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SUMMARY
Within the pattern-mixture modeling framework for informative dropout, conditional linear models
(CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not
just at observation times). However, in contrast with selection models, inferences about marginal covari-
ate effects in CLMs are not readily available if nonidentity links are used in the mean structures. In this
article, we propose a CLM for long series of longitudinal binary data with marginal covariate effects di-
rectly specified. The association between the binary responses and the dropout time is taken into account
by modeling the conditional mean of the binary response as well as the dependence between the binary
responses given the dropout time. Specifically, parameters in both the conditional mean and dependence
models are assumed to be linear or quadratic functions of the dropout time; and the continuous dropout
time distribution is left completely unspecified. Inference is fully Bayesian. We illustrate the proposed
model using data from a longitudinal study of depression in HIV-infected women, where the strategy of
sensitivity analysis based on the extrapolation method is also demonstrated.

Keywords Bayesian analysis; HIV/AIDS; Marginal model; Missing data; Sensitivity analysis.

1. INTRODUCTION

Dropout occurs commonly in longitudinal studies. For example, in the HIV Epidemiology Research Study
(HERS), a HIV cohort study of 1310 women from 1993 to 2000, it was of interest to examine the time
course of depression (defined as whether the Center for Epidemiologic Studies Depression Scale is equal
to or greater than 16) in HIV-infected women and other associated facongh and others 1997

Ickovics and others 2001, Su and Hogan2010. At baseline, the HERS women were scheduled to be
followed up every 6 months for 12 visits. However, the dropout rate in the HERS was appreciable and
only 173 women had a depression observation at the 12th visit among the 753 women who were HIV-
infected at baseline and did not die with HIV-related reasons during the study period. Moreover, previous
studies have suggested that the dropout could be related to the disease progression and associated de-
pressive symptomddkovics and others 2001 Roy and Daniels2008 Su and Hogan2010. As the
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actual measurement times correspond to assessment dates and vary across women (see Sigargdl of
Hogan 2010, following Su and Hogar§2010, in this article the dropout in the HERS is considered to
occur in continuous time.

When dropout depends on the unobserved response at the time of dropout, or at future times, even after
conditioning on the observed data, it is called “informative” or “nonignorable.” To deal with informative
dropout, a variety of model-based approaches, including “selection” models (SMs), “pattern mixture”
models (PMMs), and “shared parameter” models have been proposed for the joint modeling of the re-
sponse and dropout process@ai(and Carroll 1988 Diggle and Kenward1994 Follman and Wyu1995
Ten Haveand others 1998 Wu and Bailey 1989 Little, 1993 1994 Hogan and Laird1997 Wulfsohn
and Tsiatis 1997 Hendersorand others200Q Tsiatis and Davidian2004 Ibrahim and Molenberghs
2009. Semiparametric approaches were also proposed to adjust for the dependence of the dropout time
on the unobserved respons&otnitzky and others 1998 Scharfsteirand others 1999 Lin and Ying,

2003 Wilkins and Fitzmaurice2007).

Within the PMMs framework, conditional linear models (CLMs)\Wy and Bailey(1989 are a useful
approach to deal with dropout that can occur at any pointin continuous time (not just at observation times).
However, one disadvantage of CLMs and PMMs compared with SMs is that their parameters usually lack
a direct interpretation in terms of marginal covariate effects if nonidentity link functions are used in
the mean structure$\(ilkins and Fitzmaurice2007 Roy and Daniels2008 Su and Hogan2010. For
some scenarios with only treatment groups and measurement times as the covariates, we can obtain the
marginal summaries for covariate strata by averaging the response distributions over the dropout patterns
(Fitzmaurice and Laird2000 Su and Hogan2010. When a number of confounders or quantitative
covariates are present, a simple summary of the marginal covariate effects might not be immediately
available in a CLM or PMM.

To overcome this limitation, several PMMs have been proposed. Building upon log-linear models,
Wilkins and Fitzmauricg2006 developed a marginalized PMM for short sequences of binary data,
where the conditional dependencies among the responses and between the responses and dropout patterns
are specified separately in addition to the marginal mean model. To avoid the proliferation of nuisance
parameters in full likelihood approachedjlkins and Fitzmauric2007) proposed a PMM using the
semiparametric moment-based approach. Focusing on the scenarios with many unique dropout patterns,
Roy and Daniel$2008 developed a PMM where the marginal mean follows a generalized linear model
and the mean conditional on the latent class and random effects is specified separately. However, mainly
because of the concerns about sample size per dropout pattern and model parsimony, these models may
not be directly applicable to the situation where measurement times are irregular across individuals and
dropout can occur at any point in continuous time.

