov *et al.*, 2004). UV–VIS diffuse reflectance spectra indicated insulator character, with optical band gaps of about 2.95 and 3.10 eV for Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ and Na₃Zn_{0.845}Mg_{0.155}B₅O₁₀, respectively.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Based on the EDX measurements, cadmium and magnesium, respectively, was incorporated in the crystals. In fact, refinements of the occupancies of the zinc sites in the two structures revealed a small incorporation of cadmium and a somewhat higher incorporation of magnesium, respectively. For the final models, the occupancies of the disordered *M* sites (M = Zn, Cd and Zn, Mg, respectively) were constrained to 1.0, with the same coordinates and displacement parameters for the two types of metals. The refined ratios were Zn_{0.912} (4):Cd_{0.088} (4) and Zn_{0.845} (5): Mg_{0.155} (5), respectively. The largest residual electron densities in the final difference-Fourier map are below 1.59 e Å⁻³.

Funding information

Financial support by the National Natural Science Foundation of China (grant No. 20871012) is gratefully acknowledged.

References

Becker, P. (1998). Adv. Mater. 10, 979–992. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

- Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). *Can. Mineral.* 33, 1131–1151.
- Chen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658–1663.
- Chen, X., Li, M., Zuo, J., Chang, X., Zang, H. & Xiao, W. (2007b). Solid State Sci. 9, 678–685.
- Chen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118–122.
- Chen, X., Yang, C., Chang, X., Zang, H. & Xiao, W. (2010). J. Alloys Compd. 492, 543–547.
- Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). *Adv. Mater.* **11**, 1071–1078.
- Dowty, E. (1999). *ATOMS*. Shape Software, 521 Hidden Valley Road, Kingsport, TN37663, USA.
- Filatov, S., Shepelev, Y., Bubnova, R., Sennova, N., Egorysheva, A. V. & Kargin, Y. F. (2004). J. Solid State Chem. 177, 515–522.
- Hawthorne, F. C., Burns, P. C. & Grice, J. D. (1996). *Rev. Mineral.* 33, 41–115.
- Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Rigaku Corporation (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Strauss, F., Rousse, G., Sougrati, M. T., Dalla Corte, D. A., Courty, M., Dominko, R. & Tarascon, J.-M. (2016). *Inorg. Chem.* 55, 12775– 12782.
- Sun, T.-Q., Pan, F., Wang, R.-J., Shen, G.-Q., Wang, X.-Q. & Shen, D.-Z. (2003). Acta Cryst. C59, i107–i108.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, H., Pan, S., Yu, H., Chen, Z. & Zhang, F. (2012). Solid State Sci. 14, 936–940.
- Yu, H., Pan, S., Wu, H., Han, J., Dong, X. & Zhou, Z. (2011). J. Solid State Chem. 184, 1644–1648.
- Yuan, X., Wang, R.-J., Shen, D.-Z., Wang, X.-Q. & Shen, G.-Q. (2005). Acta Cryst. E61, i196–i198.
- Zhang, F., Shen, D., Shen, G. & Wang, X. (2008). Z. Kristallogr. New Cryst. Stuct. 223, 3–4.

Acta Cryst. (2017). E73, 1774-1778 [https://doi.org/10.1107/S2056989017015249] Crystal structures of the solid solutions $Na_3Zn_{0.912}Cd_{0.088}B_5O_{10}$ and $Na_3Zn_{0.845}Mg_{0.155}B_5O_{10}$

Xue-An Chen, Ya-Hua Zhang, Xin-An Chang and Wei-Qiang Xiao

Computing details

For both structures, data collection: *Rigaku/AFC Diffractometer Control Software* (Rigaku Corporation, 1994); cell refinement: *Rigaku/AFC Diffractometer Control Software* (Rigaku Corporation, 1994); data reduction: *Rigaku/AFC Diffractometer Control Software* (Rigaku Corporation, 1994); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ATOMS* (Dowty, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Trisodium zinc cadmium pentaborate (I)

Crystal data

Na₃Zn_{0.912}Cd_{0.088}B₅O₁₀ $M_r = 352.53$ Orthorhombic, *Pbca* a = 7.9407 (14) Å b = 12.293 (2) Å c = 18.0684 (19) Å V = 1763.7 (5) Å³ Z = 8F(000) = 1356.7

Data collection

Rigaku AFC-7R diffractometer Radiation source: fine-focus sealed tube $2\theta - \omega$ scans Absorption correction: ψ scan (Kopfmann & Huber, 1968) $T_{\min} = 0.703, T_{\max} = 0.752$ 3006 measured reflections 2562 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.072$ S = 0.912562 reflections 174 parameters $D_x = 2.655 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 12.1-22.2^{\circ}$ $\mu = 2.95 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.30 \times 0.10 \times 0.10 \text{ mm}$

1557 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 17$ $l = 0 \rightarrow 25$ 3 standard reflections every 150 reflections intensity decay: 2.2%

0 restraints $w = 1/[\sigma^2(F_o^2) + (0.0224P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³

Extinction correction: SHELXL2014 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00127 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nal	0.8291 (2)	0.41887 (12)	0.07922 (8)	0.0318 (4)	
Na2	0.69268 (17)	0.65268 (11)	0.25478 (7)	0.0248 (3)	
Na3	0.79023 (18)	0.42762 (12)	0.42997 (7)	0.0271 (4)	
Znl	0.42413 (4)	0.67826 (3)	0.09632 (2)	0.01812 (12)	0.912 (4)
Cd1	0.42413 (4)	0.67826 (3)	0.09632 (2)	0.01812 (12)	0.088 (4)
B1	0.4192 (5)	0.1571 (3)	0.0744 (2)	0.0195 (8)	
B2	0.7256 (5)	0.1729 (4)	0.07257 (19)	0.0198 (8)	
B3	0.5612 (5)	0.2868 (3)	0.16320 (19)	0.0174 (7)	
B4	0.5534 (5)	0.3497 (3)	0.2967 (2)	0.0206 (8)	
B5	0.4884 (6)	0.4782 (3)	0.1978 (2)	0.0239 (9)	
O1	0.2779 (3)	0.1189 (2)	0.04400 (13)	0.0260 (6)	
O2	0.4154 (3)	0.22647 (18)	0.13473 (12)	0.0211 (5)	
O3	0.5761 (3)	0.1244 (2)	0.04691 (13)	0.0261 (6)	
O4	0.7176 (3)	0.2455 (2)	0.13046 (12)	0.0215 (5)	
05	0.8686 (3)	0.1418 (2)	0.04139 (13)	0.0286 (6)	
O6	0.5712 (3)	0.27092 (17)	0.24380 (12)	0.0220 (5)	
O7	0.5416 (3)	0.40273 (18)	0.14568 (12)	0.0226 (6)	
O8	0.5100 (4)	0.4541 (2)	0.27321 (13)	0.0380 (8)	
O9	0.5732 (3)	0.33154 (19)	0.36916 (11)	0.0241 (5)	
O10	0.4228 (4)	0.5721 (2)	0.18019 (14)	0.0390 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0399 (9)	0.0298 (8)	0.0258 (8)	-0.0017 (7)	-0.0048 (7)	0.0019 (6)
Na2	0.0245 (7)	0.0292 (7)	0.0206 (6)	-0.0011 (7)	0.0013 (6)	-0.0035 (7)
Na3	0.0333 (8)	0.0298 (8)	0.0184 (6)	0.0006 (7)	-0.0012 (6)	0.0029 (6)
Zn1	0.01764 (18)	0.01970 (19)	0.01702 (17)	-0.00189 (18)	0.00014 (17)	-0.00138 (16)
Cd1	0.01764 (18)	0.01970 (19)	0.01702 (17)	-0.00189 (18)	0.00014 (17)	-0.00138 (16)
B1	0.0197 (17)	0.0201 (19)	0.0188 (16)	-0.0030 (19)	-0.0011 (17)	-0.0027 (14)
B2	0.0202 (18)	0.026 (2)	0.0135 (15)	0.0030 (19)	-0.0009 (14)	-0.0027 (17)
B3	0.0195 (18)	0.0194 (16)	0.0134 (15)	-0.0001 (16)	-0.0001 (16)	-0.0009 (13)
B4	0.0191 (19)	0.027 (2)	0.0160 (17)	0.0037 (17)	-0.0023 (15)	-0.0037 (15)
B5	0.028 (2)	0.019 (2)	0.025 (2)	0.0007 (17)	-0.0021 (18)	-0.0050 (17)
01	0.0208 (13)	0.0307 (14)	0.0266 (13)	-0.0029 (12)	-0.0025 (12)	-0.0080 (11)

02	0.0178 (11)	0.0250 (12)	0.0204 (11)	-0.0016 (11)	-0.0011 (11)	-0.0049 (9)
03	0.0212 (12)	0.0332 (14)	0.0239 (12)	0.0000 (13)	0.0006 (12)	-0.0142 (11)
04	0.0187 (12)	0.0255 (13)	0.0204 (11)	0.0009 (11)	-0.0005 (10)	-0.0092 (11)
05	0.0214 (12)	0.0390 (15)	0.0253 (13)	0.0061 (12)	0.0001 (11)	-0.0140 (12)
06	0.0318 (13)	0.0200 (11)	0.0142 (10)	0.0056 (12)	0.0008 (11)	-0.0002 (9)
07	0.0358 (16)	0.0149 (11)	0.0173 (11)	0.0007 (11)	-0.0015 (10)	-0.0009 (9)
08	0.068 (2)	0.0257 (14)	0.0206 (13)	0.0200 (14)	-0.0123 (14)	-0.0084 (11)
09	0.0271 (12)	0.0320 (13)	0.0133 (10)	0.0012 (14)	-0.0030 (11)	-0.0030 (10)
010	0.061 (2)	0.0242 (13)	0.0322 (14)	0.0203 (15)	0.0125 (15)	0.0114 (11)

Geometric parameters (Å, °)

