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Background. Glioma is a prevalent primary brain cancer with high invasiveness and typical local diffuse infiltration. Alternative
splicing (AS), as a pervasive transcriptional regulatory mechanism, amplifies the coding capacity of the genome and promotes
the progression of malignancies. This study was aimed at identifying AS events and novel biomarkers associated with survival
for glioma. Methods. RNA splicing patterns were collected from The Cancer Genome Atlas SpliceSeq database, followed by
calculating the percentage of splicing index. Expression profiles and related clinical information of glioma were integrated
based on the UCSC Xena database. The AS events in glioma were further analyzed, and glioma prognosis-related splicing
factors were identified with the use of bioinformatics analysis and laboratory techniques. Further immune infiltration analysis
was performed. Results. Altogether, 9028 AS events were discovered. Upon univariate Cox analysis, 425 AS events were found
to be related to the survival of patients with glioma, and 42 AS events were further screened to construct the final prognostic
model (area under the curve = 0:974). Additionally, decreased expression of the splicing factors including Neuro-Oncological
Ventral Antigen 1 (NOVA1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), heterogeneous nuclear
ribonucleoprotein L-like protein (HNRNPLL), and RNA-Binding Motif Protein 4 (RBM4) contributed to the poor survival in
glioma. The immune infiltration analysis demonstrated that AS events were related to the proportion of immune cells
infiltrating in glioma. Conclusions. It is of great value for comprehensive consideration of AS events, splicing networks, and
related molecular subtype clusters in revealing the underlying mechanism and immune microenvironment remodeling for
glioma, which provides clues for the further verification of related therapeutic targets.

1. Introduction

Genomic analysis has become an important tool for devel-
oping new therapeutic options, which has facilitated the
opening of a new era of tumor genomics research. The
mRNA precursors are spliced, and the remaining exons
can be reconnected in different ways at the posttranslational
level. The resultant diverse mature mRNAs are then trans-
lated into different protein variants. The process is defined

as alternative splicing (AS), and over 90% of human multi-
exon genes undergo AS [1]. Protein factors involved in the
splicing process of RNA precursors are considered splicing
factors (SFs). Consequently, a gene can encode multiple pro-
teins, which contributes to proteome diversity and cell com-
plexity [2].

AS plays a critical role in numerous vital biological pro-
cesses, including tissue differentiation; its dysfunction may
induce multiple diseases, such as neurodegenerative diseases
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[3], malignant tumors [4], bladder cancer [5], lung cancer
[6], ovarian cancer [7], gastric cancer [8], colorectal carci-
noma [9], breast cancer [10], oral squamous cell carcinoma
[11], and lymphoma [12]. Previous studies [2] have con-
firmed that a number of genes have tumor-specific splice
variants, which share different functions from the typical
variants expressed in normal tissues. These gene variants
participate in multiple key pathways related to tumorigene-
sis, such as apoptosis regulation, DNA repair, proliferation,
and migration. Splicing defects can also lead to genomic
instability, which is a common feature of tumors, as well as
being the driver of tumor progression. Recently, accumulat-
ing evidence demonstrated that AS contributed to the tumor
microenvironment remodeling by affecting the proportion
of immune infiltrating cells and regulating the activity of
immune cells [13, 14]. Thus, cancer-specific AS might serve
as a potential biomarker.

Glioma is a tumor that originates from neuroglial cells in
the brain. According to the standard formulated by the

World Health Organization (WHO), glioma is classified as
grade I, II, III, or IV [15]. Typically, low-grade gliomas
(grades I and II) have low invasiveness and relatively favor-
able prognosis, but they usually cause damage to the func-
tional areas of the brain, whereas high-grade gliomas
(grades III and IV) are known to be aggressive, with poor
survival. The average survival of patients with glioma is
about 15 months, and the 5-year overall survival (OS) rate
is <5% (WHO 2016). Currently, there are only a few reliable
biomarkers for predicting the course or prognosis of patients
with glioma [16]. Due to the limited treatment methods and
poor curative effect of glioma, especially high-grade glioma,
there is an increased need to find more efficient targets.