In this article, within the Bayesian paradigm, we propose a marginalized conditional linear model
(MCLM) to deal with continuous-time informative dropout for long sequences of binary data when the
target of inference is the marginal covariate effects. Given the dropout time, models for the mean and
dependence (including serial dependence and nondiminishing dependence) structures of the binary re-
sponses are specified separatéfedgerty 2002 Schildcrout and Heagerty2007 Roy and Daniels
2008, while parameters in both models are allowed to depend on the dropout time through linear or
quadratic formulations similarly as in the original CLMs. With marginal covariates effects directly spec-
ified, we then marginalize the conditional mean over the unspecified dropout time distribution through
Rubin’s Bayesian bootstragRr(ibin 1981). Following Su and Hogar(2010, we choose to build the
MCLM within the Bayesian paradigm in order to avoid extra bootstrapping of the continuous dropout
time for standard error estimation when the delta method fails in nonparametric frequentist approaches
(Hoganand others2004).

One advantage of PMMs and CLMs over others is that the unidentifiable part of the model for extrap-
olating missing data can be distinguished from those identifiable from the observed data, which facilitates
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substantive critique and empirical sensitivity analykigtile and Wang 1996 Daniels and Hoggr200Q

2008 Rotnitzky and others 200J). In this article, we will illustrate the unverifiable assumptions in

the proposed MCLM and demonstrate sensitivity analysis strategies based on the extrapolation method
(Rizopoulosand others2007) using the HERS depression data.

The remainder of this article is organized as follows. In SecBome introduce the model. Compu-
tational details are provided in Secti@nIn Sectiond, we apply our methods to the HERS depression
data and conduct a sensitivity analysis to assess the impact of unverifiable assumptions on the scientific
conclusions. Conclusions and discussion follow in Seciion

2. MODEL
Let D;j denote the dropout time for thth individual § = 1, ..., N). At continuous-time pointsy, . . ., tin;
(tin, < Dj), we observe the binary responés= (Yi1, ..., Yin,)" and then; x p exogenous covariate
matrix Xj = (Xi1,...,Xin,)" (€.9. external or fixed by study design). When the dropout is informative in

the sense that it is related to the unobserved responses given the observed data, we need to jointly model
(Yi, Xj, Dj). Specifically, building on the marginalized transition and latent variable model (mTLV) by
Schildcrout and Heagert{2007) for long series of binary data, we develop an MCLM by allowing the
conditional mean and dependence given the dropout time as well as the marginal mean to be separately
specified. Basically, our model formulation involves 4 components:

(a) Marginal model for the mean of the¢h response/,ti'\j" = E(Yjj IXij).

(b) Conditional model for the mean of thigh response given the dropout time (patteii) ﬂﬁ =
E(Yij Ixij, Di).

(c) Dependence model for the responses given the dropouQjme
E(YijlYij—-1. ..., Yi1, bi, Xij, Di), whereb; is an individual-level random intercept.

(d) Marginal model for the dropout time distributioh(D; | Xj).

To specify (a), we assume that
9(ulf) = i} B, (2.1)
whereg(-) is a link function,j = 1, ..., n;, andg is ap x 1 vector of marginal regression coefficients.
Both (b) and (c) capture the association between binary responses and the dropout time. In particular, we
assume that
9(uf) = &j + za (D)), (2.2)

wherez;j is a subset okj, a(-) is aq x 1 vector of linear or quadratic functions of the dropout tie
For identifiability, we use a constraint @(-) such thata (T) = 0, whereT indicates the time for study
end or the maximum follow-up in the study. Because of the following relationship bet@epagd @.2)

E(YijIxij) = > E(YijIxij. D) F(Di[Xi),
Dj

thedjj term is implicitly a function off, a(-), the parameters for (d) and the covariatgs