Na1—O1 ⁱ	2.310 (3)	Zn1—Na1 ⁱⁱⁱ	3.5615 (16)
Na1—O9 ⁱⁱ	2.404 (3)	B1—O1	1.335 (4)
Na1—O4	2.487 (3)	B1—O2	1.384 (4)
Na1—O7	2.587 (3)	B1—O3	1.400 (4)
Na1—O3 ⁱⁱⁱ	2.700 (3)	B1—Cd1 ^{xi}	2.767 (4)
Na1—B4 ⁱⁱ	2.986 (4)	B1—Na1 ^{xii}	3.015 (4)
Na1—B1 ⁱ	3.015 (4)	B2—O5	1.324 (4)
Na1—O3 ⁱ	3.054 (3)	B2—O4	1.376 (4)
Na1—O8 ⁱⁱ	3.059 (3)	B2—O3	1.407 (4)
Na1—B3	3.076 (4)	B2—Na3 ^{xiii}	2.903 (4)
Na1—B2	3.135 (5)	B2—Na1 ^v	3.155 (5)
Na1—B2 ⁱⁱⁱ	3.155 (5)	B3—O4	1.467 (4)
Na1—Na3 ^{iv}	3.4250 (19)	B3—O2	1.468 (4)
Na1—Cd1 ^v	3.5614 (16)	B3—O7	1.468 (4)
Na2—O2 ^{vi}	2.355 (3)	B3—O6	1.472 (4)
Na2—O6 ⁱⁱⁱ	2.381 (3)	B3—Na2 ^{xiv}	2.996 (4)
Na2—O10 ⁱⁱ	2.388 (3)	B3—Na2 ^v	3.046 (4)
Na2—O6 ^{vi}	2.550 (3)	B4—O9	1.337 (4)
Na2—O4 ⁱⁱⁱ	2.618 (3)	B4—O6	1.369 (4)
Na2—O10	2.719 (3)	B4—O8	1.395 (4)
Na2—O8	2.859 (3)	B4—Na1 ^x	2.986 (4)
Na2—B5	2.879 (4)	B5—O10	1.305 (5)
Na2—B3 ^{vi}	2.996 (4)	B5—O7	1.388 (4)
Na2—B3 ⁱⁱⁱ	3.046 (4)	B5—O8	1.405 (5)
Na2—Zn1 ⁱⁱ	3.2734 (14)	B5—Na3 ^x	2.862 (4)
Na2—Cd1 ⁱⁱ	3.2734 (14)	O1—Cd1 ^{xi}	2.000 (2)
Na3—O5 ^{vii}	2.273 (3)	O1—Zn1 ^{xi}	2.000 (2)
Na3—O9	2.361 (3)	O1—Na1 ^{xii}	2.310 (3)
Na3—O7 ⁱⁱ	2.438 (3)	O1—Na3 ^{xiv}	2.458 (3)
Na3—O1 ^{vi}	2.458 (3)	O2—Na2 ^{xiv}	2.355 (3)
Na3—O3 ^{vii}	2.786 (3)	O2—Na3 ^x	2.910 (3)
Na3—B5 ⁱⁱ	2.862 (4)	O3—Na1 ^v	2.700 (3)
Na3—O10 ⁱⁱ	2.868 (3)	O3—Na3 ^{xiii}	2.786 (3)
Na3—B2 ^{vii}	2.903 (4)	O4—Na2 ^v	2.618 (3)
Na3—O2 ⁱⁱ	2.910 (3)	O5—Cd1 ^v	1.974 (2)
Na3—Cd1 ⁱⁱ	3.2938 (16)	O5—Zn1 ^v	1.974 (2)

Na3—Zn1 ⁱⁱ	3.2938 (16)	O5—Na3 ^{xiii}	2.273 (3)
Na3—Na1 ^{viii}	3.4250 (19)	O6—Na2 ^v	2.381 (3)
Zn1—O5 ⁱⁱⁱⁱ	1.974 (2)	O6—Na2 ^{xiv}	2.550 (3)
Zn1—O9 ^{vi}	1.985 (2)	O7—Na3 ^x	2.438 (3)
Zn1—O10	2.000 (2)	O9—Cd1 ^{xiv}	1.985 (2)
Zn1—O1 ^{ix}	2.000 (2)	O9—Zn1 ^{xiv}	1.985 (2)
Zn1—Na2 ^x	3.2733 (14)	O9—Na1 ^x	2.404 (3)
Zn1—Na3 ^x	3.2938 (16)	O10—Na2 ^x	2.388 (3)
Zn1—Na3 ^{vi}	3.5382 (16)	O10—Na3 ^x	2.868 (3)
O1 ⁱ —Na1—O9 ⁱⁱ	115.21 (10)	O10 ⁱⁱ —Na3—Zn1 ⁱⁱ	37.07 (5)
O1 ⁱ —Na1—O4	97.12 (10)	B2 ^{vii} —Na3—Zn1 ⁱⁱ	125.68 (9)
O9 ⁱⁱ —Na1—O4	76.10 (9)	O2 ⁱⁱ —Na3—Zn1 ⁱⁱ	128.80(7)
O1 ⁱ —Na1—O7	106.07 (10)	Cd1 ⁱⁱ —Na3—Zn1 ⁱⁱ	0.000 (13)
O9 ⁱⁱ —Na1—O7	119.81 (9)	O5 ^{vii} —Na3—Na1 ^{viii}	65.50 (8)
O4—Na1—O7	56.45 (8)	O9—Na3—Na1 ^{viii}	116.11 (8)
O1 ⁱ —Na1—O3 ⁱⁱⁱ	91.64 (9)	O7 ⁱⁱ —Na3—Na1 ^{viii}	137.47 (8)
O9 ⁱⁱ —Na1—O3 ⁱⁱⁱ	106.08 (10)	O1 ^{vi} —Na3—Na1 ^{viii}	42.40 (6)
O4—Na1—O3 ⁱⁱⁱ	169.04 (9)	O3 ^{vii} —Na3—Na1 ^{viii}	50.25 (6)
O7—Na1—O3 ⁱⁱⁱ	114.72 (9)	B5 ⁱⁱ —Na3—Na1 ^{viii}	131.86 (10)
O1 ⁱ —Na1—B4 ⁱⁱ	140.44 (12)	O10 ⁱⁱ —Na3—Na1 ^{viii}	107.87 (7)
O9 ⁱⁱ —Na1—B4 ⁱⁱ	25.95 (9)	B2 ^{vii} —Na3—Na1 ^{viii}	59.13 (9)
O4—Na1—B4 ⁱⁱ	71.88 (10)	O2 ⁱⁱ —Na3—Na1 ^{viii}	151.51 (7)
O7—Na1—B4 ⁱⁱ	98.98 (10)	Cd1 ⁱⁱ —Na3—Na1 ^{viii}	71.79 (4)
O3 ⁱⁱⁱ —Na1—B4 ⁱⁱ	105.21 (10)	Zn1 ⁱⁱ —Na3—Na1 ^{viii}	71.79 (4)
O1 ⁱ —Na1—B1 ⁱ	24.80 (10)	$O5^{iii}$ —Zn1— $O9^{vi}$	111.39 (10)
O9 ⁱⁱ —Na1—B1 ⁱ	91.57 (10)	O5 ⁱⁱⁱ —Zn1—O10	103.73 (11)
O4—Na1—B1 ⁱ	99.30 (10)	O9 ^{vi} —Zn1—O10	112.42 (10)
O7—Na1—B1 ⁱ	127.81 (11)	O5 ⁱⁱⁱ —Zn1—O1 ^{ix}	110.40 (9)
O3 ⁱⁱⁱ —Na1—B1 ⁱ	91.42 (10)	O9 ^{vi} —Zn1—O1 ^{ix}	120.23 (10)
B4 ⁱⁱ —Na1—B1 ⁱ	117.46 (12)	O10-Zn1-O1 ^{ix}	96.64 (12)
O1 ⁱ —Na1—B3	104.34 (11)	O5 ⁱⁱⁱ —Zn1—Na2 ^x	149.29 (8)
O9 ⁱⁱ —Na1—B3	97.50 (10)	O9 ^{vi} —Zn1—Na2 ^x	80.73 (7)
O4—Na1—B3	28.10 (9)	O10—Zn1—Na2 ^x	46.49 (8)
O7—Na1—B3	28.40 (9)	O1 ^{ix} —Zn1—Na2 ^x	84.43 (7)
O3 ⁱⁱⁱ —Na1—B3	142.49 (10)	O5 ⁱⁱⁱ —Zn1—Na3 ^x	89.10 (8)
B4 ⁱⁱ —Na1—B3	83.80 (11)	O9 ^{vi} —Zn1—Na3 ^x	159.51 (8)
B1 ⁱ —Na1—B3	117.05 (11)	O10—Zn1—Na3 ^x	59.81 (9)
O1 ⁱ —Na1—B2	73.94 (10)	O1 ^{ix} —Zn1—Na3 ^x	48.05 (8)
O9 ⁱⁱ —Na1—B2	78.20 (10)	Na2 ^x —Zn1—Na3 ^x	81.22 (3)
O4—Na1—B2	25.10 (8)	O5 ⁱⁱⁱ —Zn1—Na3 ^{vi}	122.04 (8)
O7—Na1—B2	73.29 (9)	O9 ^{vi} —Zn1—Na3 ^{vi}	39.19 (7)
O3 ⁱⁱⁱ —Na1—B2	165.25 (10)	O10—Zn1—Na3 ^{vi}	131.64 (8)
B4 ⁱⁱ —Na1—B2	84.87 (11)	O1 ^{ix} —Zn1—Na3 ^{vi}	82.34 (8)
B1 ⁱ —Na1—B2	74.22 (10)	$Na2^{x}$ — $Zn1$ — $Na3^{vi}$	85.61 (3)
B3—Na1—B2	47.84 (10)	Na3 ^x —Zn1—Na3 ^{vi}	129.47 (2)
O1 ⁱ —Na1—B2 ⁱⁱⁱ	97.93 (10)	O5 ⁱⁱⁱ —Zn1—Na1 ⁱⁱⁱ	71.71 (8)
O9 ⁱⁱ —Na1—B2 ⁱⁱⁱ	124.59 (10)	O9 ^{vi} —Zn1—Na1 ⁱⁱⁱ	39.91 (7)