Glioma exhibits significant heterogeneity at microscopic
and molecular levels. The Cancer Genome Atlas (TCGA)
can provide an integrated somatic cell atlas for glioma based
on molecular and clinical data, which is a valuable resource
for investigating genomic disorder in glioma. RNA process-
ing is a major contributor to transcript variation and gene
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Figure 1: AS events in glioma: (a) various types of AS events and the number of genes involved; (b) UpSet diagram of the overall AS events
involving interactions between genes.
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Figure 2: Continued.
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expression regulation and plays a pivotal role in many dis-
eases and cancers. Therefore, it is extremely necessary to sys-
temically analyze AS and its regulations for tumor immune
microenvironment in glioma.

2. Methods

2.1. AS Events in TCGA RNA-seq Database. The mRNA
splicing profiles were extracted from TCGA SpliceSeq
(https://bioinformatics.mdanderson.org/TCGASpliceSeq/)
database. The percentage splicing index (PSI) (range, 0–
100%) is used to quantify AS events and calculate seven AS
types: Mutually Exclusive Exons (ME), Exon Skip (ES),
Retained Intron (RI), Alternate Terminator (AT), Alternate
Promoter (AP), Alternate Acceptor site (AA), and Alternate
Donor site (AD). In this study, PSI > 80% and minimum
PSI standard deviation > 0:1 were established as the thresh-
olds to screen the splicing patterns of related protein-
coding genes in patients with glioma. In addition, UCSC
Xena (http://xena.ucsc.edu/) was utilized to obtain the gli-
oma expression profile data and related clinical information,
which were later integrated with AS data for further
investigation.

2.2. Survival Analysis. Patients were classified into two
groups based on the median threshold of every parameter.
AS events were subjected to univariate and multivariate
Cox regression analyses to identify their association with
OS, and p < 0:05 was used to indicate significant associa-
tions. A prognostic risk score was calculated by multiplying
the AS PSI linear combination by the related regression coef-
ficient (b) that indicated related weight. In this study, the
regression coefficient was determined using the multivariate

Cox proportional hazard regression model. The risk score
formula is shown below:

Risk Score = PSI of AS1 × bAS1 + PSI of AS2 × bAS2
+⋯+PSI of ASn × bASn :

ð1Þ

Finally, the AS events that were shown to independently
predict prognosis were integrated to construct a prognostic
prediction model. We also plotted the survival curve and
receiver operating characteristic (ROC) curve for the estab-
lishment of prognostic models. Kaplan-Meier analysis was
performed for survival analysis, which was compared using
the log-rank test.

2.3. Construction of a Splicing-Related Network. Altogether,
67 human SF lists were generated from manual literature
and database screening. The gene expression profile data
of SFs were extracted from UCSC Xena for subsequent
analysis. Survival analysis (p < 0:05) was applied for the
identification of SFs related to prognosis. Spearman corre-
lation analysis was performed to analyze the correlation
between survival-associated SF gene expression and
survival-associated AS PSI value, and p < 0:05 and ∣cor ∣ >
0:3 were set to indicate the significant difference. More-
over, Cytoscape (3.6.0 National Resource for Network
Biology) was used to construct an AS event-SF interaction
network.

2.4. Prognostic- and Subtype Analysis-Related Clusters. AS
events varied considerably among individual samples. Thus,
to obtain a reliable classification, this study utilized the
unsupervised consensus method with R package Consensus
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Figure 2: AS events and prognosis in glioma. (a) The number of survival-related AS events and related genes in each type of differential AS.
(b) Circos diagram of survival-related AS events and related genes: the Circos panel from outside to inside is expressed as follows:
chromosome number, genome axis, and survival-related AS event-related genes; the number of related genes in the overall AS event
(showing 1-10 different heights, more than 10 calculated as 10); correlation; the number of AS types of genes in the overall event; the p
values of related genes in the single-factor COX regression analysis (expressed by the conversion value of −log 10 ðp valuesÞ; the higher
the height, the more significant the p value); the HR value of correlation genes in the univariate COX regression analysis (in which red
represents HR > 1 and black represents HR < 1); and the correlation between genes. (c–h) Forest diagram of top 15 AS events related to
survival in each AS type.
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Figure 3: Continued.

5Journal of Immunology Research



Cluster Plus to identify the glioma molecular subtypes. We
assessed the prognostic value of different clusters to deter-
mine relationships of subtypes with survival. To investigate
the potential regulation in biological processes, cellular
components, and molecular functions, the ClusterProfiler
package was employed for Gene Ontology (GO) functional
enrichment analysis with genes involved in survival-
associated AS events. Additionally, the ReactomePA package
was utilized for Reactome pathway enrichment analysis to
identify the significant pathways.