Basically, the model inZ.1) is chosen to obtain the desired target of inference: marginal covariate
effects. The conditional mean model i2.2) specifies how the response mean for individuals differ by
their dropout time®D; and this is consistent with the specification in the original CLMMy and Bailey
(1989. In other words, we allow the response mean to depend on the dropout process using a paramet-
ric formulation (e.g. linear or quadratic functions) as in a CLM. It must be recognized that unverifiable
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assumptions in (b) influence the inferences about the parameters in (a). For example, in the HERS
example, ifzj includes the time variablg; and its corresponding coefficientdgD;j) = 6o + 61D;,
then early dropouts were allowed to have different time slopes of depression compared to later dropouts.
However, here we assume that the time slope before drop@jt@n be extrapolated to characterize the
time slope after dropout, where no data after dropout were available to assess the validity of assumption.
Therefore, sensitivity analysis is required, and we will demonstrate the corresponding strategies using the
HERS example in Sectioh

The purpose of (c) is to account for the dependence between binary responses within individuals and
allow full likelihood-based inference for long series of binary data. Follov@obildcrout and Heagerty
(2007, we consider both serial dependence with a Markov component and nondiminishing dependence
with a random intercept. Specifically, the meanYgf, conditional on its history;4, ..., Yjj_1, the ran-
dom intercepby, the covariates;j as well as the dropout timb; is ﬂisj‘ = E(YijIYij =1, ..., Yig, bi, Xij,
Di) = E(Yij|Yij -1, bi, xij, Dj) and

logit(uf}) = Aij +7ij (Di) - Yij—1 +bi, b ~ N{0,%(Di)}. (2.3)

Although a logit link function is used here, note that any valid link function can be adobeabérty
2002. For simplicity, the dependence afij, yij (D), ando?(Dj) on Xij is suppressed for now. Given
bi, the log odds ratigj; (D;j) measures the serial dependence betwggmnd the immediate previous
responseYij_; among those who drop out &, bj introduces the nondiminishing (long-range) depen-
dence between responses within individuals. The interagpis determined such that the conditional
mean model inZ.2) and the dependence model .3) are simultaneously satisfie@¢hildcrout and
Heagerty 2007). In other words Ajj is the solution to

E(Y;j Ixij, Di) = E [Ev, ;_yjb {l0git™ (Ajj + 7ij (Di) - Yij—1 + bi)}].

Further, the serial dependence measyyéD;) and random intercept variane&(D;) can be modeled
via

7ij (Di) = w; ¢(D), (2.4)
log{a2(Di)} = V] w(Di), (2.5)

wherew;jj andv; are subsets afjj, ¢(-), andy(-) are vectors of linear or quadratic functions of the
dropout timeD;. For examplew;; can include the gap time between 2 consecutive visits, which accom-
modates irregular spacing of measurement timesan include treatment group membership such that the
random intercept variance differs by treatment groups, but this treatment effect will vary by the dropout
time.

By allowing the dependence parameters to varydpyin (2.3), our MCLM has a different within-
individual dependence structure from a CLM that only allows the mean parameters, .8),ito(vary
by D;. It is well known that with complete data and likelihood-based approaches, properly modeling the
within-individual dependence structure can affect the variability estimates more than the point estimates
of the mean parameterBiggle and others2002. However, with missing data, even point estimates can
be biased if the dependence structure is not carefully modiledahd and Heagerfy2004 Daniels and
Hogan 2008. By including covariates and allowing the dependence on the dropout time in the dependence
model, we are trying to minimize these biases in our approach.

Finally, component (d) needs to be specified to complete the joint distributiolY foX(, D;). Basi-
cally, this can be modeled using any event time distribution, where the dependeXiceambe checked
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by standard event time regression analysis methods. Here, we adopt a nonparametric approach and allow
f (Dj|Xj) to be completely unspecified within the strataXgf Following Su and Hogar§2010, we use

Rubin’s Bayesian bootstrajR(ibin, 1981) to obtain the posterior of (Dj|X;) for the observed dropout

times (see details in the Supplementary material availaléostatisticsonline).

3. COMPUTATIONAL DETAILS

We letd denote the set of parameters that characterize the funetiohs the conditional mean model
in (2.2, let A denote the set of parameters that characterize the dependence m@de#rb), and letz
index the dropout time distributiofi (D; |X;; z). The likelihood contribution from the response data of
theith individual is

f(yilbi, Xi, Di; 8,6, 1)
- f()/lllblaxlls Dl;ﬂaaa A)f(y@ly&: b|5X|29 Dl;ﬂaaa l)s"'a f(y|n||y|n|—1’ bl’X|n|9 Dl;ﬂaaa A’)

Ni
= [T @—uHem.
j=1

The posterior distribution for the parameters in an MCLM is proportional to

N
[Ttf@ilbi, Xi, Di; 8,6, A) £ (6i|4) f (Di|Xi; 7)) p(B. 6, 2) p(x),

i=1

wherep(.) is a prior density function. We follow the specification of the original PMMs in the Bayesian
paradigm Daniels and Hoggr2008 and assume that the priors ferare independent of the priors for
(B, 0, A). Itfollows thatz is not a part of the posterior f@8, 8, A) and the inference far can be based
on the marginal Iikelihooc]'[i’\':1 f(Di|Xi; m).

