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Abstract

The classical approach for testing statistical images using spatial extent inference

(SEI) thresholds the statistical image based on the p-value. This approach has an

unfortunate consequence on the replicability of neuroimaging findings because the

targeted brain regions are affected by the sample size—larger studies have more

power to detect smaller effects. Here, we use simulations based on the preprocessed

Autism Brain Imaging Data Exchange (ABIDE) to show that thresholding statistical

images by effect sizes has more consistent estimates of activated regions across

studies than thresholding by p-values. Using a constant effect size threshold means

that the p-value threshold naturally scales with the sample size to ensure that the tar-

get set is similar across repetitions of the study that use different sample sizes. As a

consequence of thresholding by the effect size, the type 1 and type 2 error rates go

to zero as the sample size gets larger. We use a newly proposed robust effect size

index that is defined for an arbitrary statistical image so that effect size thresholding

can be used regardless of the test statistic or model.
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1 | INTRODUCTION

Spatial extent inference (SEI) is the most common inference proce-

dure in neuroimaging, where a statistical image is first thresholded to

form spatially contiguous clusters and then p-values are computed

based on the size of the suprathreshold clusters (Friston, Worsley,

Frackowiak, Mazziotta, & Evans, 1994; Woo, Krishnan, & Wager,

2014; Yeung, 2018). The statistical image is often derived from a

group level analysis using a linear model, a linear mixed effects model,

or estimating equation (Friston et al., 1994; Guillaume, Hua, Thomp-

son, Waldorp, & Nichols, 2014). The cluster forming threshold (CFT) is

chosen to satisfy an uncorrected p-value threshold (e.g., p < .001 or

p < .01) at the voxel level.

While the method is widely applied, there are two important limi-

tations of thresholding statistical images based on the voxel-level

p-value: (a) when the true effect size varies across voxels, the power

of detecting a given voxel using a p-value threshold is dependent on

the sample size, so the set of suprathreshold voxels across studies

attempting to replicate an experiment is a function of the sample

size—larger studies are targeting smaller effect sizes than smaller stud-

ies. This means that for fMRI studies, the amount of brain activation

that should be detected in a group level analysis is dependent on the

sample size. (b) p-value thresholding (PVT) is sensitive to arbitrarily

small effect sizes in large sample sizes that are not of clinical interest.

This can occur as a result of the null hypothesis fallacy (Bowring,

Telschow, Schwartzman, & Nichols, 2019), which posits that the clas-

sical null hypothesis of an effect size exactly equal to zero is not satis-

fied in real neuroimaging data. The null hypothesis fallacy is supported

by empirical evidence (Gonzalez-Castillo et al., 2012) and by biological

features and processing steps (e.g., spatial smoothing) that imply the
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mean function of a statistical image is spatially continuous (see table

1 of Chumbley & Friston, 2009).

In this article, we argue for using an effect size-based CFT,

instead of a threshold based on a p-value. Our suggestion is motivated

by increasing criticism of PVT in the context of hypothesis testing and

an increased interest in potential alternatives (Bowring et al., 2019;

Bowring, Telschow, Schwartzman, & Nichols, 2021; Chen et al., 2019;

Chen, Taylor, & Cox, 2017; Wasserstein & Lazar, 2016; Wasserstein,

Schirm, & Lazar, 2019). This approach resolves the limitations of PVT

stated above: (a) Using effect size thresholding (EST), the set of voxels

that are identified as activated in an analysis does not depend on the

sample size, so it improves the consistency of the target regions of

activation across studies. (b) The probability of detecting voxels with

true effect sizes below the threshold approaches zero and the proba-

bility of detecting voxels with true effect sizes above the threshold

approaches one, with increasing sample size. In other words, the

type 1 and type 2 error rates go to zero as the sample size increases.

In the following analyses, we used bootstrap-based simulations to

illustrate the advantages of EST over PVT using data from the Autism

Brain Imaging Data Exchange (ABIDE; Di Martino et al., 2014, 2017).

To demonstrate the two advantages above, we (a) compared the tar-

get region for PVT and EST across varying sample sizes and

(b) compared the probability of a supra-threshold finding for both

methods across varying sample sizes.

2 | METHODS

2.1 | ABIDE data set and statistical software

We downloaded fully processed amplitude of low frequency fluctua-

tions (ALFF; Zang et al., 2007) from resting state functional magnetic

resonance imaging scans for the ABIDE data set from the preprocessed

connectomes project (http://preprocessed-connectomes-project.org/).

The ABIDE is a collaboration of 16 international sites that have aggre-

gated and openly share neuroimaging data from 1,112 scanning ses-

sions, including 539 individuals with autism spectrum disorder

(Di Martino et al., 2014). A total of 1,027 ALFF images were available

for download from the preprocessed ABIDE data set, representing the

subset of subjects who completed the resting state fMRI sequence.

