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SUMMARY

Within the pattern-mixture modeling framework for informative dropout, conditional linear models
(CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not
just at observation times). However, in contrast with selection models, inferences about marginal covari-
ate effects in CLMs are not readily available if nonidentity links are used in the mean structures. In this
article, we propose a CLM for long series of longitudinal binary data with marginal covariate effects di-
rectly specified. The association between the binary responses and the dropout time is taken into account
by modeling the conditional mean of the binary response as well as the dependence between the binary
responses given the dropout time. Specifically, parameters in both the conditional mean and dependence
models are assumed to be linear or quadratic functions of the dropout time; and the continuous dropout
time distribution is left completely unspecified. Inference is fully Bayesian. We illustrate the proposed
model using data from a longitudinal study of depression in HIV-infected women, where the strategy of
sensitivity analysis based on the extrapolation method is also demonstrated.
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1. INTRODUCTION

Dropout occurs commonly in longitudinal studies. For example, in the HIV Epidemiology Research Study
(HERS), a HIV cohort study of 1310 women from 1993 to 2000, it was of interest to examine the time
course of depression (defined as whether the Center for Epidemiologic Studies Depression Scale is equal
to or greater than 16) in HIV-infected women and other associated factors (Smith and others, 1997;
Ickovics and others, 2001; Su and Hogan, 2010). At baseline, the HERS women were scheduled to be
followed up every 6 months for 12 visits. However, the dropout rate in the HERS was appreciable and
only 173 women had a depression observation at the 12th visit among the 753 women who were HIV-
infected at baseline and did not die with HIV-related reasons during the study period. Moreover, previous
studies have suggested that the dropout could be related to the disease progression and associated de-
pressive symptoms (Ickovics and others, 2001; Roy and Daniels, 2008; Su and Hogan, 2010). As the
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actual measurement times correspond to assessment dates and vary across women (see Figure 1 ofSu and
Hogan, 2010), following Su and Hogan(2010), in this article the dropout in the HERS is considered to
occur in continuous time.

When dropout depends on the unobserved response at the time of dropout, or at future times, even after
conditioning on the observed data, it is called “informative” or “nonignorable.” To deal with informative
dropout, a variety of model-based approaches, including “selection” models (SMs), “pattern mixture”
models (PMMs), and “shared parameter” models have been proposed for the joint modeling of the re-
sponse and dropout processes (Wu and Carroll, 1988; Diggle and Kenward, 1994; Follman and Wu, 1995;
Ten Haveand others, 1998; Wu and Bailey, 1989; Little, 1993, 1994; Hogan and Laird, 1997; Wulfsohn
and Tsiatis, 1997; Hendersonand others, 2000; Tsiatis and Davidian, 2004; Ibrahim and Molenberghs,
2009). Semiparametric approaches were also proposed to adjust for the dependence of the dropout time
on the unobserved responses (Rotnitzky and others, 1998; Scharfsteinand others, 1999; Lin and Ying,
2003; Wilkins and Fitzmaurice, 2007).

Within the PMMs framework, conditional linear models (CLMs) byWu and Bailey(1989) are a useful
approach to deal with dropout that can occur at any point in continuous time (not just at observation times).
However, one disadvantage of CLMs and PMMs compared with SMs is that their parameters usually lack
a direct interpretation in terms of marginal covariate effects if nonidentity link functions are used in
the mean structures (Wilkins and Fitzmaurice, 2007; Roy and Daniels, 2008; Su and Hogan, 2010). For
some scenarios with only treatment groups and measurement times as the covariates, we can obtain the
marginal summaries for covariate strata by averaging the response distributions over the dropout patterns
(Fitzmaurice and Laird, 2000; Su and Hogan, 2010). When a number of confounders or quantitative
covariates are present, a simple summary of the marginal covariate effects might not be immediately
available in a CLM or PMM.