2.5. Tissue Samples. To validate the expression of key SFs in
glioma, 10 tumors were collected from patients diagnosed
with glioma who underwent surgery at the First Hospital
of Lanzhou University. Of the 10 patients with glioma, there
were 6 men and 4 women. They ranged in age from 35 to 74
years old, with an average age of 55:3 ± 7:8 years. Normal
brain tissues were collected from 10 patients whose brain tis-
sues were partially removed due to head injury. The samples
were obtained with informed consent from all patients. This
study was approved by the Ethics Committee of the First
Hospital of Lanzhou University.

2.6. Western Blotting. Total protein was extracted from fro-
zen tissues, and protein concentration was measured. The
protein sample was isolated by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis and then transferred onto a
polyvinylidene fluoride membrane. After the membranes
were blocked in BSA (10%) for 2 h, the target antibody was
applied for the incubation with membranes overnight at
4°C. Subsequently, TBST was used to wash the membrane
three times for 10min, followed by incubation with a goat
anti-IgG secondary antibody at ambient temperature. There-
after, the membranes treated with ECL photoluminescence
solution were analyzed using ImageJ software. More details
about the antibodies were shown below: the anti-Nova1
antibody (1 : 1000), anti-RBM4 antibody (1 : 800), and anti-

HNRNPLL antibody (1 : 1200) were purchased from Abcam
(Cambridge, MA, USA).

2.7. Immune Cell Infiltration Analysis. The TIMER database,
as a platform, could provide in-depth analysis and visualiza-
tion of tumor 5infiltrating immune cells for various cancers
[17]. The correlation between key SF gene expression and
infiltration levels of B cells, CD4+ T cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells in glioma
was calculated with the TIMER database. To further assess
the relationship between the key SF genes and immune cell
infiltration, the CBERSORT algorithm was applied, which
could calculate the proportion of 22 immune cells.

3. Results

3.1. Overview of AS Events. In total, 9028 AS events were
observed among 4117 genes in the 146 glioma samples based
on TCGA database (Figure 1(a)). The findings indicated that
a single gene was associated with multiple mRNA splicing
event types, which underwent as many as five types of AS
events. ES was the predominant AS event: over 1/3 AS
events were ESs (Figure 1(b)).

3.2. Survival-Related AS Events in Glioma. To explore the
significance of AS events in predicting the prognosis of gli-
oma, univariate Cox regression analysis was performed. A
total of 425 AS events were identified as significantly associ-
ated with survival (p < 0:05), including 24 AAs, 26 ADs, 188
APs, 57 ATs, 158 ESs, 1 ME, and 41 RIs (Figure 2(a)). As
shown in Figure 2(b), the Circos graph displays the
survival-associated AS events and the involved genes.

3.3. Construction of the Glioma Prognostic Models. The forest
plot showed the top 15 prognostic AS events of the univari-
ate analysis in each AS type (Figures 2(c)–2(h)) The top 15
AS events in each AS type were selected for multivariate
Cox regression analysis and obtained 42 independent
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prognostic AS events, including AA events (n = 7), AD
events (n = 8), AP events (n = 6), AT events (n = 5), ES
(n = 10) events, and RI (n = 6) events. In total, the indepen-
dent variables included 7 AA events, 8 AD events, 6 AP
events, 5 AT events, 10 ES events, and 6 RI events. The prog-
nostic AS events among the different AS types were incorpo-
rated to construct a prognosis model. Based on the analysis
for every AS pattern, patients with a high risk score had
lower survival rate compared to patients with a low risk
score, as presented in Figures 3(a)–3(f), of which the model
with AD events had the best accuracy in predicting 5-year
survival (area under the curve ðAUCÞ = 0:940) (Figure 3(h)).
Moreover, when all possible AS events were included for
independent prognosis prediction from the different types
(total 42 AS events), the model displayed favorable ability
in predicting the 5-year survival (AUC = 0:974), as pre-
sented in Figures 3(g) and 3(h).

3.4. Survival-Related AS-SF Interaction Network. To deter-
mine the prognostic value of SFs, survival analysis was
applied for SFs according to gene expression. As shown in
Figure 4(a), four SFs exhibited a significant correlation with
OS, and decreased levels led to poor prognosis. We also
clarified the relationships between SFs and survival-
associated AS events and established a prognostic model.