We standardize the continuous covariates to have mean 0 and standard deviation 0.5 as recommended
by Gelman(2008 and assign independeinpriors with 7 degrees of freedom and scale Zglfmanand
others 2008 to the elements of, 8 as well as those serial dependence parameters withtin(2.4).
IndependeniN(0, 7) priors are used for random intercept variance parameters (at log scale) within
in (2.5). The Markov Chain Monte Carlo (MCMC) for posterior sampling is implemented in MATLAB
(version 7.1) and more details can be found in the Supplementary material avaiRlastatisticsonline.

4, EXAMPLE

As briefly described in Sectioh our goal is to characterize the depression time course for the 753 HERS
women. We exclude those women who died due to HIV-related reasons during the study period because
we consider that response-related death mixed with drog¢uignd and Heagerty2005 is another
problem that needs further research and is beyond the scope of this article. Depression was measured
using the Center for Epidemiologic Studies Depression Scale (CES-D), which ranges from 0 to 60 with
larger scores indicating the presence of more symptoms. FolloBingnd Hogarf2010, we focus on

the dichotomized CES-D data that commonly define clinically significant depression in HIV research
(Radloff, 1977 Ickovicsand others2002; Cookand others2004 Leserman2008. The analysis of the
continuous and binary HERS CES-D data using the original PMM approach (i.e. the marginal covariate
effects are not directly specified) can be found in Sections 4.1 and 4@ afhd Hogai(2010.
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The covariates of interest include baseline characteristics, such as race (Black/White/Latina and others)
and initial disease stage (defined as whether the baseline CD4 cow22@, as well as the time variable
(in the unit of days). Followingselman(2008, the time variable is standardized to have mean 0 and
standard deviation 0.5.

4.1 Models under comparison

We fitan mTLV (Schildcrout and Heagert2007) and an MCLM to the HERS depression data. Assuming
“missingness at random” (MAR) and the prior independence of the parameters in the response model and
the dropout time distribution, the missingness is ignorable in the mTitl€ and Rubin 2002. In both

models, the marginal mean of depression follows:

Iogit(ﬂi'\j") = fo + p1l (Black)+ 21 (Latina)+ p3l (baseline CD4> 200)
+ fal (baseline CD4< 200)t;j + Bs! (baseline CDAS 2001t
+ fis| (baseline CD4> 200)tij + f71 (baseline CD4> 20017, (4.1)

wherel (-) is the indicator function. The quadratic term of the time variable is included to allow more
flexibility to characterize the depression time course.

In the mTLV, no conditional mean model given the dropout time is needed, while the dependence
structure includes constant first-order serial dependence and a random intercept for nondiminishing de-
pendence:

|09it(ﬂﬁ) = Aij +7 -Yij_1+bi, b ~N(@,c?, logc?) = y.
The conditional mean model in the MCLM is specified as follows:
logit(1) = &j + 61D} (baseline CD4> 200)
+ 62D | (baseline CD4< 200)t;
+ 63D | (baseline CD4> 200)t;j, (4.2)

where the standardized dropout tild = (D; — T)/T is within [-1, 0], andT = 2093 corresponds to

the maximum follow-up days in the HERS. The choice for covariates here is based on the analysis reported
in Su and Hogaif2010, where regression coefficients for races were found to be relatively constant over
the dropout time. Basically, we allow the regression coefficientglif) o vary as linear functions of

the dropout time, and if women reached maximum follow-up in the HERS, their regression coefficients
are assumed to be O for identifiability purpose because we have specified a separatedripded (

the marginal mean of depression. Further, both the first-order serial dependence and the nondiminishing
dependence are assumed to be linearly related to the dropout time as follows:

logit(u3) = Aij + 7ij (Di) - Yij_1+bi, b ~ N{0,0%(Dp)}, (4.3)
7ij (Di) = Ao + A1Di /T,
log{c?(Di)} = 42+ 43Di/T.