To overcome this limitation, several PMMs have been proposed. Building upon log-linear models,
Wilkins and Fitzmaurice(2006) developed a marginalized PMM for short sequences of binary data,
where the conditional dependencies among the responses and between the responses and dropout patterns
are specified separately in addition to the marginal mean model. To avoid the proliferation of nuisance
parameters in full likelihood approaches,Wilkins and Fitzmaurice(2007) proposed a PMM using the
semiparametric moment-based approach. Focusing on the scenarios with many unique dropout patterns,
Roy and Daniels(2008) developed a PMM where the marginal mean follows a generalized linear model
and the mean conditional on the latent class and random effects is specified separately. However, mainly
because of the concerns about sample size per dropout pattern and model parsimony, these models may
not be directly applicable to the situation where measurement times are irregular across individuals and
dropout can occur at any point in continuous time.

In this article, within the Bayesian paradigm, we propose a marginalized conditional linear model
(MCLM) to deal with continuous-time informative dropout for long sequences of binary data when the
target of inference is the marginal covariate effects. Given the dropout time, models for the mean and
dependence (including serial dependence and nondiminishing dependence) structures of the binary re-
sponses are specified separately (Heagerty, 2002; Schildcrout and Heagerty, 2007; Roy and Daniels,
2008), while parameters in both models are allowed to depend on the dropout time through linear or
quadratic formulations similarly as in the original CLMs. With marginal covariates effects directly spec-
ified, we then marginalize the conditional mean over the unspecified dropout time distribution through
Rubin’s Bayesian bootstrap (Rubin, 1981). Following Su and Hogan(2010), we choose to build the
MCLM within the Bayesian paradigm in order to avoid extra bootstrapping of the continuous dropout
time for standard error estimation when the delta method fails in nonparametric frequentist approaches
(Hoganand others, 2004).

One advantage of PMMs and CLMs over others is that the unidentifiable part of the model for extrap-
olating missing data can be distinguished from those identifiable from the observed data, which facilitates
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substantive critique and empirical sensitivity analysis (Little and Wang, 1996; Daniels and Hogan, 2000,
2008; Rotnitzky and others, 2001). In this article, we will illustrate the unverifiable assumptions in
the proposed MCLM and demonstrate sensitivity analysis strategies based on the extrapolation method
(Rizopoulosand others, 2007) using the HERS depression data.

The remainder of this article is organized as follows. In Section2, we introduce the model. Compu-
tational details are provided in Section3. In Section4, we apply our methods to the HERS depression
data and conduct a sensitivity analysis to assess the impact of unverifiable assumptions on the scientific
conclusions. Conclusions and discussion follow in Section5.

2. MODEL

Let Di denote the dropout time for thei th individual (i = 1, . . . , N). At continuous-time pointsti 1, . . . , tini

(tini 6 Di ), we observe the binary responsesYi = (Yi 1, . . . ,Yini )
T and theni × p exogenous covariate

matrix Xi = (xi 1, . . . , xini )
T (e.g. external or fixed by study design). When the dropout is informative in

the sense that it is related to the unobserved responses given the observed data, we need to jointly model
(Yi ,Xi , Di ). Specifically, building on the marginalized transition and latent variable model (mTLV) by
Schildcrout and Heagerty(2007) for long series of binary data, we develop an MCLM by allowing the
conditional mean and dependence given the dropout time as well as the marginal mean to be separately
specified. Basically, our model formulation involves 4 components:

(a) Marginal model for the mean of thej th response,μM
i j = E(Yi j |xi j ).

(b) Conditional model for the mean of thej th response given the dropout time (pattern)Di , μC
i j =

E(Yi j |xi j , Di ).

(c) Dependence model for the responses given the dropout timeDi ,
E(Yi j |Yi j −1, . . . ,Yi 1, bi , xi j , Di ), wherebi is an individual-level random intercept.

(d) Marginal model for the dropout time distribution,f (Di |Xi ).