O4—Na1—B2 ⁱⁱⁱ	144.44 (10)	O10-Zn1-Na1 ⁱⁱⁱ	127.64 (9)
O7—Na1—B2 ⁱⁱⁱ	88.40 (10)	O1 ^{ix} —Zn1—Na1 ⁱⁱⁱ	134.71 (8)
O3 ⁱⁱⁱ —Na1—B2 ⁱⁱⁱ	26.37 (8)	Na2 ^x —Zn1—Na1 ⁱⁱⁱ	117.39 (3)
B4 ⁱⁱ —Na1—B2 ⁱⁱⁱ	113.11 (11)	Na3 ^x —Zn1—Na1 ⁱⁱⁱ	160.39 (3)
B1 ⁱ —Na1—B2 ⁱⁱⁱ	107.72 (11)	Na3 ^{vi} —Zn1—Na1 ⁱⁱⁱ	62.20 (4)
B3—Na1—B2 ⁱⁱⁱ	116.48 (11)	O5 ⁱⁱⁱ —Zn1—Na2	83.43 (8)
B2—Na1—B2 ⁱⁱⁱ	156.47 (6)	O9 ^{vi} —Zn1—Na2	79.97 (7)
O1 ⁱ —Na1—Na3 ^{iv}	45.83 (7)	O10—Zn1—Na2	48.75 (9)
O9 ⁱⁱ —Na1—Na3 ^{iv}	140.76 (8)	O1 ^{ix} —Zn1—Na2	145.37 (8)
O4—Na1—Na3 ^{iv}	131.83 (8)	Na2 ^x —Zn1—Na2	70.674 (14)
O7—Na1—Na3 ^{iv}	99.41 (7)	Na3 ^x —Zn1—Na2	103.02 (3)
O3 ⁱⁱⁱ —Na1—Na3 ^{iv}	52.51 (6)	Na3 ^{vi} —Zn1—Na2	118.00 (3)
B4 ⁱⁱ —Na1—Na3 ^{iv}	155.89 (9)	Na1 ⁱⁱⁱ —Zn1—Na2	79.33 (3)
B1 ⁱ —Na1—Na3 ^{iv}	60.76 (8)	O1—B1—O2	121.5 (3)
B3—Na1—Na3 ^{iv}	119.19 (9)	O1—B1—O3	120.0 (3)
B2—Na1—Na3 ^{iv}	115.38 (8)	O2—B1—O3	118.4 (3)
B2 ⁱⁱⁱ —Na1—Na3 ^{iv}	52.17 (7)	O1—B1—Cd1 ^{xi}	42.59 (16)
$O1^{i}$ —Na1—Cd1 ^v	90.77 (8)	$O2-B1-Cd1^{xi}$	78.9 (2)
$O9^{ii}$ —Na1—Cd1 ^v	31.99 (6)	$O3-B1-Cd1^{xi}$	162.6(2)
O4—Na1—Cd1 ^v	56.75 (6)	$01 - B1 - Na1^{xii}$	46.55 (16)
07—Na1—Cd1 ^v	112.43 (7)	$O2-B1-Na1^{xii}$	155.6 (3)
$O3^{iii}$ —Na1—Cd1 ^v	129.97 (8)	O3—B1—Na1 ^{xii}	78.18 (18)
$B4^{ii}$ —Na1—Cd1 ^v	50.97 (8)	$Cd1^{xi}$ B1 Na1 ^{xii}	85.80 (11)
B1 ⁱ —Na1—Cd1 ^v	72.05 (8)	05—B2—04	123.4 (3)
B3—Na1—Cd1 ^v	84.23 (8)	05-B2-03	117.4 (3)
B2—Na1—Cd1 ^v	49.21 (8)	$04 - B^2 - 0^3$	119.1 (3)
$B2^{iii}$ —Na1—Cd1 ^v	154.29 (9)	$05-B2-Na3^{xiii}$	49.29 (16)
$Na3^{iv}$ Na1 Cd1 ^v	132.69 (5)	$O4-B2-Na3^{xiii}$	163.5 (3)
$\Omega^{2^{vi}}$ Na2 $\Omega^{6^{iii}}$	97.04 (9)	$O3 - B2 - Na3^{xiii}$	71.11 (17)
02^{vi} Na2 010^{ii}	91.24 (9)	$05 B_2$ Nal	94.0 (2)
06^{iii} Na2 010^{ii}	72.03 (10)	O4-B2-Na1	50.05 (18)
$\Omega^{2^{vi}}$ Na2 $\Omega^{6^{vi}}$	58 16 (8)	O3-B2-Na1	130.0(2)
06^{iii} Na2-06 ^{vi}	107 46 (9)	Na3 ^{xiii} —B2—Na1	11346(13)
010^{ii} Na ² 00^{vi}	149.35(10)	Ω_{5} B2 Na1 ^v	81 3 (2)
Ω^{v_i} Na2 Ω^{4ii}	131 20 (9)	O4—B2—Na1 ^v	1273(2)
06^{iii} Na2 04^{iii}	56 51 (8)	$O3 - B2 - Na1^{\vee}$	58 45 (19)
010^{ii} Na2 04^{iii}	113 25 (11)	$Na3^{xii}$ $B2$ $Na1^{v}$	68 70 (10)
06^{vi} Na2 04^{iii}	89.07 (8)	$Na1 = B2 = Na1^{v}$	17150(14)
02^{vi} Na2 04	105.86 (10)	04 - B3 - 02	1106(3)
06^{iii} Na2 010	143 33 (9)	04 - B3 - 07	100.8(3)
010^{ii} N ₂ 2 010	134 11 (12)	$0^{2}-B^{3}-0^{7}$	109.8(3) 109.4(3)
06^{vi} N ₂ 2 010	64 21 (8)	02 - B3 - 07 04 - B3 - 06	107.4(3) 107.9(3)
0.00 - Na2 - 0.10	87 01 (8)	0^{2} B3 06	107.9(3) 108.8(3)
02^{vi} Na2 010	92 59 (8)	07-B3-06	110.4(3)
$02^{-1}a2^{-0}$	158 52 (10)	$04 B3 N_2^{xiv}$	125 4 (2)
00 - 10a2 - 00	88 67 (10)	$02 B3 Na 2^{xiv}$	123.7(2)
$O_{10} - N_{22} = O_{0}$	03.07(10)	02 - 03 - 102 07 B3 Na 2^{xiy}	1247(2)
$O_{111} = O_{111} = O_{1$	99.94 (7) 127 50 (8)	$O_{1} = D_{3} = Na2$	124.7(2)
$04 - Na2 - O\delta$	121.37 (8)	OO-DO-Na2	30.23 (17)