Most SF gene levels were negatively correlated with the
PSI (Figure 4(b)).

Additionally, the correlations between PSI values of
survival-associated AS event and survival-related SF expres-
sion were investigated by Spearman correlation analysis
(Figure 4(a)). Four survival-related SFs (red dots) showed
a significant correlation between 58 genes (green dots)
and survival-associated AS events. There were 59 associa-
tions of the SF NOVA1 and 35 associations of the SF
RBM4 with AS events. In addition, as shown in Figure 4(c),
CCDC121, MAD2L2, TCF12, and ZNF138 interacted with
all four SFs.

3.5. Prognosis-Related Molecular Subtype Clusters. To further
identify different AS patterns, unsupervised analysis was
conducted for all samples according to prognosis-related
AS events. According to the results of the Consensus Cluster
Plus analysis and the distribution of consensus values from 0
to 1, cluster 1 (n = 69, 47.3%) and cluster 2 (n = 77, 52.7%)
were finally identified by the elbow method, as displayed in
Figures 5(a) and 5(b). Subsequently, survival analysis was
performed to evaluate the effect of these clusters on progno-
sis. The results showed that cluster 2 was related to poor sur-
vival, whereas cluster 1 was associated with favorable
survival (Figure 5(c)). The related genes were significantly
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enriched in multiple GO terms and Reactome pathways, as
presented in Figures 5(c)–5(g).

3.6. The Expression of Key SFs in Glioma. To confirm the
expression of key SFs in glioma, we conducted western blot-
ting based on glioma and nontumor tissues. The results indi-
cated that the expression levels of these four SFs, including
NOVA1, RBM4, HNRNPC, and HNRPLL, in tumor tissues
were significantly decreased, compared to those in normal
tissues (Figure 6).

3.7. The Correlation between Key SFs and Immune Cell
Infiltration. To calculate the correlation between the SF
expression and immune infiltrates, the TIMER database
was applied with the key SF expression in TCGA dataset.
As presented in Figure 7, the expressions of NOVA1 and
RBM4 were positively correlated with the infiltration of
CD8+ T cells. Besides, NOVA1 expression was significantly
related to the infiltration level of CD4+ T cells, macrophages,
neutrophils, and dendritic cells. High expression levels of
HNRNPC contributed to the infiltration of neutrophils and
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Figure 5: AS clusters associated with prognosis and molecular subtypes: (a) the elbow method identifies the optimal number of clusters; (b)
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together) to 1 (dark blue, samples always cluster together); (c) survival analysis in the two identified sample clusters; (d–f) top 10
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dendritic cells. Although there was no significant difference
between HNRPLL expression and the infiltration of immune
cells, HNRPLL was closely related to immune purity.
Besides, the results of CBERSORT analysis were consistent
with the results of the TIMER database (Figure 8). The above
findings suggested that there might be an underlying corre-
lation between the AS events and immune infiltration.

4. Discussion

In recent years, accumulated evidence suggested that AS
occurred in multiple tumors and played a critical role in
the progression of malignancies, including glioma. Our
study found that genes involved in AS events affected glioma
survival including NOVA1, HNRNPC, HNRNPLL, RBM4.
Other scholars have discovered more influencing factors. Li
et al. [18] verified that CX-5461 suppressed telomerase activ-
ity and induces cell apoptosis via the regulation of hTERT in
glioma cells. In addition, it has been reported that the
expression level of ELK1 exhibited the positive correlation
with tumor malignant progression, which was regulated by
AS [19]. Shao et al. [20] found that two variants of ITSN1
via AS exercised distinctly different functions in glioma. Spe-
cifically, the short variant of ITSN1 promoted the develop-
ment of glioma, whereas the long variant exerted a tumor-
suppressive effect.

Previous studies examining AS have usually focused on a
single gene or SF. Additionally, the prognostic value and
immune infiltration analysis of AS in glioma have not yet
been studied. To our knowledge, this study is the first to sys-
tematically identify and analyze AS events related to survival
and immune cell infiltration in glioma. Based on our find-
ings, 425 survival-related AS events were revealed, and SF
genes related to survival-associated AS events were identi-
fied, including NOVA1, HNRNPC, HNRNPLL, and
RBM4. These key SF genes were significantly related to the
infiltration of immune cells in the tumor microenvironment.
These factors exert vital roles in the genesis and develop-
ment of multiple tumors [11, 21–32].