To specify (a), we assume that
g(μM

i j ) = xT
i j βββ, (2.1)

whereg(∙) is a link function, j = 1, . . . , ni , andβββ is a p × 1 vector of marginal regression coefficients.
Both (b) and (c) capture the association between binary responses and the dropout time. In particular, we
assume that

g(μC
i j ) = δi j + zT

i j ααα(Di ), (2.2)

wherezi j is a subset ofxi j , ααα(∙) is aq × 1 vector of linear or quadratic functions of the dropout timeDi .
For identifiability, we use a constraint onααα(∙) such thatααα(T) = 0, whereT indicates the time for study
end or the maximum follow-up in the study. Because of the following relationship between (2.1) and (2.2)

E(Yi j |xi j ) =
∑

Di

E(Yi j |xi j , Di ) f (Di |Xi ),

theδi j term is implicitly a function ofβββ, ααα(∙), the parameters for (d) and the covariatesxi j .
Basically, the model in (2.1) is chosen to obtain the desired target of inference: marginal covariate

effects. The conditional mean model in (2.2) specifies how the response mean for individuals differ by
their dropout timesDi and this is consistent with the specification in the original CLM byWu and Bailey
(1989). In other words, we allow the response mean to depend on the dropout process using a paramet-
ric formulation (e.g. linear or quadratic functions) as in a CLM. It must be recognized that unverifiable



358 L. SU

assumptions in (b) influence the inferences about the parameters in (a). For example, in the HERS
example, ifzi j includes the time variableti j and its corresponding coefficient isα(Di ) = θ0 + θ1Di ,
then early dropouts were allowed to have different time slopes of depression compared to later dropouts.
However, here we assume that the time slope before dropout atDi can be extrapolated to characterize the
time slope after dropout, where no data after dropout were available to assess the validity of assumption.
Therefore, sensitivity analysis is required, and we will demonstrate the corresponding strategies using the
HERS example in Section4.

The purpose of (c) is to account for the dependence between binary responses within individuals and
allow full likelihood-based inference for long series of binary data. FollowingSchildcrout and Heagerty
(2007), we consider both serial dependence with a Markov component and nondiminishing dependence
with a random intercept. Specifically, the mean ofYi j , conditional on its historyYi 1, . . . ,Yi j −1, the ran-
dom interceptbi , the covariatesxi j as well as the dropout timeDi isμS

i j = E(Yi j |Yi j −1, . . . ,Yi 1, bi , xi j ,
Di ) = E(Yi j |Yi j −1, bi , xi j , Di ) and

logit(μS
i j ) = 1i j + γi j (Di ) ∙ Yi j −1 + bi , bi ∼ N{0, σ 2(Di )}. (2.3)

Although a logit link function is used here, note that any valid link function can be adopted (Heagerty,
2002). For simplicity, the dependence of1i j , γi j (Di ), andσ 2(Di ) on xi j is suppressed for now. Given
bi , the log odds ratioγi j (Di ) measures the serial dependence betweenYi j and the immediate previous
responseYi j −1 among those who drop out atDi ; bi introduces the nondiminishing (long-range) depen-
dence between responses within individuals. The intercept1i j is determined such that the conditional
mean model in (2.2) and the dependence model in (2.3) are simultaneously satisfied (Schildcrout and
Heagerty, 2007). In other words,1i j is the solution to

E(Yi j |xi j , Di ) = Ebi [EYi, j −1|bi {logit−1(1i j + γi j (Di ) ∙ Yi j −1 + bi )}].

Further, the serial dependence measureγi j (Di ) and random intercept varianceσ 2(Di ) can be modeled
via

γi j (Di ) = wT
i j φφφ(Di ), (2.4)

log{σ 2(Di )} = vT
i ψψψ(Di ), (2.5)

wherewi j andvi are subsets ofxi j , φφφ(∙), andψψψ(∙) are vectors of linear or quadratic functions of the
dropout timeDi . For example,wi j can include the gap time between 2 consecutive visits, which accom-
modates irregular spacing of measurement times.vi can include treatment group membership such that the
random intercept variance differs by treatment groups, but this treatment effect will vary by the dropout
time.