O10—Na2—O8	49.20 (7)	O4—B3—Na2 ^v	59.21 (16)
O2 ^{vi} —Na2—B5	112.63 (11)	O2—B3—Na2 ^v	115.0 (2)
O6 ⁱⁱⁱ —Na2—B5	150.29 (11)	O7—B3—Na2 ^v	135.3 (2)
O10 ⁱⁱ —Na2—B5	107.34 (12)	O6—B3—Na2 ^v	49.90 (16)
O6 ^{vi} —Na2—B5	88.01 (11)	Na2 ^{xiv} —B3—Na2 ^v	82.25 (9)
O4 ⁱⁱⁱ —Na2—B5	99.84 (10)	O4—B3—Na1	52.99 (16)
O10—Na2—B5	26.77 (10)	O2—B3—Na1	129.7 (2)
O8—Na2—B5	28.35 (9)	O7—B3—Na1	56.95 (17)
O2 ^{vi} —Na2—B3 ^{vi}	28.77 (9)	O6—B3—Na1	121.4 (2)
O6 ⁱⁱⁱ —Na2—B3 ^{vi}	103.60 (10)	Na2 ^{xiv} —B3—Na1	178.31 (15)
O10 ⁱⁱ —Na2—B3 ^{vi}	119.98 (10)	Na2 ^v —B3—Na1	96.30 (12)
O6 ^{vi} —Na2—B3 ^{vi}	29.39 (8)	O9—B4—O6	123.6 (3)
O4 ⁱⁱⁱ —Na2—B3 ^{vi}	111.57 (10)	O9—B4—O8	118.8 (3)
O10—Na2—B3 ^{vi}	85.15 (10)	O6—B4—O8	117.6 (3)
O8—Na2—B3 ^{vi}	94.07 (10)	O9—B4—Na1 ^x	51.91 (17)
B5—Na2—B3 ^{vi}	102.00 (12)	O6—B4—Na1 ^x	142.0 (3)
O2 ^{vi} —Na2—B3 ⁱⁱⁱ	119.08 (10)	O8—B4—Na1 ^x	79.6 (2)
O6 ⁱⁱⁱⁱ —Na2—B3 ⁱⁱⁱ	28.21 (9)	O10—B5—O7	123.2 (3)
O10 ⁱⁱ —Na2—B3 ⁱⁱⁱ	90.05 (11)	O10—B5—O8	118.1 (3)
O6 ^{vi} —Na2—B3 ⁱⁱⁱ	102.95 (10)	O7—B5—O8	118.7 (3)
O4 ⁱⁱⁱ —Na2—B3 ⁱⁱⁱ	28.77 (8)	O10—B5—Na3 ^x	77.1 (2)
O10—Na2—B3 ⁱⁱⁱ	115.71 (10)	O7—B5—Na3 ^x	58.31 (18)
O8—Na2—B3 ⁱⁱⁱ	148.33 (10)	O8—B5—Na3 ^x	143.4 (3)
B5—Na2—B3 ⁱⁱⁱ	124.77 (12)	O10—B5—Na2	69.8 (2)
B3 ^{vi} —Na2—B3 ⁱⁱⁱ	113.74 (13)	O7—B5—Na2	124.7 (3)
O2 ^{vi} —Na2—Zn1 ⁱⁱ	58.06 (6)	O8—B5—Na2	75.0 (2)
O6 ⁱⁱⁱ —Na2—Zn1 ⁱⁱ	64.38 (6)	Na3 ^x —B5—Na2	139.48 (16)
O10 ⁱⁱ —Na2—Zn1 ⁱⁱ	37.41 (6)	B1—O1—Cd1 ^{xi}	110.6 (2)
O6 ^{vi} —Na2—Zn1 ⁱⁱ	113.47 (7)	B1—O1—Zn1 ^{xi}	110.6 (2)
O4 ⁱⁱⁱ —Na2—Zn1 ⁱⁱ	120.70 (7)	$Cd1^{xi}$ — $O1$ — $Zn1^{xi}$	0.00 (2)
O10—Na2—Zn1 ⁱⁱ	152.26 (7)	B1—O1—Na1 ^{xii}	108.6 (2)
O8—Na2—Zn1 ⁱⁱ	105.74 (6)	Cd1 ^{xi} —O1—Na1 ^{xii}	132.05 (12)
B5—Na2—Zn1 ⁱⁱ	132.99 (9)	Zn1 ^{xi} —O1—Na1 ^{xii}	132.05 (12)
B3 ^{vi} —Na2—Zn1 ⁱⁱ	85.32 (8)	B1-O1-Na3xiv	116.3 (2)
B3 ⁱⁱⁱ —Na2—Zn1 ⁱⁱ	91.96 (8)	Cd1 ^{xi} —O1—Na3 ^{xiv}	94.70 (10)
O2 ^{vi} —Na2—Cd1 ⁱⁱ	58.06 (6)	Zn1 ^{xi} —O1—Na3 ^{xiv}	94.70 (10)
O6 ⁱⁱⁱ —Na2—Cd1 ⁱⁱ	64.38 (6)	Na1 ^{xii} —O1—Na3 ^{xiv}	91.77 (10)
O10 ⁱⁱ —Na2—Cd1 ⁱⁱ	37.41 (6)	B1—O2—B3	124.8 (3)
O6 ^{vi} —Na2—Cd1 ⁱⁱ	113.47 (7)	B1—O2—Na2 ^{xiv}	116.0 (2)
O4 ⁱⁱⁱ —Na2—Cd1 ⁱⁱ	120.70 (7)	B3—O2—Na2 ^{xiv}	100.66 (18)
O10—Na2—Cd1 ⁱⁱ	152.26 (7)	B1—O2—Na3 ^x	102.4 (2)
O8—Na2—Cd1 ⁱⁱ	105.74 (6)	B3—O2—Na3 ^x	88.90 (18)
B5—Na2—Cd1 ⁱⁱ	132.99 (9)	Na2 ^{xiv} —O2—Na3 ^x	122.91 (10)
B3 ^{vi} —Na2—Cd1 ⁱⁱ	85.32 (8)	B1—O3—B2	120.8 (3)
B3 ⁱⁱⁱ —Na2—Cd1 ⁱⁱ	91.96 (8)	B1—O3—Na1 ^v	116.1 (2)
Zn1 ⁱⁱ —Na2—Cd1 ⁱⁱ	0.000 (14)	B2—O3—Na1 ^v	95.2 (2)
O5 ^{vii} —Na3—O9	115.10 (10)	B1—O3—Na3 ^{xiii}	151.4 (2)
O5 ^{vii} —Na3—O7 ⁱⁱ	103.02 (10)	B2—O3—Na3 ^{xiii}	80.35 (18)

O9—Na3—O7 ⁱⁱ	105.90 (9)	Na1 ^v —O3—Na3 ^{xiii}	77.25 (7)
O5 ^{vii} —Na3—O1 ^{vi}	104.47 (10)	B2—O4—B3	124.8 (3)
09—Na3—O1 ^{vi}	114.00 (10)	B2—O4—Na1	104.9 (2)
O7 ⁱⁱ —Na3—O1 ^{vi}	114.05 (9)	B3—O4—Na1	98.91 (19)
O5 ^{vii} —Na3—O3 ^{vii}	53.80 (8)	B2—O4—Na2 ^v	110.9 (2)
O9—Na3—O3 ^{vii}	78.04 (8)	B3—O4—Na2 ^v	92.02 (17)
O7 ⁱⁱ —Na3—O3 ^{vii}	153.61 (9)	Na1—O4—Na2 ^v	126.59 (10)
O1 ^{vi} —Na3—O3 ^{vii}	86.56 (8)	B2—O5—Cd1 ^v	115.8 (2)
O5 ^{vii} —Na3—B5 ⁱⁱ	130.19 (12)	B2—O5—Zn1 $^{\circ}$	115.8 (2)
O9—Na3—B5 ⁱⁱ	97.75 (11)	$Cd1^{v}$ — $O5$ — $Zn1^{v}$	0.00(2)
O7 ⁱⁱ —Na3—B5 ⁱⁱ	28.97 (10)	B2—O5—Na3 ^{xiii}	104.5 (2)
O1 ^{vi} —Na3—B5 ⁱⁱ	93.86 (11)	Cd1 ^v —O5—Na3 ^{xiii}	139.36 (13)
O3 ^{vii} —Na3—B5 ⁱⁱ	175.52 (12)	Zn1 ^v —O5—Na3 ^{xiii}	139.36 (13)
O5 ^{vii} —Na3—O10 ⁱⁱ	138.30 (11)	B4—O6—B3	126.3 (3)
O9—Na3—O10 ⁱⁱ	104.76 (9)	B4—O6—Na2 ^v	117.1 (2)
O7 ⁱⁱ —Na3—O10 ⁱⁱ	52.28 (8)	B3—O6—Na2 ^v	101.9 (2)
O1 ^{vi} —Na3—O10 ⁱⁱ	67.74 (8)	B4—O6—Na2 ^{xiv}	108.2 (2)
O3 ^{vii} —Na3—O10 ⁱⁱ	153.17 (9)	B3—O6—Na2 ^{xiv}	92.4 (2)
B5 ⁱⁱ —Na3—O10 ⁱⁱ	26.34 (9)	Na2 ^v —O6—Na2 ^{xiv}	107.36 (9)
O5 ^{vii} —Na3—B2 ^{vii}	26.19 (10)	B5—O7—B3	122.4 (3)
O9—Na3—B2 ^{vii}	94.07 (11)	B5—O7—Na3 ^x	92.7 (2)
O7 ⁱⁱ —Na3—B2 ^{vii}	126.07 (11)	B3—O7—Na3 ^x	109.2 (2)
O1 ^{vi} —Na3—B2 ^{vii}	101.45 (11)	B5—O7—Na1	122.1 (2)
O3 ^{vii} —Na3—B2 ^{vii}	28.54 (9)	B3—O7—Na1	94.7 (2)
B5 ⁱⁱ —Na3—B2 ^{vii}	154.88 (13)	Na3 ^x —O7—Na1	116.90 (9)
O10 ⁱⁱ —Na3—B2 ^{vii}	160.82 (11)	B4—O8—B5	121.3 (3)
O5 ^{vii} —Na3—O2 ⁱⁱ	86.75 (9)	B4—O8—Na2	134.1 (2)
O9—Na3—O2 ⁱⁱ	68.73 (8)	B5—O8—Na2	76.6 (2)
O7 ⁱⁱ —Na3—O2 ⁱⁱ	52.31 (8)	B4—O9—Cd1 ^{xiv}	117.9 (2)
O1 ^{vi} —Na3—O2 ⁱⁱ	164.75 (9)	B4—O9—Zn1 ^{xiv}	117.9 (2)
O3 ^{vii} —Na3—O2 ⁱⁱ	108.55 (8)	$Cd1^{xiv}$ — $O9$ — $Zn1^{xiv}$	0.00 (2)
B5 ⁱⁱ —Na3—O2 ⁱⁱ	70.91 (10)	B4—O9—Na3	117.2 (2)
O10 ⁱⁱ —Na3—O2 ⁱⁱ	97.01 (8)	Cd1 ^{xiv} —O9—Na3	108.72 (10)
B2 ^{vii} —Na3—O2 ⁱⁱ	93.16 (11)	Zn1 ^{xiv} —O9—Na3	108.72 (10)
O5 ^{vii} —Na3—Cd1 ⁱⁱ	112.99 (8)	B4—O9—Na1 ^x	102.1 (2)
O9—Na3—Cd1 ⁱⁱ	129.54 (8)	Cd1 ^{xiv} —O9—Na1 ^x	108.10 (11)
O7 ⁱⁱ —Na3—Cd1 ⁱⁱ	76.84 (7)	$Zn1^{xiv}$ —O9—Na1 ^x	108.10 (11)
O1 ^{vi} —Na3—Cd1 ⁱⁱ	37.25 (6)	Na3—O9—Na1 ^x	100.64 (9)
O3 ^{vii} —Na3—Cd1 ⁱⁱ	121.39 (7)	B5—O10—Zn1	139.4 (3)
B5 ⁱⁱ —Na3—Cd1 ⁱⁱ	60.18 (9)	B5—O10—Na2 ^x	123.5 (2)
O10 ⁱⁱ —Na3—Cd1 ⁱⁱ	37.07 (5)	Zn1—O10—Na2 ^x	96.10 (10)
B2 ^{vii} —Na3—Cd1 ⁱⁱ	125.68 (9)	B5—O10—Na2	83.5 (2)
O2 ⁿ —Na3—Cd1 ⁿ	128.80 (7)	Zn1—O10—Na2	97.68 (11)
O5 ^{vn} —Na3—Zn1 ⁿ	112.99 (8)	Na2 ^x —O10—Na2	102.02 (10)
09—Na3—Zn1"	129.54 (8)	B5—010—Na3 ^x	76.6 (2)
O7 ⁿ —Na3—Zn1 ⁿ	76.84 (7)	Zn1—O10—Na3 ^x	83.12 (10)
O1 ^{vi} —Na3—Zn1 ⁱⁱ	37.25 (6)	Na2 ^x	108.52 (12)

O3 ^{vii} —Na3—Zn1 ⁱⁱ	121.39 (7)	Na2—O10—Na3 ^x	149.21 (11)
B5 ⁱⁱ —Na3—Zn1 ⁱⁱ	60.18 (9)		

Symmetry codes: (i) x+1/2, -y+1/2, -z; (ii) x+1/2, y, -z+1/2; (iii) -x+3/2, y+1/2, z; (iv) -x+3/2, -y+1, z-1/2; (v) -x+3/2, y-1/2, z; (vi) -x+1, y+1/2, -z+1/2; (vii) x, -y+1/2, z+1/2; (vii) -x+3/2, -y+1, z+1/2; (ix) -x+1/2, y+1/2, z; (x) x-1/2, y, -z+1/2; (xi) -x+1/2, y-1/2, z; (xii) x-1/2, -y+1/2, -z; (xiii) x, -y+1/2, z-1/2; (xiv) -x+1, y-1/2, -z+1/2.