Note that ifd; = 6, = 03 = 11 = 13 = 0, the MCLM is reduced to the mTLV under MAR.
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For calculation of the interce@;, we need to obtain the posterior samplesf@D;|X;). Initially,
we use Cox regression analysis methods to check the relationship between the discrete covariates (race,
baseline CD4 count) and the dropout time distribution. The Whites and Blacks were less likely to drop
out than the Latinas and other races; the patients with baseline CD4 @@t were also less likely to
drop out. Therefore, we have(D; |X;i) # f(Dj) in the HERS data and the Bayesian bootstrapping for
the observed dropout times is conducted within the race and baseline CD4 groups.

The priors assigned fgiy, S1, B2, B3, 4, fs, Ps, B7,61, 02, 63 andy , Lo, 11 aret priors with 7 degrees
of freedom and scale 2.5. TIN(O, 7) priors are used foy, A2, andAz. For both models, we run 2 MCMC
chains and check the convergence after 5000-iteration burn-in period using history plots. The computing
time for the mTLV and MCLM fits of the HERS example (6505 observations) is approximately 2 and
8 h per 1000 iterations, respectively, on our machine (2.59 GHz CPU, 32 GB RAM). Pooled posterior
samples of size 10 000 are used for inference.

4.2 Results

Tablel presents the results from both the mTLV and the MCLM. In the MCLM, both the conditional mean
regression coefficients and the dependence parameters indicate some associations with the dropout time.
Specifically, earlier dropouts are shown to have larger main effect of baseline CD4 éo{posterior

mean]= —0.22, 95% credible intervalCl) = [—0.77, 0.34]). If their baseline CD4 counts ax200,

earlier dropouts had larger time slopes than later dropéits (—0.46, 95% Cl= [—1.67; 0.95]), while if

their baseline CD4 counts ar€200, later dropouts had larger time slopes than earlier drop@its 0.20,

95% CI = [—0.64 0.93]). In other words, those early dropouts who had severe immunosuppression at

Table 1. Results from the HERS analysis. The posterior means, standard deviations (SD), 8b%tbke
are reported for the marginal regression coefficients, conditional mean, and dependence parameters from
the fitted MCLM and mTV

MCLM mTLV
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
o 0.28 0.22 -0.15 0.77 0.32 0.18 —0.06 0.63
b1 -0.19 0.13 —0.45 0.05 —-0.26 0.11 —-0.47 —-0.04
So 0.37 0.16 0.05 0.71 0.24 0.14 -0.03 0.53
£3 0.00 0.21 -0.37 0.39 0.02 0.18 -0.29 0.40
Pa -0.17 0.21 —-0.62 0.18 -0.25 0.18 -0.57 0.09
fs —0.59 0.28 —-1.12 0.01 —0.66 0.29 —-1.18 —-0.05
Ps -0.29 0.08 —0.45 -0.12 —-0.28 0.04 -0.37 -0.20
f7 0.19 0.10 0.00 0.39 0.24 0.10 0.02 0.40
Z —-0.22 0.28 -0.77 0.34
0o —0.46 0.68 -1.67 0.95
03 0.20 0.39 —-0.64 0.93
Ao 0.63 0.45 —0.26 1.53
A1 0.67 0.52 —0.36 1.70
y 1.19 0.09 1.02 1.36
A2 0.26 0.21 -0.17 0.64
A3 0.36 0.25 -0.10 0.87
v 0.55 0.05 0.46 0.66
o2 1.74 0.09 1.58 1.93




362 L. U

CD4 < 200 CD4 > 200

0.7
0.7

0.6
0.6

8 8
= c
K 2
© ©
g g
3 g | - =~ 3 g |
g ° |- 5§ °
@ 7}
w0 w0
L o« g <« |
a g5 a g
3 —— White, MCLM 3 —— White, MCLM
White, mTLV White, mTLV
@ | - = Black, MCLM o _| - = Black, MCLM
(=] Black, mTLV =] Black, mTLV
- Latina/others, MCLM +++ Latina/others, MCLM
Latina/others, mTLV Latina/others, mTLYV
o ] o o
[=} [=}
T T T I I T T T I I
0 500 1000 1500 2000 0 500 1000 1500 2000
Days since enroliment Days since enroliment

Fig. 1. Posterior mean estimates of depression prevalence by race and baseline CD4 groups from the mTLV and
MCLM fits of the HERS depression data.