By allowing the dependence parameters to vary byDi in (2.3), our MCLM has a different within-
individual dependence structure from a CLM that only allows the mean parameters, e.g. in (2.2), to vary
by Di . It is well known that with complete data and likelihood-based approaches, properly modeling the
within-individual dependence structure can affect the variability estimates more than the point estimates
of the mean parameters (Diggle and others, 2002). However, with missing data, even point estimates can
be biased if the dependence structure is not carefully modeled (Kurland and Heagerty, 2004; Daniels and
Hogan, 2008). By including covariates and allowing the dependence on the dropout time in the dependence
model, we are trying to minimize these biases in our approach.

Finally, component (d) needs to be specified to complete the joint distribution for (Yi ,Xi , Di ). Basi-
cally, this can be modeled using any event time distribution, where the dependence onXi can be checked
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by standard event time regression analysis methods. Here, we adopt a nonparametric approach and allow
f (Di |Xi ) to be completely unspecified within the strata ofXi . Following Su and Hogan(2010), we use
Rubin’s Bayesian bootstrap (Rubin, 1981) to obtain the posterior off (Di |Xi ) for the observed dropout
times (see details in the Supplementary material available atBiostatisticsonline).

3. COMPUTATIONAL DETAILS

We letθθθ denote the set of parameters that characterize the functionsααα(∙) in the conditional mean model
in (2.2), let λλλ denote the set of parameters that characterize the dependence model in (2.3–2.5), and letπππ
index the dropout time distributionf (Di |Xi ;πππ). The likelihood contribution from the response data of
the i th individual is

f (yi |bi ,Xi , Di ;βββ, θθθ, λλλ)

= f (yi 1|bi , xi 1, Di ;βββ, θθθ, λλλ) f (yi 2|yi 1, bi , xi 2, Di ;βββ, θθθ, λλλ), . . . , f (yini |yini −1, bi , xini , Di ;βββ, θθθ, λλλ)

=
ni∏

j =1

(μS
i j )

yi j (1 − μS
i j )
(1−yi j ).

The posterior distribution for the parameters in an MCLM is proportional to

N∏

i =1

{ f (yi |bi ,Xi , Di ;βββ, θθθ, λλλ) f (bi |λλλ) f (Di |Xi ;πππ)} p(βββ, θθθ, λλλ)p(πππ),

wherep(∙) is a prior density function. We follow the specification of the original PMMs in the Bayesian
paradigm (Daniels and Hogan, 2008) and assume that the priors forπππ are independent of the priors for
(βββ, θθθ, λλλ). It follows thatπππ is not a part of the posterior for(βββ, θθθ, λλλ) and the inference forπππ can be based
on the marginal likelihood

∏N
i =1 f (Di |Xi ;πππ).

We standardize the continuous covariates to have mean 0 and standard deviation 0.5 as recommended
by Gelman(2008) and assign independentt priors with 7 degrees of freedom and scale 2.5 (Gelmanand
others, 2008) to the elements ofβββ, θθθ as well as those serial dependence parameters withinλλλ in (2.4).
IndependentN(0, 7) priors are used for random intercept variance parameters (at log scale) withinλλλ
in (2.5). The Markov Chain Monte Carlo (MCMC) for posterior sampling is implemented in MATLAB
(version 7.1) and more details can be found in the Supplementary material available atBiostatisticsonline.