 $D_{\rm x} = 2.597 {\rm Mg} {\rm m}^{-3}$

 $\theta = 10.2 - 22.2^{\circ}$

 $\mu = 2.60 \text{ mm}^{-1}$ T = 293 K

Prism, colorless

 $R_{\rm int} = 0.053$

 $h = 0 \longrightarrow 11$ $k = 0 \longrightarrow 17$

 $l = 0 \rightarrow 25$

 $0.30 \times 0.20 \times 0.20$ mm

 $\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

intensity decay: 1.8%

1496 reflections with $I > 2\sigma(I)$

3 standard reflections every 150 reflections

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Trisodium zinc magnesium pentaborate (II)

Crystal data

Na₃Zn_{0.845}Mg_{0.155}B₅O₁₀ $M_r = 342.03$ Orthorhombic, *Pbca* a = 7.8931 (12) Å b = 12.2555 (12) Å c = 18.0874 (11) Å V = 1749.7 (3) Å³ Z = 8F(000) = 1321.7

Data collection

Rigaku AFC-7R diffractometer Radiation source: fine-focus sealed tube $2\theta - \omega$ scans Absorption correction: ψ scan (Kopfmann & Huber, 1968) $T_{\min} = 0.532, T_{\max} = 0.603$ 2982 measured reflections 2542 independent reflections

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.113$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 0.87	$\Delta \rho_{\rm max} = 1.59 \text{ e } \text{\AA}^{-3}$
2542 reflections	$\Delta ho_{ m min}$ = -0.70 e Å ⁻³
173 parameters	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Na1	0.8316 (2)	0.41813 (15)	0.07839 (9)	0.0239 (4)	
Na2	0.6897 (2)	0.65191 (14)	0.25456 (9)	0.0206 (4)	
Na3	0.7931 (2)	0.42713 (14)	0.42996 (9)	0.0200 (4)	
Zn1	0.42299 (6)	0.67666 (4)	0.09703 (3)	0.01104 (14)	0.845 (5)
Mg1	0.42299 (6)	0.67666 (4)	0.09703 (3)	0.01104 (14)	0.155 (5)

B1	0.4227 (6)	0.1568 (3)	0.0748 (2)	0.0130 (8)
B2	0.7313 (6)	0.1729 (4)	0.0738 (2)	0.0152 (9)
B3	0.5641 (6)	0.2867 (4)	0.1632 (2)	0.0125 (8)
B4	0.5572 (5)	0.3497 (4)	0.2970 (2)	0.0128 (8)
B5	0.4890 (6)	0.4793 (4)	0.1982 (2)	0.0159 (9)
01	0.2775 (3)	0.1191 (2)	0.04430 (15)	0.0143 (6)
02	0.4175 (3)	0.2267 (2)	0.13508 (15)	0.0159 (6)
03	0.5784 (4)	0.1245 (2)	0.04716 (15)	0.0174 (6)
04	0.7209 (4)	0.2457 (2)	0.13007 (15)	0.0180 (6)
05	0.8743 (4)	0.1431 (3)	0.04167 (16)	0.0209 (7)
06	0.5735 (4)	0.2706 (2)	0.24378 (14)	0.0158 (6)
07	0.5439 (4)	0.4035 (2)	0.14602 (14)	0.0168 (6)
08	0.5099 (5)	0.4543 (2)	0.27360 (15)	0.0283 (8)
09	0.5753 (3)	0.3304 (2)	0.36922 (13)	0.0140 (5)
O10	0.4240 (4)	0.5735 (2)	0.17972 (16)	0.0247 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0291 (10)	0.0218 (9)	0.0206 (9)	-0.0003 (8)	-0.0034 (7)	0.0017 (7)
Na2	0.0211 (9)	0.0221 (8)	0.0186 (8)	-0.0020 (7)	0.0004 (7)	-0.0022 (7)
Na3	0.0235 (9)	0.0211 (9)	0.0154 (7)	0.0011 (8)	-0.0026 (7)	0.0019 (6)
Zn1	0.0112 (2)	0.0106 (2)	0.0112 (2)	-0.0005 (2)	0.0001 (2)	-0.00064 (19)
Mg1	0.0112 (2)	0.0106 (2)	0.0112 (2)	-0.0005 (2)	0.0001 (2)	-0.00064 (19)
B1	0.0127 (18)	0.015 (2)	0.0114 (17)	0.0013 (18)	0.0066 (17)	-0.0031 (14)
B2	0.019 (2)	0.012 (2)	0.0146 (18)	0.0023 (18)	0.0120 (17)	-0.0025 (17)
B3	0.017 (2)	0.0116 (17)	0.0086 (17)	0.0032 (17)	-0.0014 (17)	0.0005 (14)
B4	0.0098 (19)	0.0127 (19)	0.016 (2)	0.0025 (16)	-0.0006 (16)	-0.0045 (15)
B5	0.024 (2)	0.012 (2)	0.011 (2)	0.0034 (18)	-0.0028 (18)	-0.0025 (16)
01	0.0121 (13)	0.0150 (14)	0.0159 (13)	-0.0008 (11)	0.0042 (11)	-0.0058 (11)
O2	0.0134 (13)	0.0197 (14)	0.0147 (13)	-0.0020 (12)	-0.0010 (12)	-0.0088 (11)
O3	0.0114 (12)	0.0239 (15)	0.0170 (13)	0.0023 (13)	0.0021 (12)	-0.0112 (11)
O4	0.0150 (14)	0.0187 (14)	0.0204 (14)	-0.0008 (12)	-0.0003 (12)	-0.0088 (12)
O5	0.0128 (13)	0.0301 (16)	0.0197 (15)	0.0046 (12)	0.0005 (12)	-0.0089 (13)
06	0.0278 (15)	0.0098 (12)	0.0100 (12)	0.0043 (12)	-0.0002 (12)	-0.0011 (10)
O7	0.0285 (17)	0.0107 (13)	0.0112 (12)	0.0022 (11)	-0.0014 (11)	-0.0003 (10)
08	0.058 (2)	0.0135 (14)	0.0133 (14)	0.0107 (15)	-0.0080 (15)	-0.0036 (12)
09	0.0204 (13)	0.0116 (13)	0.0101 (12)	-0.0002 (12)	-0.0023 (11)	0.0004 (10)
O10	0.0411 (19)	0.0148 (13)	0.0181 (14)	0.0109 (15)	0.0040 (15)	0.0050 (11)

Geometric parameters (Å, °)

Na1—O1 ⁱ	2.305 (3)	B1—O3	1.384 (5)
Na1—O9 ⁱⁱ	2.399 (3)	B1—O2	1.388 (5)
Na1—O4	2.470 (3)	B1—Mg1 ^{xi}	2.769 (5)
Na1—O7	2.586 (3)	B1—Na1 ^{xii}	3.006 (5)
Na1—O3 ⁱⁱⁱ	2.687 (3)	B2—O5	1.321 (5)
Na1—B4 ⁱⁱ	2.992 (5)	B2—O4	1.357 (5)