The data were preprocessed using the Configurable Pipeline for the

Analysis of Connectomes (CPAC) pipeline and analyzed in MNI space at

3 mm isotropic resolution using the pbj package in R (currently, avail-

able for download at https://github.com/simonvandekar/pbj using the

“ftest” branch). Simulations were executed using the NIsim R package

(https://github.com/statimagcoll/NIsim). To improve coverage of the

brain, we sequentially removed subjects from the sample until over

30,000 voxels were included in the study mask, which was defined as

the intersection of all subjects ALFF images. At each step, the subject

whose removal improved the study mask coverage the most was

excluded from the study. A total of nine subjects were excluded yield-

ing a mask with 30,272 voxels. This minimal data quality screening was

performed in order to maximize the number of subjects available for

the simulation analyses. Further details on the processing pipeline are

provided on the preprocessed connectomes website (http://

preprocessed-connectomes-project.org/abide/index.html) and code,

from data download to figure production, is provided with this paper

and available at https://github.com/statimagcoll/NIsim/blob/master/

pbjESthresholding.Rmd. While our analyses use ALFF resting state

images, the methods and theory discussed here apply to arbitrary sta-

tistical images obtained from analyses of functional or anatomical

images.

2.2 | Statistical methods

2.2.1 | Effect size definition and image thresholds

We recently proposed a robust effect size index (RESI) that can be

computed using the sample size, chi-squared statistic, and degrees of

freedom (Vandekar, Tao, & Blume, 2020). The RESI is not model

dependent and can be used for most statistical models including gen-

eralized linear models and mixed models. When a sandwich covari-

ance estimator is used, the RESI estimator is asymptotically unbiased.

The estimator for the effect size index is

Ŝ vð Þ= max Tn vð Þ−m1ð Þ= n−mð Þ,0f g½ �1=2,

where Tn(v) is the chi-squared statistic image for the test of the

parameter of interest, m1 is the degrees of freedom of the test statis-

tic, m is the model degrees of freedom, and n is the number of inde-

pendent samples. Note, the original formula (Vandekar et al., 2020)

contains a typographical error because it subtracts by m instead of m1

in the formula. Here, we use the factor n instead of n − m, because it

has smaller positive bias.

To set the image thresholds, we converted p-value and S thresh-

olds to chi-squared statistical values using the formulas

χ2 pð Þ= F−1
χ2m1

1−pð Þ ð1Þ

χ2 Sð Þ= n× s2 +m1, ð2Þ

where F−1
χ2m1

is the inverse cumulative distribution function of a chi-

squared distribution with m1 degrees of freedom. We chose to con-

vert the thresholds to the chi-squared scale for computational conve-

nience, so that a single set of bootstrap images could be used for

visualizing the effects of both thresholding methods.

2.2.2 | Distinction between PVT and EST

If the null is false, the test statistic at a given location v is approxi-

mately chi-squared with noncentrality parameter n × S2, where S is

the robust effect size index (Vandekar et al., 2020). When the null is

true, S = 0. Because the PVT (1) chooses a chi-squared statistical

threshold that is fixed across sample sizes, as n gets larger, regardless
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of how small a nonzero effect size is, the test statistic will eventually

be large enough to reject the null (Figure 1). If the null hypothesis fal-

lacy is true, then the effect size is zero almost everywhere, and the

target region gets larger with increasing sample size (Chumbley &

Friston, 2009; Gonzalez-Castillo et al., 2012).

In contrast, the EST (2) is a function of the sample size and

increases at a linear rate with respect to n. Thresholding based on the

formula (2) is equivalent to thresholding (Tn(v) − m1)/n > s2. Because

(Tn(v) − m1)/n is an estimator for S2(v) (the square of the

true, unknown, effect size image) and converges to the true value

(Tn(v) − m1)/n ! S2(v), as n ! ∞ the type 1 and type 2 error rates go

to zero,

P Tn vð Þ−m1ð Þ=n≥s2jS2 vð Þ≤s2
� �

!0

P Tn vð Þ−m1ð Þ=n≥s2jS2 vð Þ≥s2
� �

!1:

The notational distinction between S2(v) and s2 is that the former is

the square of the true, unknown, effect size image, and the latter is

the square of the chosen effect size threshold. To contrast the two

approaches: PVT is always trying to target the subset of the image

where the effect size is greater than zero, whereas EST only targets a

range of interesting effect sizes.