4. EXAMPLE

As briefly described in Section1, our goal is to characterize the depression time course for the 753 HERS
women. We exclude those women who died due to HIV-related reasons during the study period because
we consider that response-related death mixed with dropout (Kurland and Heagerty, 2005) is another
problem that needs further research and is beyond the scope of this article. Depression was measured
using the Center for Epidemiologic Studies Depression Scale (CES-D), which ranges from 0 to 60 with
larger scores indicating the presence of more symptoms. FollowingSu and Hogan(2010), we focus on
the dichotomized CES-D data that commonly define clinically significant depression in HIV research
(Radloff, 1977; Ickovicsand others, 2001; Cookand others, 2004; Leserman, 2008). The analysis of the
continuous and binary HERS CES-D data using the original PMM approach (i.e. the marginal covariate
effects are not directly specified) can be found in Sections 4.1 and 4.2 ofSu and Hogan(2010).
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The covariates of interest include baseline characteristics, such as race (Black/White/Latina and others)
and initial disease stage (defined as whether the baseline CD4 count is>200), as well as the time variable
(in the unit of days). FollowingGelman(2008), the time variable is standardized to have mean 0 and
standard deviation 0.5.

4.1 Models under comparison

We fit an mTLV (Schildcrout and Heagerty, 2007) and an MCLM to the HERS depression data. Assuming
“missingness at random” (MAR) and the prior independence of the parameters in the response model and
the dropout time distribution, the missingness is ignorable in the mTLV (Little and Rubin, 2002). In both
models, the marginal mean of depression follows:

logit(μM
i j ) = β0 + β1I (Black)+ β2I (Latina)+ β3I (baseline CD4> 200)

+β4I (baseline CD46 200)ti j + β5I (baseline CD46 200)t2
i j

+β6I (baseline CD4> 200)ti j + β7I (baseline CD4> 200)t2
i j , (4.1)

where I (∙) is the indicator function. The quadratic term of the time variable is included to allow more
flexibility to characterize the depression time course.

In the mTLV, no conditional mean model given the dropout time is needed, while the dependence
structure includes constant first-order serial dependence and a random intercept for nondiminishing de-
pendence:

logit(μS
i j ) = 1i j + γ ∙ Yi j −1 + bi , bi ∼ N(0, σ 2), log(σ 2) = ψ .

The conditional mean model in the MCLM is specified as follows:

logit(μC
i j ) = δi j + θ1D∗

i I (baseline CD4> 200)

+ θ2D∗
i I (baseline CD46 200)ti j

+ θ3D∗
i I (baseline CD4> 200)ti j , (4.2)

where the standardized dropout timeD∗
i = (Di − T)/T is within [−1, 0], andT = 2093 corresponds to

the maximum follow-up days in the HERS. The choice for covariates here is based on the analysis reported
in Su and Hogan(2010), where regression coefficients for races were found to be relatively constant over
the dropout time. Basically, we allow the regression coefficients in (4.2) to vary as linear functions of
the dropout time, and if women reached maximum follow-up in the HERS, their regression coefficients
are assumed to be 0 for identifiability purpose because we have specified a separate model (4.1) for
the marginal mean of depression. Further, both the first-order serial dependence and the nondiminishing
dependence are assumed to be linearly related to the dropout time as follows:

logit(μS
i j ) = 1i j + γi j (Di ) ∙ Yi j −1 + bi , bi ∼ N{0, σ 2(Di )}, (4.3)

γi j (Di ) = λ0 + λ1Di /T,

log{σ 2(Di )} = λ2 + λ3Di /T .

Note that ifθ1 = θ2 = θ3 = λ1 = λ3 = 0, the MCLM is reduced to the mTLV under MAR.
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For calculation of the interceptδi j , we need to obtain the posterior samples off (Di |Xi ). Initially,
we use Cox regression analysis methods to check the relationship between the discrete covariates (race,
baseline CD4 count) and the dropout time distribution. The Whites and Blacks were less likely to drop
out than the Latinas and other races; the patients with baseline CD4 count>200 were also less likely to
drop out. Therefore, we havef (Di |Xi ) 6= f (Di ) in the HERS data and the Bayesian bootstrapping for
the observed dropout times is conducted within the race and baseline CD4 groups.