baseline (CD4< 200) tended to have higher change rates of depression than later dropouts, but for patients
who had baseline CD4 counts over 200, this pattern was reversed. However, given the fact that women
with baseline CD4> 200 were less likely to drop out, the influence of dropout on the binary responses
is relatively small for them. Finally, the first-order serial dependence and nondiminishing dependence are
also shown to vary positively with the dropout tima (= 0.67, 95% Cl= [—0.36 1.70}, A3 = 0.36, 95%

Cl =[-0.1Q 0.87]). Overall, compared with the mTLYV fit, the MCLM adjusted the marginal depression
prevalence profiles upward at the later period of followup for the group with baselineCZD0 and the

largest adjustment occurred for the Latina/others group (left panel of Figufen the other hand, the
marginal depression prevalence profiles for both the White and Latina/others groups were shifted slightly
if their baseline CD4 counts are200, but the general time trends remain stable (right panel of Fidure

Recall that whe®; = 6, = 63 = A1 = A3 = 0, the MCLM is reduced to the mTLV under MAR.
Therefore, if we assume that MAR is violated, the parameigrsy, 63, 11, and A3 will quantify the
degree to which MAR fails to hold. Since the estimated 95% Cls for all these parameters cover zero, there
is no strong evidence from the HERS data that the MCLM fit is preferred to the mTLV fit under MAR. The
goodness of fit of the MCLM was further assessed by posterior predictive checks based on completed-data
plots obtained by multiple imputation of the missing respon&sdrhanand others2005 see details in
the Supplementary material availableBabstatisticsonline.).

In summary, we observed that, regardless of their baseline CD4 counts, Latinas and other race groups
had higher depression prevalence over time as compared with Blacks and Whites. Given their races,
women with different baseline CD4 counts all had downward trends in depression prevalence over time.
There is no sufficient evidence from the data to show that these trends differ (see3jigure

4.3 Sensitivity analysis

In previous section, the mTLV and MCLM appeared to have similar fits to the observed HERS CES-
D data. However, the assumptions for extrapolating the missing responses given the observed data are
different in these models. In the mTLV, MAR is assumed such that the conditional distribution of missing
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A

in sensitivity analysis

—A

In MCLM

d T
Fig. 2. lllustration of the unverifiable assumption made in the MCLM: the horizontal axis represents time since
enrollment, the vertical axis represents the conditional mean of depression at the logit scaleregmesents the
study end or maximum follow-up. At time&, some participants dropped out of the HERS. Therefore, the depression
time slope afted is not estimable from the observed data. In the MCLM, the depression time slope before dropout
is extrapolated to the time slope after dropout (the solid line). In the corresponding sensitivity analysis, we allow the

time slope after dropout to follow a piecewise linear model (the dashed line). That is, the time slope before dropout is
not necessarily equal to the time slope after dropout.

depression responses given the observed data for those who remained in the stuslyhat same as
the corresponding conditional distribution for those who left the study @#lolenberghsand others
1999, i.e.

Y IYits -5 Yij—1, Xin tij—1 < d < tij) = F(VijlYie, - - -, Yij—1, X, tij < d).

In the MCLM, we assume that given the dropout tich@and the covariates, missing data after dropout
share the same parameters as observed data before dropout. For example, in the HERS example, it is
assumed that given their baseline CD4 counts, women with observed drombiiagt the same time

slope fortj; > d as fortjj < d. This is clear from the illustration in Figu The time slope after dropout

cannot be obtained from the observed data and has to be extrapolated in the MCLM. Both assumptions in
the mTLV and MCLM cannot be verified from the observed data and sensitivity analysis is redyifitled (

and Wang 1996 Daniels and Hogar200Q Rotnitzkyand others2001 Daniels and Hogar2008.

We demonstrate an example of sensitivity analysis regarding the abovementioned assumption in the
MCLM. The strategy of sensitivity analysis for the MCLM can be based on the extrapolation method
(Rizopoulosand others 2007). Basically, we assume a different time slope figr > d, i.e. assume a
continuous piecewise linear model with a change poirt gee Figure?) . For the group with baseline
CD4 < 200, we assume the conditional mean model as follows:

|09it(#i(,;) = dij + 02D} tij + wo(Df)(tij — Di)+

where(x), = x if x > 0 and 0 otherwiseD; is the observed dropout time standardized to have the same
scale oftjj andwo(D;") is the change of the slope after dropout that is different across specific dropout
times. The model for baseline CD4 200 is similar but witho, (D) representing the slope change after
dropout:

logit(u) = dij + 61D + 63D;tij + w1(D)(tj — Di)4.