Na1—B1 ⁱ	3.006 (5)	B2—O3	1.428 (5)
Na1—B3	3.067 (5)	B2—Mg1 ^v	2.762 (5)
Na1—B2	3.110 (5)	B2—Na3 ^{xiii}	2.916 (4)
Na1—B2 ⁱⁱⁱ	3.162 (5)	B2—Na1 ^v	3.162 (5)
Na1—Na3 ^{iv}	3.431 (2)	B3—O2	1.462 (5)
Na1—Zn1 ^v	3.5530 (18)	B3—O4	1.464 (5)
Na2—O2 ^{vi}	2.354 (3)	B3—06	1.473 (5)
Na2—O6 ⁱⁱⁱ	2.377 (3)	B3—07	1.474 (5)
Na2 -010^{ii}	2.399 (4)	B3—Na2 ^{xiv}	2.992 (5)
Na2 $-O6^{vi}$	2,536 (3)	B3—Na2 ^v	3,039(5)
Na2 $-O4^{iii}$	2.636(3)	B4	1335(5)
Na2 = 010	2.625(3) 2 675(4)	B4—06	1.355(5) 1.372(5)
Na208	2.075(4) 2.828(4)	B4-08	1.372(5) 1.400(5)
Na2 B5	2.820(4)	$\mathbf{B}4 = \mathbf{M}\mathbf{a}1^{xiv}$	2.863(5)
$N_{0}2 = B3^{vi}$	2.052(5)	$\mathbf{P}_{\mathbf{I}}$ $\mathbf{N}_{\mathbf{P}}_{\mathbf{I}}$	2.803(5)
Na2 - D3	2.992(5)	B4 Nai	2.992(3)
Na2—B3	3.039(3)	B3-010 B5-07	1.307(3)
Na2—Zn1"	3.2093 (17)	B507	1.393 (5)
Na2—Mg1"	3.2693 (17)	B5	1.407 (5)
Na3-05***	2.288 (3)	B5—Na3 [*]	2.859 (5)
Na3—09	2.360 (3)	$OI - MgI^{x_1}$	1.978 (3)
Na3—O7 ⁿ	2.427 (3)	Ol—Zn1 ^{xi}	1.978 (3)
Na3— $O1^{v_1}$	2.462 (3)	Ol—Nal ^{xn}	2.305 (3)
Na3—O3 ^{vii}	2.787 (3)	O1—Na3 ^{xiv}	2.462 (3)
Na3—B5 ⁱⁱ	2.859 (5)	O2—Na2 ^{xiv}	2.354 (3)
Na3—O10 ⁱⁱ	2.867 (4)	O2—Na3 ^x	2.895 (3)
Na3—O2 ⁱⁱ	2.895 (3)	O3—Na1 ^v	2.687 (3)
Na3—B2 ^{vii}	2.916 (4)	O3—Na3 ^{xiii}	2.787 (3)
Na3—Mg1 ⁱⁱ	3.2620 (18)	$O4$ — $Na2^{v}$	2.625 (3)
Na3—Zn1 ⁱⁱ	3.2620 (18)	O5—Mg1 ^v	1.932 (3)
Na3—Na1 ^{viii}	3.431 (2)	O5—Zn1 ^v	1.932 (3)
Zn1—O5 ⁱⁱⁱ	1.932 (3)	O5—Na3 ^{xiiii}	2.288 (3)
Zn1—O10	1.958 (3)	O6—Na2 ^v	2.377 (3)
Zn1—O1 ^{ix}	1.978 (3)	O6—Na2 ^{xiv}	2.536 (3)
Zn1—O9 ^{vi}	1.980 (3)	O7—Na3 ^x	2.427 (3)
Zn1—Na3 ^x	3.2620 (18)	O9—Mg1 ^{xiv}	1.980 (3)
Zn1—Na2 ^x	3.2692 (17)	O9—Zn1 ^{xiv}	1.980 (3)
Zn1—Na3 ^{vi}	3.5456 (18)	O9—Na1 ^x	2.399 (3)
Zn1—Na1 ⁱⁱⁱ	3.5530 (19)	O10—Na2 ^x	2,399 (4)
B1-01	1 353 (5)	010 Na ^{3x}	2.867 (4)
21 01			
O1 ⁱ —Na1—O9 ⁱⁱ	116.11 (11)	O9—Na3—Na1 ^{viii}	115.65 (9)
O1 ⁱ —Na1—O4	97.45 (11)	O7 ⁱⁱ —Na3—Na1 ^{viii}	137.98 (10)
O9 ⁱⁱ —Na1—O4	75.55 (10)	O1 ^{vi} —Na3—Na1 ^{viii}	42.18 (7)
Ol ⁱ —Nal—O7	106.21 (11)	O3 ^{vii} —Na3—Na1 ^{viii}	49.89 (7)
09 ⁱⁱ —Na1—O7	119.10 (11)	B5 ⁱⁱ —Na3—Na1 ^{viii}	131.76 (11)
04—Na1—07	56.72 (10)	$O10^{ii}$ Na3 Na1 ^{viii}	107.39 (8)
$O1^{i}$ Na1 $O3^{iii}$	91.88 (10)	Ω^{2ii} Na3 Na1 ^{viii}	152, 15 (8)
$O9^{ii}$ —Na1—O3 ⁱⁱⁱ	107.04 (11)	B2 ^{vii} —Na3—Na1 ^{viii}	59.09 (10)

O4—Na1—O3 ⁱⁱⁱ	168.01 (11)	Mg1 ⁱⁱ —Na3—Na1 ^{viii}	71.89 (5)
O7—Na1—O3 ⁱⁱⁱ	113.37 (11)	Zn1 ⁱⁱ —Na3—Na1 ^{viii}	71.89 (5)
O1 ⁱ —Na1—B4 ⁱⁱ	141.23 (13)	O5 ⁱⁱⁱ —Zn1—O10	104.78 (13)
O9 ⁱⁱ —Na1—B4 ⁱⁱ	25.79 (10)	$O5^{iii}$ —Zn1—O1 ^{ix}	109.67 (11)
O4—Na1—B4 ⁱⁱ	71.67 (11)	O10—Zn1—O1 ^{ix}	98.11 (13)
O7—Na1—B4 ⁱⁱ	98.45 (11)	O5 ⁱⁱⁱ —Zn1—O9 ^{vi}	110.90 (12)
O3 ⁱⁱⁱ —Na1—B4 ⁱⁱ	105.36 (12)	O10—Zn1—O9 ^{vi}	112.24 (11)
$O1^{i}$ —Na1—B1 ⁱ	25.40 (11)	$O1^{ix}$ Zn1 $O9^{vi}$	119.58 (11)
$O9^{ii}$ —Na1—B1 ⁱ	92.03 (12)	05^{iii} Zn1 Na3 ^x	89.02 (10)
O4—Na1—B1 ⁱ	99.92 (12)	010 — $7n1$ — $Na3^x$	60.69 (10)
07—Na1—B1 ⁱ	128 69 (12)	$O1^{ix}$ $Zn1$ $Na3^{x}$	48 85 (8)
$O3^{iii}$ —Na1—B1 ⁱ	91.74 (11)	O^{yi} $Zn1$ $Na3^{\text{x}}$	160.08 (9)
$B4^{ii}$ Na1 $B1^{i}$	117 79 (13)	O_{5}^{iii} Z_{n1} Na^{2x}	150.73(10)
$O1^{i}$ Na1 B1	104 49 (12)	010 Zn1 Na2 ^x	46 78 (9)
$O9^{ii}$ Na1 B3	96 83 (12)	Ω^{1ix} $Tn1$ $Na2^{x}$	84 96 (8)
04—Na1—B3	28 11 (10)	O_{1}^{vi} Z_{n1}^{vi} Na_{2}^{vi}	80 74 (8)
07—Na1—B3	28.65 (10)	$Na3^{x}$ $7n1$ $Na2^{x}$	81 89 (4)
O_{1}^{iii} Na1 B3	141 40 (12)	O_{5}^{iii} Z_{n1} $N_{2}3^{vi}$	120.77(10)
$B4^{ii}$ Na1 B3	83 44 (12)	$O_1 O_7 T_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O$	120.77(10) 131.75(9)
\mathbf{B}^{i} No1 \mathbf{B}^{i}	11774(12)	O_1^{ix} Z_{n1} $N_2 3^{vi}$	81 81 (8)
D1 - Na1 - B3 $O1^i - Na1 - B2$	74 68 (11)	$O^{\text{Vi}}_{\text{max}} 7n1_{\text{max}} Na3^{\text{Vi}}$	38.94 (8)
O^{ii} Na1 B2	77 38 (12)	N_{2}^{x} Z_{n1} N_{2}^{yi}	120.78(2)
O4—Na1—B2	24.94 (10)	$N_{2}^{x} - Zn_{1}^{y} - N_{2}^{y}$	85 55 (4)
07 Na1 B2	73 87 (11)	$05^{iii} - 7n1 - Na1^{iii}$	71 14 (10)
O_{1}^{iii} Na1 B2	166 29 (12)	0.0 - 2n1 - Na1	12744(10)
$B4^{ii} = N_{2}1 = B2$	84 31 (13)	Ω_1^{ix} Σ_n^{1} Na_1^{iii}	127.44(10) 133.45(9)
$B_{1}^{i} = N_{2} 1 = B_{2}^{i}$	74.00 (12)	O^{Vi} Z_{n1} N_{a1}^{iii}	30.03(0)
$\begin{array}{c} B1 - Na1 - B2 \\ B3 - Na1 - B2 \end{array}$	74.99 (12) 47.96 (11)	N_{2}^{x} Z_{n1} N_{2}^{iii}	39.95(9)
D_{3} N_{a1} D_{2}	47.90 (11) 08.00 (11)	$N_{a}2^{x}$ Z_{n1} $N_{a}1^{iii}$	139.71(4)
O1 - Na1 - B2	30.09(11) 125.27(12)	$N_{0}2^{vi}$ Z_{n1} $N_{0}1^{iii}$	117.34(4)
$O_{4} = Na_{1} = D_{2}$	123.37(12) 143.05(12)	1 Na5 = 2 III = 1 Na1	01.85 (4) 84.66 (0)
O4—Na1— $B2O7$ Na1 $P2$ iii	145.05(15) 86.72(12)	$O_3 = Z_{11} = Na2$	34.00(9)
O^{2} Na1 D^{2}	30.73(12) 26.71(10)	O_{10} Z_{11} $Na2$	47.97(10)
$D_3 = Na1 = D_2$	20.71(10) 112.06(12)	O1 - Z11 - Na2	140.00(9)
$\mathbf{D4} = \mathbf{Na1} = \mathbf{D2}$	112.90(12) 108.22(12)	$V_{2} = Z_{11} = Na2$	00.21(0)
$D_1 - Na_1 - D_2$ $D_2 - Na_1 - D_2$	106.55(15) 115.08(12)	Na2 Zn1 Na2	103.00(4)
$D_{2} = Na_{1} = D_{2}$	115.06(15) 156.02(7)	$\ln 2^{y}$ $Z = 1$ $\ln 2$	70.383(14)
B2— $Na1$ — $B2$	130.02 (7)	$Na3^{$	117.98 (4)
O_1^{IIII} Na1 Na2iv	43.81(8)	$Na1^{$	79.88 (4) 120 5 (2)
O_4 No1 No 2iv	141.90(10) 121.97(0)	0103	120.3(3)
04—Na1—Na3"	131.87 (9)	01—B1—02	120.4 (4)
O/-Nal-Na3	99.00 (9) 52.40 (7)	$O_3 - B_1 - O_2$	119.1 (4)
$U3^{\prime\prime\prime}$ Na1—Na3 ^{$\prime\prime$}	52.49 (7) 15(-20 (11)	$O_1 - B_1 - M_0 I_{x_1}^{x_1}$	41.80 (17)
$B4^{\mu} - NaI - Na3^{\mu}$	156.20 (11)	U_3 — B_1 — $Mg_1^{x_1}$	162.2 (3)
$B1$ $Na1$ $Na3^{4}$	61.07 (9)	U_2 —B1—Mg1 ^{xi}	/8.6 (2)
$B_{2} - Na_{1} - Na_{3}^{TV}$	118.95 (10)	$O1 - B1 - Na1^{xii}$	46.95 (18)
$B2 - Na1 - Na3^{W}$	116.11 (10)	O_3 — B_1 — $Na1^{xn}$	78.0 (2)
B2 ^{III} —Na1—Na3 ^{IV}	52.31 (8)	O2—B1—Nal ^{xn}	154.9 (3)
Ol ¹ —Nal—Znl ^v	91.58 (8)	Mg1 ^{xi} —B1—Na1 ^{xii}	85.69 (13)