The priors assigned forβ0, β1, β2, β3, β4, β5, β6, β7, θ1, θ2, θ3 andγ , λ0, λ1 aret priors with 7 degrees
of freedom and scale 2.5. TheN(0, 7) priors are used forψ , λ2, andλ3. For both models, we run 2 MCMC
chains and check the convergence after 5000-iteration burn-in period using history plots. The computing
time for the mTLV and MCLM fits of the HERS example (6505 observations) is approximately 2 and
8 h per 1000 iterations, respectively, on our machine (2.59 GHz CPU, 32 GB RAM). Pooled posterior
samples of size 10 000 are used for inference.

4.2 Results

Table1 presents the results from both the mTLV and the MCLM. In the MCLM, both the conditional mean
regression coefficients and the dependence parameters indicate some associations with the dropout time.
Specifically, earlier dropouts are shown to have larger main effect of baseline CD4 count (θ̂1 [posterior
mean]= −0.22, 95% credible interval(CI) = [−0.77; 0.34]). If their baseline CD4 counts are6200,
earlier dropouts had larger time slopes than later dropouts (θ̂2 = −0.46, 95% CI= [−1.67; 0.95]), while if
their baseline CD4 counts are>200, later dropouts had larger time slopes than earlier dropouts (θ̂3 = 0.20,
95% CI = [−0.64; 0.93]). In other words, those early dropouts who had severe immunosuppression at

Table 1. Results from the HERS analysis. The posterior means, standard deviations (SD), and the95%CI
are reported for the marginal regression coefficients, conditional mean, and dependence parameters from

the fitted MCLM and mTLV

MCLM mTLV

Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
β0 0.28 0.22 −0.15 0.77 0.32 0.18 −0.06 0.63
β1 −0.19 0.13 −0.45 0.05 −0.26 0.11 −0.47 −0.04
β2 0.37 0.16 0.05 0.71 0.24 0.14 −0.03 0.53
β3 0.00 0.21 −0.37 0.39 0.02 0.18 −0.29 0.40
β4 −0.17 0.21 −0.62 0.18 −0.25 0.18 −0.57 0.09
β5 −0.59 0.28 −1.12 0.01 −0.66 0.29 −1.18 −0.05
β6 −0.29 0.08 −0.45 −0.12 −0.28 0.04 −0.37 −0.20
β7 0.19 0.10 0.00 0.39 0.24 0.10 0.02 0.40
θ1 −0.22 0.28 −0.77 0.34
θ2 −0.46 0.68 −1.67 0.95
θ3 0.20 0.39 −0.64 0.93
λ0 0.63 0.45 −0.26 1.53
λ1 0.67 0.52 −0.36 1.70
γ 1.19 0.09 1.02 1.36
λ2 0.26 0.21 −0.17 0.64
λ3 0.36 0.25 −0.10 0.87
ψ 0.55 0.05 0.46 0.66

σ2 1.74 0.09 1.58 1.93
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Fig. 1. Posterior mean estimates of depression prevalence by race and baseline CD4 groups from the mTLV and
MCLM fits of the HERS depression data.

baseline (CD46 200) tended to have higher change rates of depression than later dropouts, but for patients
who had baseline CD4 counts over 200, this pattern was reversed. However, given the fact that women
with baseline CD4> 200 were less likely to drop out, the influence of dropout on the binary responses
is relatively small for them. Finally, the first-order serial dependence and nondiminishing dependence are
also shown to vary positively with the dropout time (λ̂1 = 0.67, 95% CI= [−0.36; 1.70]; λ̂3 = 0.36, 95%
CI = [−0.10; 0.87]). Overall, compared with the mTLV fit, the MCLM adjusted the marginal depression
prevalence profiles upward at the later period of followup for the group with baseline CD46 200 and the
largest adjustment occurred for the Latina/others group (left panel of Figure1). On the other hand, the
marginal depression prevalence profiles for both the White and Latina/others groups were shifted slightly
if their baseline CD4 counts are>200, but the general time trends remain stable (right panel of Figure1).

