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ABSTRACT

Cells respond to genotoxic stress with the induction
of DNA damage defence functions. Aimed at iden-
tifying novel players in this response, we analysed
the genotoxic stress-induced expression of DNA
repair genes in mouse fibroblasts proficient and de-
ficient for c-Fos or c-Jun. The experiments revealed
a clear up-regulation of the three prime exonuclease
I (trex1) mRNA following ultraviolet (UV) light treat-
ment. This occurred in the wild-type but not c-fos
and c-jun null cells, indicating the involvement of
AP-1 in trex1 induction. Trex1 up-regulation was
also observed in human cells and was found on
promoter, RNA and protein level. Apart from UV
light, TREX1 is induced by other DNA damaging
agents such as benzo(a)pyrene and hydrogen
peroxide. The mouse and human trex1 promoter
harbours an AP-1 binding site that is recognized
by c-Fos and c-Jun, and its mutational inactivation
abrogated trex1 induction. Upon genotoxic
stress, TREX1 is not only up-regulated but also
translocated into the nucleus. Cells deficient in
TREX1 show reduced recovery from the UV and
benzo(a)pyrene-induced replication inhibition and
increased sensitivity towards the genotoxins
compared to the isogenic control. The data
revealed trex1 as a novel DNA damage-inducible
repair gene that plays a protective role in the
genotoxic stress response.

INTRODUCTION

The genome is perpetually endangered by endogenous and
exogenous stress. Whereas endogenous stress occurs at

more or less constant level, exogenous stress provoked
by chemical and physical insults occurs transiently and
at highly variable levels. To counteract DNA damage
induced by these insults, DNA repair functions have
evolved, some of which are inducible in response to
genotoxic stress (1). Promoters of several DNA repair
genes have been shown to be subject to modulation by
genotoxins (2). Perhaps the best studied genotoxin is ultra-
violet (UV) light that was shown to increase the expression
of the DNA repair proteins DDB2, XPC, Pol I, Lig1 and
Fen1 (3–7).

Two transcription factors play a key role in the regula-
tion of DNA repair, p53 and AP-1. Both are induced by
many types of genotoxic stress and implicated in maintain-
ing genomic stability and cell survival. Thus, mouse em-
bryonic fibroblasts (MEFs) deficient in p53 are more
sensitive to UV light than the corresponding wild-type
(wt) (8). Hypersensitivity of p53-deficient cells is ascribed
to abolition of G1/S checkpoint control (9,10), impaired
base excision repair (11,12) and impaired nucleotide
excision repair (7,13), which leads to a high level of apop-
tosis (14). In contrast to the role of p53 in the UV
response, the function of AP-1 is less established. AP-1
consists of different dimeric complexes containing
proteins of the Jun (c-Jun, JunB and JunD), Fos (c-Fos,
FosB, Fra-1, Fra2) and CREB/ATF (ATF1, ATF2)
family, which exert different promoter specificities and
functions (15). Dependent on the dimeric composition,
AP-1 can bind to different transcription factor binding
sites. Binding of Fos/Jun occurs mainly to heptameric
(TGAGTCA) sites whereas Jun/ATF-2 binds to octameric
CRE binding sites (TGACGTCA) (15). The different
AP-1 complexes exerting different promoter affinities
allow a fine-tuned stimulation of a broad spectrum of
genes harboring AP-1 sites in their promoter.

In rodent cells, the c-fos gene is immediately inducible
by UV light (16) and other kinds of genotoxic stress
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(17,18). The fact that cells lacking c-Fos are hypersensitive
to genotoxins (19–21) suggests that c-Fos plays an import-
ant protective role in the cellular defence against DNA
damaging agents. On the other hand, c-Fos
overexpression stimulates malignant transformation
(22,23), which might explain the high expression level of
c-Fos in several human tumours (24,25). c-Fos
overexpression also results in resistance to chemotherapy
by protecting cells against the anticancer drug cisplatin
(26,27).

Previously, we elucidated the mechanism leading to
increased sensitivity of c-Fos-deficient cells to UV light.
We showed that c-Fos is involved in the resynthesis of
XPF upon DNA damage induction. Impaired XPF
resynthesis in c-Fos-deficient cells leads to abrogation of
repair of DNA adducts and sustained inhibition of tran-
scription. This signals cell death pathways via
down-regulation of Map kinase phosphatase 1, sustained
activation of Jun kinase and subsequent induction of FasL
that triggers the receptor-mediated pathway of apoptosis
(28,29). Here, we further examined the role of c-Fos in the
regulation of DNA repair. Comparing the expression of
about 130 DNA repair genes (by means of a DNA repair
microarray) in wt and c-fos knockout (fos�/�) cells after
UV light exposure, we found the three prime exonuclease 1
(trex1) to be differentially expressed. This prompted us to
study the regulation of trex1 in more detail. Here, we
show that trex1 is induced on RNA and protein level by
UV light and other genotoxic agents such as benzo(a)pyr-
ene (B(a)P). The induction requires c-Fos/AP-1. We
further show that upon UV and B(a)P treatment,
TREX1 translocates from the cytoplasm into the
nucleus. The data reveal trex1 as a novel DNA
damage-inducible gene and suggest that TREX1 is
complex regulated upon genotoxic stress, involving gene
induction and nuclear translocation. We also demonstrate
that cells lacking TREX1 are hypersensitive to UV light
and B(a)P and respond with delayed recovery from the
genotoxin-induced replication inhibition, indicating that
up-regulation of TREX1 is part of the cell’s strategy to
survive under genotoxic stress conditions.