2.2.3 | Simulation methods

We use simulations to illustrate the differences between PVT and

EST. In order to simulate realistic imaging data, we sampled from the

1,027 ALFF images in the ABIDE data set with replacement for

sample sizes n � {25,50,100,200,400,800}. In each data set, we fit the

model

Yi vð Þ= α0 vð Þ+ α1 vð Þ×moti + α2 vð Þ× sexi + α3 vð Þ× dxi + β vð Þ× agei + εi vð Þ,

where Yi(v) is the ALFF image for subject i at location v, moti is the

mean frame displacement for subject i, sexi, dxi, agei are the sex,

diagnosis, and age of subject i, the αj(v) and β(v) terms are unknown

parameter images, and the error term εi(v) is assumed to have zero

mean and finite variance. These covariates were chosen based on

common demographic and developmental findings in the literature

on resting fMRI activity and to control for the linear effect of

motion (Dumontheil, 2016; Stevens, 2009, 2016). For each of

10,000 simulations, we estimated the chi-squared statistical image

for the test of

H0 : β vð Þ=0, ð3Þ

distributed on 1 df, which we denote by Tn(v). This null hypothesis

implies that the effect size at a given voxel is equal to zero, S(v) = 0.

We used two methods to evaluate the replicability of PVT and

EST methods. First, across the 10,000 simulations, we computed the

mean chi-squared image and then converted the p-value and S thresh-

olds to chi-squared values using formulas (1) and (2). We used the

converted chi-squared thresholds to visualize suprathreshold values in

the images (Figure 2; Target). These images show target sets, where

the true mean of the statistic surpasses the given threshold for each

sample size, indicating that they should be rejected for that sample

size. Here, we present the results for a medium effect size S = 0.2 and

the standard CFT p = .001. Second, we estimated the probability of

each voxel being identified in the target set by computing the propor-

tion of simulated data sets where each voxel passed the given chi-

squared threshold (Figure 2; Probability). Here, we present the results

for a probability of .05 for a medium effect size S = 0.2 and the stan-

dard CFT p = .001. These images represent the probability that a given

voxel is estimated to be in the target set for a random sample. The

online interactive figures (https://statimagcoll.github.io/EST-2020/)

allow the user to choose from a range of values for the robust and

parametric statistical images.

3 | RESULTS

We used simulations to estimate the target region, defined as the

region where the true effect size is larger than the targeted effect size

determined by the p-value or S threshold. We also used the simula-

tions to compute the probability that a random sample identifies each

voxel as belonging to the target region. Ideally, voxels within the tar-

get region should have high probability of being identified as such,

whereas voxels outside of the target region should have low probabil-

ity of being identified as target voxels.

The target image identifies regions of the image where the true

expected value of the test statistic surpasses the given chi-squared
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F IGURE 1 An illustration of the difference between p-value and
effect size thresholding for a chi-squared statistic on 3 df. The white
curve is the distribution of the test statistic under the null, which
implies S = 0. The white dashed vertical line indicates the p-value
threshold, p < .001, which is the same for all sample sizes. The green
colored densities are the distribution of the chi-squared statistic
under the alternative S = 0.25 for different sample sizes, n, indicated
by the legend. As the sample size increases the distribution of the chi-
squared statistic shifts right. The effect size threshold indicated by the
vertical colored lines, S2 × n + 3, appropriately adjusts with the
sample size
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threshold. For p-value thresholding the target set changes due to the

fact that the effect size threshold is dependent on the sample size,

because the type 1 error rate is fixed instead; smaller sample sizes are

only targeting regions of the image with larger effect sizes (Figure 2;

Target p = .001). Because we are sampling from a real data set, the

mean function is continuous, so the null hypothesis is likely false

almost everywhere (Chumbley & Friston, 2009; Gonzalez-Castillo

et al., 2012). For this reason, the target set continues to increase

across samples. In contrast, for the EST (Figure 2; Target S = 0.2) the

target set remains consistent across sample sizes and the p-value

threshold gets smaller with larger sample sizes.

The probability image is thresholded above .05 and shows the

probability that a given voxel is included in the estimated target set

across replications of the experiment (Figure 2; Probability). For the p-

value threshold, this image can be thought of as the voxelwise power

and type 1 error depending on whether the null hypothesis (3) is true

at that voxel (Figure 2; Probability p = .001). If the null hypothesis is

false almost everywhere, then the implication is that the images for

PVT represent power. For the EST, the target set is determined by a

threshold on the true effect size being larger than S = 0.2 instead of

the null hypothesis (3). Smaller samples (n = 25, n = 50, n = 100) have

greater uncertainty about which voxels belong in the target set, but

the certainty increases with the sample size (Figure 2; Probability

S = 0.2). Interactive versions of these figures are available online

(https://statimagcoll.github.io/EST-2020/) that allow the reader to

vary the thresholds and type of test statistic.