Recall that whenθ1 = θ2 = θ3 = λ1 = λ3 = 0, the MCLM is reduced to the mTLV under MAR.
Therefore, if we assume that MAR is violated, the parametersθ1, θ2, θ3, λ1, andλ3 will quantify the
degree to which MAR fails to hold. Since the estimated 95% CIs for all these parameters cover zero, there
is no strong evidence from the HERS data that the MCLM fit is preferred to the mTLV fit under MAR. The
goodness of fit of the MCLM was further assessed by posterior predictive checks based on completed-data
plots obtained by multiple imputation of the missing responses (Gelmanand others, 2005; see details in
the Supplementary material available atBiostatisticsonline.).

In summary, we observed that, regardless of their baseline CD4 counts, Latinas and other race groups
had higher depression prevalence over time as compared with Blacks and Whites. Given their races,
women with different baseline CD4 counts all had downward trends in depression prevalence over time.
There is no sufficient evidence from the data to show that these trends differ (see Figure3).

4.3 Sensitivity analysis

In previous section, the mTLV and MCLM appeared to have similar fits to the observed HERS CES-
D data. However, the assumptions for extrapolating the missing responses given the observed data are
different in these models. In the mTLV, MAR is assumed such that the conditional distribution of missing
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Fig. 2. Illustration of the unverifiable assumption made in the MCLM: the horizontal axis represents time since
enrollment, the vertical axis represents the conditional mean of depression at the logit scale, andT represents the
study end or maximum follow-up. At timed, some participants dropped out of the HERS. Therefore, the depression
time slope afterd is not estimable from the observed data. In the MCLM, the depression time slope before dropout
is extrapolated to the time slope after dropout (the solid line). In the corresponding sensitivity analysis, we allow the
time slope after dropout to follow a piecewise linear model (the dashed line). That is, the time slope before dropout is
not necessarily equal to the time slope after dropout.

depression responses given the observed data for those who remained in the study atd is the same as
the corresponding conditional distribution for those who left the study atd (Molenberghsand others,
1998), i.e.

f (yi j |yi 1, . . . , yi j −1,Xi , ti j −1 6 d < ti j ) = f (yi j |yi 1, . . . , yi j −1,Xi , ti j 6 d).

In the MCLM, we assume that given the dropout timed and the covariates, missing data after dropout
share the same parameters as observed data before dropout. For example, in the HERS example, it is
assumed that given their baseline CD4 counts, women with observed dropout atd had the same time
slope forti j > d as forti j 6 d. This is clear from the illustration in Figure2. The time slope after dropout
cannot be obtained from the observed data and has to be extrapolated in the MCLM. Both assumptions in
the mTLV and MCLM cannot be verified from the observed data and sensitivity analysis is required (Little
and Wang, 1996; Daniels and Hogan, 2000; Rotnitzkyand others, 2001; Daniels and Hogan, 2008).

We demonstrate an example of sensitivity analysis regarding the abovementioned assumption in the
MCLM. The strategy of sensitivity analysis for the MCLM can be based on the extrapolation method
(Rizopoulosand others, 2007). Basically, we assume a different time slope forti j > d, i.e. assume a
continuous piecewise linear model with a change point atd (see Figure2) . For the group with baseline
CD46 200, we assume the conditional mean model as follows:

logit(μC
i j ) = δi j + θ2D∗

i ti j + ω0(D
∗
i )(ti j − D̃i )+

where(x)+ = x if x > 0 and 0 otherwise,̃Di is the observed dropout time standardized to have the same
scale ofti j andω0(D∗

i ) is the change of the slope after dropout that is different across specific dropout
times. The model for baseline CD4> 200 is similar but withω1(D∗

i ) representing the slope change after
dropout:

logit(μC
i j ) = δi j + θ1D∗

i + θ3D∗
i ti j + ω1(D

∗
i )(ti j − D̃i )+.
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In principle, sensitivity analysis should be based on the parameters that cannot be identified by the
observed data, such asω0(D∗

i ) andω1(D∗
i ). We assume a simple functional form forω0(∙) andω1(∙):

ω0(D
∗
i ) = −a0D∗

i = −a0(Di − T)/T,

ω1(D
∗
i ) = −a1D∗

i = −a1(Di − T)/T .