Among these four SFs, HNRNPC, a small nuclear ribo-
nucleoprotein particle protein factor, is the most extensively
investigated. Fischl et al. [23] reported that the HNRNPC-
dependent alternative cleavage and polyadenylation (APA)
profile changes in colonic tumors compared to noncarci-
noma colonic epithelial cells. They also verified that
HNRNPC is a key regulator of physiology-related APA
events and postulated that HNRNPC might have facilitated
gene expression related to proliferation and metastasis and
promote carcinogenesis. The findings of Zhang et al. [24]
demonstrated that HNRNPC interacted with the lncRNA
LBX2-AS1 and transcription factors ZEB1 and ZEB2 related
to the epithelial-mesenchymal transition (EMT), which fur-
ther facilitated the progression of EMT. Wen et al. [10]
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Figure 6: Western blotting detected the expression levels of four SFs in glioma and nontumor tissues. ∗∗p < 0:01, ∗∗∗p < 0:001.

11Journal of Immunology Research



discovered that HNRNPC could serve as a predictor for
tumor burden and prognosis. Additionally, high expression
level of HNRNPC contributed to poor survival of patients
with gastric cancer receiving chemotherapy and resulted in
chemoresistance [33].

HNRNPLL, a tissue-specific heterogeneous nuclear ribo-
nucleoprotein, has been shown to be related to progression
of colorectal cancer (CRC). Sakuma et al. [29] found that
HNRNPLL suppressed metastasis via EMT. Interestingly,
another one of their studies [27] suggested that HNRNPLL
stabilized the transcripts of DNA replication regulators
(PCNA, RFC3, and FEN1), thus accelerating the prolifera-
tion of CRC cells. It has been reported that HNRNPLL could
reduce T cell accumulation in lymphoid tissues [34], which
was consistent with the findings of our study. This indicates
that an SF may impact tumor development and prognosis in
multiple mechanisms. We demonstrated that NOVA1,
HNRNPC, HNRNPLL, and RBM4 were independent prog-
nostic factors for glioma, and their expression was verified
by western blotting analysis. In contrast, NOVA1 is consid-
ered to be an oncogene and a prognostic factor in multiple
malignant tumors, including CRC [35], thyroid cancer
[36], breast cancer [37], melanoma [30], osteosarcoma
[38], and gastric cancer [31, 39]. This phenomenon has also
been observed for other SFs. We speculate that, unlike the
effect of HNRNPLL in CRC, the overexpression of these four

SFs may facilitate glioma metastasis but suppress glioma cell
proliferation. However, considering the biological character-
istics of glioma, it is difficult to study carcinogenesis and
construct models to better predict patient prognosis. Nota-
bly, SFs suppressing cell proliferation also exist in other
types of tumors [40–42]. However, the innate significant
heterogeneity of glioma samples may lead to different
results. Consequently, more studies are warranted to further
verify this result and uncover the mechanism behind this
phenomenon.

In conclusion, this study screened and analyzed AS
events in glioma using TCGA database. We created prog-
nostic signatures associated with 42 AS events, which dis-
played favorable performance in predicting prognosis in
glioma patients. We also discovered that the SFs NOVA1,
HNRNPC, HNRNPLL, and RBM4 are independent risk fac-
tors that affect the prognosis and immune cell infiltration of
patients with glioma. Certain limitations should also be
noted. First, our research was based on TCGA and UCSC
Xena databases and was not verified using other indepen-
dent databases. Second, the four prognosis-related SFs iden-
tified in our results may differ in terms of their expression in
other tumor types, and the real mechanism behind their
association with survival and immune infiltration should
be further verified. In summary, our research illustrates the
value of AS events and AS-related genes in glioma and
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Figure 7: The correlation analysis between the expression of four SFs and immune cell infiltration in glioma based on the TIMER database.
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Figure 8: Continued.
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Figure 8: The difference of infiltrating immune cells between high and low gene expression with the CIBERSORT algorithm.
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presents a survival-related molecular subtype-SF interaction
network, which provides a bioinformatics basis for subse-
quent study of related mechanisms.
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