O9 ⁱⁱ —Na1—Zn1 ^v	32.00 (6)	O5—B2—O4	124.3 (4)
O4—Na1—Zn1 ^v	56.24 (7)	O5—B2—O3	117.3 (4)
O7—Na1—Zn1 ^v	112.11 (8)	O4—B2—O3	118.4 (3)
O3 ⁱⁱⁱ —Na1—Zn1 ^v	131.28 (9)	$O5-B2-Mg1^{v}$	39.4 (2)
B4 ⁱⁱ —Na1—Zn1 ^v	50.99 (9)	$O4-B2-Mg1^{v}$	86.2 (3)
B1 ⁱ —Na1—Zn1 ^v	72.70 (9)	$O3-B2-Mg1^{v}$	153.3 (3)
B3—Na1—Zn1 ^v	83.71 (9)	O5—B2—Na3 ^{xiii}	49.38 (19)
B2—Na1—Zn1 ^v	48.41 (9)	O4—B2—Na3 ^{xiii}	162.9 (3)
B2 ⁱⁱⁱ —Na1—Zn1 ^v	155.55 (10)	O3—B2—Na3 ^{xiii}	70.5 (2)
Na3 ^{iv} —Na1—Zn1 ^v	133.71 (6)	Mg1 ^v —B2—Na3 ^{xiii}	88.71 (12)
O2 ^{vi} —Na2—O6 ⁱⁱⁱ	96.54 (11)	O5—B2—Na1	93.5 (3)
O2 ^{vi} —Na2—O10 ⁱⁱ	90.74 (11)	O4—B2—Na1	50.1 (2)
O6 ⁱⁱⁱ —Na2—O10 ⁱⁱ	71.31 (11)	O3—B2—Na1	128.7 (3)
$O2^{vi}$ —Na2—O6 ^{vi}	58.14 (9)	$Mg1^{v}$ — $B2$ — $Na1$	74.21 (12)
O6 ⁱⁱⁱ —Na2—O6 ^{vi}	107.09 (11)	Na ³ ^{xiii} —B2—Na1	112.80 (14)
010^{ii} Na2- 06^{vi}	148.77 (12)	$05-B2-Na1^{v}$	82.7 (3)
$\Omega^{2^{vi}}$ Na2 $\Omega^{4^{iii}}$	130.80 (11)	$O4-B2-Na1^{v}$	128.3(3)
06^{iii} Na2 04^{iii}	56 64 (10)	$O3-B2-Na1^{v}$	57 7 (2)
010^{ii} Na2-04 ⁱⁱⁱ	113 16 (12)	$Mg1^{v}$ B2 Na1 ^v	99.65(14)
06^{vi} Na2 04^{iii}	88 79 (10)	Na 3^{xii} B2 Na 1^{v}	68 60 (11)
02^{vi} Na2 010	106.68 (11)	Na1 $-B2$ -Na1 ^v	173.51 (18)
$O6^{iii}$ Na2 $O10$	142.66 (11)	02—B3—04	110.8 (3)
010^{ii} Na2-010	135.35 (14)	02—B3—O6	108.5 (3)
06^{vi} —Na2—010	64.51 (10)	04—B3—06	108.5 (3)
04^{iii} Na2-010	86.21 (10)	02—B3—07	109.2(3)
02^{vi} Na2 08	92.86 (10)	04 - B3 - 07	109.8(3)
$O6^{iii}$ —Na2—O8	158.26 (12)	06—B3—07	110.1(3)
010^{ii} Na2-08	89.05 (11)	$O2 - B3 - Na2^{xiv}$	50.63 (17)
$O6^{vi}$ —Na2—O8	94.52 (10)	$O4 - B3 - Na2^{xiv}$	125.5 (3)
$O4^{iii}$ Na2 $O8$	127.91 (10)	$O6-B3-Na2^{xiv}$	57.85 (19)
O10—Na2—O8	50.26 (9)	O7—B3—Na2 ^{xiv}	124.7 (3)
O2 ^{vi} —Na2—B5	113.27 (13)	O2—B3—Na2 ^v	115.0 (2)
O6 ⁱⁱⁱ —Na2—B5	150.17 (13)	O4—B3—Na2 ^v	59.70 (19)
O10 ⁱⁱ —Na2—B5	108.08 (13)	06—B3—Na2 ^v	49.99 (18)
O6 ^{vi} —Na2—B5	88.55 (12)	07—B3—Na2 ^v	135.4 (3)
O4 ⁱⁱⁱ —Na2—B5	99.71 (12)	Na2 ^{xiv} —B3—Na2 ^v	81.82 (11)
O10—Na2—B5	27.27 (11)	O2—B3—Na1	129.4 (2)
O8—Na2—B5	28.79 (11)	O4—B3—Na1	52.65 (19)
O2 ^{vi} —Na2—B3 ^{vi}	28.69 (10)	O6—B3—Na1	122.0 (3)
O6 ⁱⁱⁱ —Na2—B3 ^{vi}	103.26 (12)	O7—B3—Na1	57.23 (19)
O10 ⁱⁱ —Na2—B3 ^{vi}	119.39 (12)	Na2 ^{xiv} —B3—Na1	178.11 (17)
O6 ^{vi} —Na2—B3 ^{vi}	29.45 (10)	Na2 ^v —B3—Na1	96.73 (14)
O4 ⁱⁱⁱ —Na2—B3 ^{vi}	111.38 (12)	O9—B4—O6	123.5 (4)
O10—Na2—B3 ^{vi}	85.69 (12)	O9—B4—O8	119.1 (3)
O8—Na2—B3 ^{vi}	94.37 (12)	O6—B4—O8	117.3 (3)
B5—Na2—B3 ^{vi}	102.52 (14)	O9—B4—Mg1 ^{xiv}	37.62 (17)
O2 ^{vi} —Na2—B3 ⁱⁱⁱ	118.64 (12)	O6—B4—Mg1 ^{xiv}	86.7 (2)
O6 ⁱⁱⁱ —Na2—B3 ⁱⁱⁱ	28.33 (10)	O8—B4—Mg1 ^{xiv}	153.5 (3)