Thus, whenDi = T is the maximum follow-up, no adjustment is made about the slope after dropout (i.e.
for study completers), while the slope is adjusted upward bya0 or a1 when Di = 0, that is, when the
participants dropped out after the enrolment visit. For example, whena0 = 2 and some HERS women
with baseline CD46 200 dropped out the study at 1 year (d = 365), we assume that before dropout their
time slopes arêθ2(d − T)/T = −0.46(365−2093)/2093= 0.38, but their time slopes after dropouts are
(θ̂2 − a0)(d − T)/T = (−0.46− 2)(365− 2093)/2093= 2.03.

In Figure3, we fix the nonidentifiable parametersa0 anda1 at various combinations of their values
and compare the estimated prevalence differences of depression between baseline CD4 groups for White
women to check their sensitivity toa0 anda1. The results for Latinas and Blacks are similar. Estimates
for the early time period after enrollment are close across all model fits, including the original mTLV
and MCLM fits. Depending on specific combination ofa0 anda1, the baseline CD4 group difference
in depression prevalence is adjusted downward or upward at the later follow-up period. However, the
pointwise 95% credible bands from the MCLM fit cover all these estimated depression prevalence profiles
even when we choosea0 anda1 at relatively large values (i.e. large changes in time slopes after dropout are
assumed). In practice, caution needs to be taken about how to choose values or assign priors for sensitivity
parameters. In this particular example, we only showed a simple case by setting them as constants (i.e.
assign 1–0 point mass prior). Informative priors on sensitivity parameters can also be used based on expert
opinions and prior elicitation from previous studies (Daniels and Hogan, 2008).

5. DISCUSSION

We have proposed a new model for dealing with informative dropout that occurs in continuous time.
The marginal covariate effects of interest are directly modeled and the relationship between the binary
responses and the dropout process is specified using linear or quadratic formulations in both conditional
mean and dependence models. In our Bayesian approach, the continuous dropout time distribution is not
modeled and its uncertainty is properly taken into account by Bayesian bootstrapping when obtaining
marginal covariate effects.

In this article, we focused on the scenario with dropouts only. There were 173 HERS women who
actually finished 12 scheduled visits.Su and Hogan(2010) distinguished these administratively censored
patients from dropouts and allowed them to form a separate pattern in their varying coefficient model-
ing approach to these data. They found that the parameter estimates for responses from these patients
were similar to those from later dropouts (e.g. those who finished 11 visits). Therefore, for simplicity, in
the analysis reported in Section4, we treated the follow-up times of administratively censored patients
(ranged from 1952 to 2093 days) the same as the dropout times. In practice, distinguishing administrative
censoring from dropouts might be more important when patients have staggered entry and informative
dropout is present (Li and Schluchter, 2004). The proposed MCLM can be extended by allowing the
parameters to depend on administrative censoring times through linear or quadratic functions, but these
functions are distinct from those for dropout times.

We have assumed that the relationship between the dropout time and binary responses follows the
linear or quadratic formulations. Unspecified smooth functions modeled by penalized splines (Ruppert
and others, 2003) can be used to allow more flexibility for this relationship (Hoganand others, 2004; Su
and Hogan, 2010). However, we found that the estimation of the dependence parameters is usually less
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Fig. 3. Sensitivity analysis for the MCLM of the HERS depression data: posterior mean estimates of the preva-
lence difference of depression between baseline CD4 groups (CD4> 200 vs. CD46 200) for White women with
fixed values for sensitivity parametersa0 anda1 compared with the results from the mTLV and MCLM (the results
for Latinas and Blacks are similar); gray shades represent corresponding pointwise 95% credible bands from the
MCLM fit.

stable than for the mean parameters due to the sparsity nature of the binary data. Therefore, incorporating
unspecified smooth functions in the mean structure of the MLCM is a more practical extension and the
same penalized spline approach described inSu and Hogan(2010) can be applied straightforwardly.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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