4 | DISCUSSION

We used bootstrap-based simulations to argue for thresholding statis-

tical images by their effect size in SEI, over the classical approach of

thresholding images by their p-value. EST has the clear advantage that

the target set is consistent across different sample sizes and that the

type 1 error goes to zero as the sample size increases. We hope that

this approach may encourage more rigor in reporting neuroimaging by

emphasizing a distinction of strength of evidence (effect size) and the

probability of misleading evidence (Blume, 2002; Kang, Blume,

Ombao, & Badre, 2015): The effect size summarizes the strength of

statistical evidence conditional on the given data, and the p-value is

F IGURE 2 The target image and probability image for a p-value and S threshold using a parametric test statistic image. The target images
show regions of the image where the true expected value of the statistic surpasses the given p or S threshold. The probability images show the
probability that a given voxel is found to be in the target set across random samples. Sample sizes (n) are shown in each column with the
corresponding threshold using the other thresholding method (that is not held constant across sample sizes)
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(often) an estimate of the type 1 error rate; the probability of a result

more extreme under the null, considering variability across repeated

samplings of the data. As a consequence, EST maintains a constant

target set and guarantees that the type 1 error rate goes to zero as

the sample size increases, because of the increasingly stringent

threshold on the probability scale.

Choosing an effect size threshold in a small sample appears to be

advantageous because the corresponding p-value threshold is less

conservative, but this leads to greater uncertainty about the results

(Figure 2; Probability). In this framework, small studies may identify

regions where the effect size estimate is suprathreshold, but will likely

not have to power to obtain small SEI p-values for that finding. The

fact that a study cannot make a strong probabilistic statement is a

result of it being underpowered for the target effect size. For a fixed

CFT and sample size, the adjusted p-value assigned to an observed

cluster using SEI is a function of the size of the study mask and the

covariance structure of the image within the mask. A larger study

mask will have reduced power because there is more likely to be

larger clusters by chance. For this reason, if there is a specific hypoth-

esis for a region of interest (ROI) based on prior literature, we recom-

mend restricting inference to the ROI for the test, especially in small

samples.

We only evaluated the thresholding part of SEI here, and our

approach assumes that it is possible to accurately compute SEI p-

values using any CFT. Arbitrary thresholds are known to fail with

Gaussian random field approximations (Eklund, Nichols, &

Knutsson, 2016; Friston, Worsley, et al., 1994; Kessler, Angstadt, &

Sripada, 2017; Silver, Montana, Nichols, & Initiative, 2011) using less

stringent p-value CFTs (p > .001), so our approach is more appropriate

using modern resampling-based SEI methods that leverage permuta-

tion testing or bootstrapping, which are more likely to be robust to

the CFT (Guillaume et al., 2014; Vandekar et al., 2018, 2019; Winkler,

Ridgway, Webster, Smith, & Nichols, 2014). In future work it will be

important to evaluate the procedures at a range of CFTs in simula-

tions to ensure that the procedure maintains nominal error rates

regardless of the chosen effect size threshold.

We do not suggest a particular effect size threshold in this paper

and relied on thresholds published by Cohen (1988). There is not a

single threshold appropriate for all research studies and we suggest

that effect size images should be published along with the paper

results in order to transparently present study findings. There are

many ways for a researcher to choose effect size thresholds for static

presentation in a publication. For example, an effect size threshold

can be determined from well-known published effect sizes in the field.

Alternatively, Kang et al. (2015) used an evidentialist approach for

inference in task-base fMRI where the null hypothesis was deter-

mined by statistical image intensities in the cerebrospinal fluid. A simi-

lar approach could be chosen to determine the threshold for null

effect sizes in neuroimaging. Another approach that circumvents

thresholding the image, called Threshold-free Cluster Enhancement

(TFCE), is a permutation inference method that does not require

selection of a cluster forming threshold (Smith & Nichols, 2009).

The TFCE statistic at given location, w, is a weighted sum of the size

of the cluster that includes w across all possible thresholds, where the

weight is a function of the threshold for a t- or Z-statistic image. The

TFCE approach could be extended to use an effect size image instead

of a raw statistical image, which could make the results more similar

across studies with different sample sizes.

Our proposed methods still rely on hypothesis testing using SEI

so are not completely free of the limitations of PVT. For imaging,

modern approaches that construct confidence sets using effect size

thresholding approaches or Bayesian inference procedures hold prom-

ise as true alternatives to PVT-based inference for neuroimaging

(Bowring et al., 2019, 2021; Chen et al., 2019; Sommerfeld, Sain, &

Schwartzman, 2018). Our suggestions here of EST demonstrates the

advantage of considering alternatives to classical PVT.
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