O10 ⁱⁱ —Na2—B3 ⁱⁱⁱ	89.67 (13)	O9—B4—Na1 ^x	51.42 (19)
O6 ^{vi} —Na2—B3 ⁱⁱⁱ	102.61 (12)	O6—B4—Na1 ^x	141.5 (3)
O4 ⁱⁱⁱ —Na2—B3 ⁱⁱⁱ	28.79 (10)	O8—B4—Na1 ^x	79.2 (2)
O10—Na2—B3 ⁱⁱⁱ	114.92 (12)	Mg1 ^{xiv} —B4—Na1 ^x	74.69 (11)
O8—Na2—B3 ⁱⁱⁱ	148.49 (12)	O10—B5—O7	122.5 (4)
B5—Na2—B3 ⁱⁱⁱ	124.60 (13)	O10—B5—O8	119.1 (4)
B3 ^{vi} —Na2—B3 ⁱⁱⁱ	113.48 (16)	O7—B5—O8	118.3 (3)
O2 ^{vi} —Na2—Zn1 ⁱⁱ	58.00 (7)	O10—B5—Na2	69.6 (2)
O6 ⁱⁱⁱ —Na2—Zn1 ⁱⁱ	64.38 (7)	O7—B5—Na2	124.6 (3)
O10 ⁱⁱ —Na2—Zn1 ⁱⁱ	36.50 (7)	O8—B5—Na2	75.5 (2)
O6 ^{vi} —Na2—Zn1 ⁱⁱ	113.47 (8)	O10—B5—Na3 ^x	77.2 (2)
O4 ⁱⁱⁱ —Na2—Zn1 ⁱⁱ	120.82 (8)	O7—B5—Na3 ^x	58.0 (2)
O10—Na2—Zn1 ⁱⁱ	152.94 (9)	O8—B5—Na3 ^x	143.1 (3)
O8—Na2—Zn1 ⁱⁱ	105.19 (8)	Na2—B5—Na3 ^x	139.58 (18)
B5—Na2—Zn1 ⁱⁱ	132.82 (11)	B1-O1-Mg1 ^{xi}	111.1 (2)
B3 ^{vi} —Na2—Zn1 ⁱⁱ	85.28 (9)	B1 $-O1$ $-Zn1^{xi}$	111.1 (2)
B3 ⁱⁱⁱ —Na2—Zn1 ⁱⁱ	92.06 (9)	$Mg1^{xi}$ O1 $Zn1^{xi}$	0.00 (3)
O2 ^{vi} —Na2—Mg1 ⁱⁱ	58.00 (7)	$B1 - O1 - Na1^{xii}$	107.6 (2)
O6 ⁱⁱⁱ —Na2—Mg1 ⁱⁱ	64.38 (7)	$Mg1^{xi}$ O1 Na 1^{xii}	133.06 (14)
$O10^{ii}$ —Na2—Mg1 ⁱⁱ	36.50 (7)	$Zn1^{xi}$ O1 $Na1^{xii}$	133.06 (14)
$O6^{vi}$ —Na2—Mg1 ⁱⁱ	113.47 (8)	B1-O1-Na ^{3xiv}	116.2 (2)
$O4^{iii}$ —Na2—Mg1 ⁱⁱ	120.82 (8)	Mg1 ^{xi} —O1—Na3 ^{xiv}	93.93 (11)
010—Na2—Mg1 ⁱⁱ	152.94 (9)	$Zn1^{xi}$ O1 Na 3^{xiv}	93.93 (11)
O8—Na2—Mg1 ⁱⁱ	105.19 (8)	Na1 ^{xii} —O1—Na3 ^{xiv}	92.00 (10)
B5—Na2—Mg1 ⁱⁱ	132.82 (11)	B1—O2—B3	124.1 (3)
B3 ^{vi} —Na2—Mg1 ⁱⁱ	85.28 (9)	B1—O2—Na2 ^{xiv}	115.9 (2)
B3 ⁱⁱⁱ —Na2—Mg1 ⁱⁱ	92.06 (9)	B3—O2—Na2 ^{xiv}	100.7 (2)
Zn1 ⁱⁱ —Na2—Mg1 ⁱⁱ	0.000 (19)	B1—O2—Na3 ^x	102.4 (2)
O5 ^{vii} —Na3—O9	115.24 (12)	B3—O2—Na3 ^x	89.0 (2)
O5 ^{vii} —Na3—O7 ⁱⁱ	103.12 (12)	Na2 ^{xiv} —O2—Na3 ^x	123.59 (12)
O9—Na3—O7 ⁱⁱ	105.71 (11)	B1—O3—B2	120.6 (3)
O5 ^{vii} —Na3—O1 ^{vi}	104.82 (12)	B1—O3—Na1 ^v	115.3 (2)
O9—Na3—O1 ^{vi}	113.76 (11)	B2—O3—Na1 ^v	95.6 (2)
O7 ⁱⁱ —Na3—O1 ^{vi}	113.93 (11)	B1—O3—Na3 ^{xiii}	151.6 (2)
O5 ^{vii} —Na3—O3 ^{vii}	54.07 (9)	B2—O3—Na3 ^{xiii}	80.6 (2)
O9—Na3—O3 ^{vii}	78.29 (10)	Na1v—O3—Na3xiii	77.62 (8)
O7 ⁱⁱ —Na3—O3 ^{vii}	154.12 (11)	B2—O4—B3	125.7 (3)
O1 ^{vi} —Na3—O3 ^{vii}	86.29 (10)	B2—O4—Na1	104.9 (3)
O5 ^{vii} —Na3—B5 ⁱⁱ	130.45 (14)	B3—O4—Na1	99.2 (2)
O9—Na3—B5 ⁱⁱ	97.41 (13)	B2—O4—Na2 ^v	109.9 (3)
O7 ⁱⁱ —Na3—B5 ⁱⁱ	29.12 (11)	B3—O4—Na2 ^v	91.5 (2)
O1 ^{vi} —Na3—B5 ⁱⁱ	93.56 (12)	Na1—O4—Na2 ^v	127.18 (12)
O3 ^{vii} —Na3—B5 ⁱⁱ	175.18 (13)	B2—O5—Mg1 ^v	114.9 (3)
O5 ^{vii} —Na3—O10 ⁱⁱ	138.21 (12)	$B2-O5-Zn1^{v}$	114.9 (3)
O9—Na3—O10 ⁱⁱ	104.75 (10)	$Mg1^{v}$ —O5—Zn1 v	0.00 (3)
O7 ⁱⁱ —Na3—O10 ⁱⁱ	52.34 (9)	B2—O5—Na3 ^{xiii}	104.6 (3)
O1 ^{vi} —Na3—O10 ⁱⁱ	67.33 (9)	Mg1 ^v —O5—Na3 ^{xiii}	140.35 (15)
O3 ^{vii} —Na3—O10 ⁱⁱ	152.54 (10)	Zn1v—O5—Na3 ^{xiii}	140.35 (15)
	× /		~ /

B5 ⁱⁱ —Na3—O10 ⁱⁱ	26.39 (11)	B4—O6—B3	126.6 (3)
O5 ^{vii} —Na3—O2 ⁱⁱ	86.84 (11)	B4—O6—Na2 ^v	116.6 (2)
O9—Na3—O2 ⁱⁱ	68.39 (9)	B3—O6—Na2 ^v	101.7 (2)
O7 ⁱⁱ —Na3—O2 ⁱⁱ	52.57 (9)	B4—O6—Na2 ^{xiv}	108.7 (2)
O1 ^{vi} —Na3—O2 ⁱⁱ	164.65 (10)	B3—O6—Na2 ^{xiv}	92.7 (2)
O3 ^{vii} —Na3—O2 ⁱⁱ	108.84 (9)	Na2 ^v —O6—Na2 ^{xiv}	106.97 (11)
B5 ⁱⁱ —Na3—O2 ⁱⁱ	71.15 (11)	B5—O7—B3	122.6 (3)
O10 ⁱⁱ —Na3—O2 ⁱⁱ	97.33 (9)	B5—O7—Na3 ^x	92.9 (2)
O5 ^{vii} —Na3—B2 ^{vii}	26.00 (12)	B3—O7—Na3 ^x	108.9 (2)
O9—Na3—B2 ^{vii}	94.71 (13)	B5—O7—Na1	123.2 (3)
O7 ⁱⁱ —Na3—B2 ^{vii}	126.27 (13)	B3—O7—Na1	94.1 (2)
O1 ^{vi} —Na3—B2 ^{vii}	101.24 (12)	Na3 ^x —O7—Na1	116.11 (12)
O3 ^{vii} —Na3—B2 ^{vii}	28.88 (11)	B4—O8—B5	121.6 (3)
B5 ⁱⁱ —Na3—B2 ^{vii}	155.19 (14)	B4—O8—Na2	133.4 (3)
O10 ⁱⁱ —Na3—B2 ^{vii}	160.11 (13)	B5—O8—Na2	75.8 (2)
O2 ⁱⁱ —Na3—B2 ^{vii}	93.60 (12)	B4—O9—Mg1 ^{xiv}	118.1 (2)
O5 ^{vii} —Na3—Mg1 ⁱⁱ	113.38 (10)	B4—O9—Zn1 ^{xiv}	118.1 (2)
O9—Na3—Mg1 ⁱⁱ	129.07 (9)	$Mg1^{xiv}$ —O9—Z $n1^{xiv}$	0.00 (4)
O7 ⁱⁱ —Na3—Mg1 ⁱⁱ	76.74 (8)	B4—O9—Na3	116.4 (2)
O1 ^{vi} —Na3—Mg1 ⁱⁱ	37.22 (6)	Mg1 ^{xiv} —O9—Na3	109.23 (12)
O3 ^{vii} —Na3—Mg1 ⁱⁱ	121.18 (8)	Zn1 ^{xiv} —O9—Na3	109.23 (12)
B5 ⁱⁱ —Na3—Mg1 ⁱⁱ	59.94 (10)	B4—O9—Na1 ^x	102.8 (2)
O10 ⁱⁱ —Na3—Mg1 ⁱⁱ	36.55 (6)	Mg1 ^{xiv} —O9—Na1 ^x	108.08 (12)
O2 ⁱⁱ —Na3—Mg1 ⁱⁱ	128.91 (8)	Zn1 ^{xiv} —O9—Na1 ^x	108.08 (12)
B2 ^{vii} —Na3—Mg1 ⁱⁱ	125.45 (11)	Na3—O9—Na1 ^x	100.09 (11)
O5 ^{vii} —Na3—Zn1 ⁱⁱ	113.38 (10)	B5—O10—Zn1	140.1 (3)
O9—Na3—Zn1 ⁱⁱ	129.07 (9)	B5—O10—Na2 ^x	122.0 (3)
O7 ⁱⁱ —Na3—Zn1 ⁱⁱ	76.74 (8)	Zn1—O10—Na2 ^x	96.72 (12)
O1 ^{vi} —Na3—Zn1 ⁱⁱ	37.22 (6)	B5—O10—Na2	83.1 (3)
O3 ^{vii} —Na3—Zn1 ⁱⁱ	121.18 (8)	Zn1—O10—Na2	99.08 (13)
B5 ⁱⁱ —Na3—Zn1 ⁱⁱ	59.94 (10)	Na2 ^x —O10—Na2	102.12 (11)
O10 ⁱⁱ —Na3—Zn1 ⁱⁱ	36.55 (6)	B5—O10—Na3 ^x	76.5 (2)
O2 ⁱⁱ —Na3—Zn1 ⁱⁱ	128.91 (8)	Zn1—O10—Na3 ^x	82.76 (11)
B2 ^{vii} —Na3—Zn1 ⁱⁱ	125.45 (11)	Na2 ^x —O10—Na3 ^x	108.41 (13)
Mg1 ⁱⁱ —Na3—Zn1 ⁱⁱ	0.000 (17)	Na2—O10—Na3 ^x	149.01 (13)
O5 ^{vii} —Na3—Na1 ^{viii}	66.25 (9)		

Symmetry codes: (i) x+1/2, -y+1/2, -z; (ii) x+1/2, y, -z+1/2; (iii) -x+3/2, y+1/2, z; (iv) -x+3/2, -y+1, z-1/2; (v) -x+3/2, y-1/2, z; (vi) -x+1, y+1/2, -z+1/2; (vii) x, -y+1/2, z+1/2; (vii) -x+3/2, -y+1, z+1/2; (ix) -x+1/2, y+1/2, z; (x) x-1/2, y, -z+1/2; (xi) -x+1/2, y-1/2, z; (xii) x-1/2, -y+1/2, -z; (xiii) x, -y+1/2, z-1/2; (xiv) -x+1, y-1/2, -z+1/2.