364 L. U

In principle, sensitivity analysis should be based on the parameters that cannot be identified by the
observed data, such ag(D;") andw1(D;"). We assume a simple functional form fog(-) andwi (-):

wo(Df") = —aoD{" = —ap(Di — T)/T,
w1(Df") = —a1Df = —aa(Dj — T)/T.

Thus, wherD; = T is the maximum follow-up, no adjustment is made about the slope after dropout (i.e.
for study completers), while the slope is adjusted upwaraggr a; when D; = 0, that is, when the
participants dropped out after the enrolment visit. For example, waea 2 and some HERS women
with baseline CD4< 200 dropped out the study at 1 yedr=£ 365), we assume that before dropout their
time slopes aré>(d — T)/ T = —0.46(365— 2093 /2093= 0.38, but their time slopes after dropouts are
(6o —ag)(d — T)/T = (—0.46— 2)(365— 2093 /2093 = 2.03.

In Figure 3, we fix the nonidentifiable parameteag anda; at various combinations of their values
and compare the estimated prevalence differences of depression between baseline CD4 groups for White
women to check their sensitivity tm anda;. The results for Latinas and Blacks are similar. Estimates
for the early time period after enrollment are close across all model fits, including the original mTLV
and MCLM fits. Depending on specific combination &f anda;, the baseline CD4 group difference
in depression prevalence is adjusted downward or upward at the later follow-up period. However, the
pointwise 95% credible bands from the MCLM fit cover all these estimated depression prevalence profiles
even when we choosg anda; at relatively large values (i.e. large changes in time slopes after dropout are
assumed). In practice, caution needs to be taken about how to choose values or assign priors for sensitivity
parameters. In this particular example, we only showed a simple case by setting them as constants (i.e.
assign 1-0 point mass prior). Informative priors on sensitivity parameters can also be used based on expert
opinions and prior elicitation from previous studi&afiels and Hogar2008.

5. DISCUSSION

We have proposed a new model for dealing with informative dropout that occurs in continuous time.
The marginal covariate effects of interest are directly modeled and the relationship between the binary
responses and the dropout process is specified using linear or quadratic formulations in both conditional
mean and dependence models. In our Bayesian approach, the continuous dropout time distribution is not
modeled and its uncertainty is properly taken into account by Bayesian bootstrapping when obtaining
marginal covariate effects.

In this article, we focused on the scenario with dropouts only. There were 173 HERS women who
actually finished 12 scheduled visiu and Hogat(2010 distinguished these administratively censored
patients from dropouts and allowed them to form a separate pattern in their varying coefficient model-
ing approach to these data. They found that the parameter estimates for responses from these patients
were similar to those from later dropouts (e.g. those who finished 11 visits). Therefore, for simplicity, in
the analysis reported in Sectidnwe treated the follow-up times of administratively censored patients
(ranged from 1952 to 2093 days) the same as the dropout times. In practice, distinguishing administrative
censoring from dropouts might be more important when patients have staggered entry and informative
dropout is presentL{ and Schluchter2004). The proposed MCLM can be extended by allowing the
parameters to depend on administrative censoring times through linear or quadratic functions, but these
functions are distinct from those for dropout times.

We have assumed that the relationship between the dropout time and binary responses follows the
linear or quadratic formulations. Unspecified smooth functions modeled by penalized splupmse(t
and others2003 can be used to allow more flexibility for this relationshifpoganand others2004 Su
and Hogan2010. However, we found that the estimation of the dependence parameters is usually less
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Fig. 3. Sensitivity analysis for the MCLM of the HERS depression data: posterior mean estimates of the preva-
lence difference of depression between baseline CD4 groups ¢CRd0 vs. CD4< 200) for White women with

fixed values for sensitivity parameteag anda; compared with the results from the mTLV and MCLM (the results

for Latinas and Blacks are similar); gray shades represent corresponding pointwise 95% credible bands from the
MCLM fit.

stable than for the mean parameters due to the sparsity nature of the binary data. Therefore, incorporating
unspecified smooth functions in the mean structure of the MLCM is a more practical extension and the
same penalized spline approach describeslirand Hogai2010 can be applied straightforwardly.

SUPPLEMENTARY MATERIAL

Supplementary material is availabletdtp://biostatistics.oxfordjournals.org.
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