EXPERIMENTAL PROCEDURES

Cell lines

MEF cell lines fos+/+1-98M (designated as wt) and
fos�/�7-98M (designated as fos�/�) were described previ-
ously (8,21). Swiss albino 3T3 was purchased from the
German Collection of Microorganisms and Cell Cultures
(Braunschweig, Germany). TREX1-proficient SC14+/+

and TREX1-deficient SC3�/� and SC8�/� MEFs were
kindly provided by Tomas Lindahl (London). All MEF
cells and human fibroblasts (GM637) were grown in
Dulbecco’s minimal essential medium (DMEM) contain-
ing 10% fetal bovine serum (FBS), in 7% CO2 at 37

�C.

UV light treatment and preparation of B(a)P

Growth medium was aspirated and cells were irradiated
with UV-C light (320 nm) at a dose rate of 1 J/m2 per
second with a radium NSE 11-270 low pressure UV

lamp (Philips). Thereafter the medium was returned to
the plates and cells were incubated at 37�C for the
indicated time points. Activated B(a)P
r-7,t-8-Dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenz-
o[a]pyrene (anti-BPDE; CAS no. 58917-67-2) was
prepared from trans-7,8-dihydroxy-7,8-dihydrobenzo[-
a]pyrene (30) as described (31).

Preparation of cell extracts and western blot analysis

Whole cell extracts and cytoplasmic extracts were
prepared and separated by SDS-PAGE, electro-blotted
onto nitrocellulose membranes and incubated with
antibodies as described (32). Monoclonal antibodies
against mTREX1 (611987, BD Transduction
Laboratories) and PCNA (sc-56, Santa Cruz
Biotechnology) and polyclonal antibodies against
hTREX1 (H00011277-D01P, Abnova) were diluted
1:1000 in 5% non-fat dry milk, 0.1% Tween/PBS and
incubated overnight at 4�C. Polyclonal anti-ERK2
antibody (sc-154, Santa Cruz Biotechnology) was diluted
1:3000 and incubated overnight at 4�C. The protein–
antibody complexes were visualized by ECL reaction.

Preparation of RNA, RT-PCR and real-time RT-PCR

Total RNA was isolated using the RNA II Isolation Kit
(Machery and Nagel). Onemg RNA was transcribed into
cDNA by Superscript II (Invitrogen) in a volume of 40 ml
and 3 ml were subjected to RT-PCR. RT-PCR was per-
formed by the use of specific primers (MWG
Biotechnology, Germany) and Red-Taq Ready Mix
(Sigma-Aldrich). The PCR program used was: 1.5min,
94�C [(denaturation: 45 s, 94�C; annealing: 1min, 58�C;
elongation: 1min, 72�C) 25 cycles] and 10min 72�C.
Real-time RT-PCR was performed using the LightCycler
FastStart DNA Master SYBR Green I Kit (Roche
Diagnostics) and the light cycler of Roche Diagnostics.

BrdU incorporation

Cells were cultured in DMEM (10% FBS) and after
exposure to UVC, the thymidine analog BrdU (10 mM)
was added to the medium. The incorporation was
analysed 1 h later by the BrdU Incorporation Kit
(Roche Diagnostics) in a microplate reader. Experiments
were repeated at least three times, mean values ± SD are
shown and data were statistically analysed using Student’s
t-test.

Determination of apoptosis

For monitoring drug-induced apoptosis, ethanol-fixed
cells were stained with propidium iodide. The Sub-G1
fraction was determined by flow cytometry. The
protocol was described previously (33,34). Experiments
were repeated at least three times, mean values ± SD
are shown and data were statistically analysed using
Student’s t-test.

Cloning and analysis of the trex1 promoter

The trex1 promoter from MEFs was cloned by
RT-PCR amplification using specific primers
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(mTREX1-prom-up: CTGAGGGCCTGAGCATCC
AGC; mTREX1-prom-low GCAGGGTCTGAGAGCC
CATGC) and cloned into the pBlue-Topo vector
(Invitrogen) resulting in the TREX1 reporter plasmid
designated as pBlue-mTREX1-923. The Plasmids
pBlue-mTREX1-730, pBlue-mTREX1-517 were generated
by cloning of amplification products obtained using com-
bination of the primer mTREX1-prom-low and two add-
itional primers (�730: CCATGGTAACTGATCTGCCC;
�517: GAGTTGTCAGTGTTGGGGCAG). The
Plasmid pBlue-mTREX1-157 was generated by
sub-cloning of the 157 Bp BamH1 fragment of
pBlue-mTREX1prom. Vectors were used for transient
transfection of MEFs (Fugene HD system, Roche
Diagnostics). Two days after transfection, cells were
exposed to UV, cell extracts were prepared by several
freeze/thaw cycles and the b-galactosidase activity was
determined by the b-Gal assay kit (Invitrogen).

Preparation of TREX1 siRNA

Down-regulation of TREX1 was obtained by the use of
the Silencer siRNA Cocktail Kit from Ambion. The
primers utilized for the reaction were: mTREX1-esiup:
cgtaatacgactcactatagggagagTTCTCAGGGACATCCAC
CTC; mTREX1-esilow: cgtaatacgactcactatagggagagTGC
TGAGCAGGGTTAGAACA. Transfection was per-
formed using the Lipofectamine RNAiMAX
Transfections-Kit (Invitrogen).

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) was performed as
described previously (28). In brief, cellular genomic DNA
and proteins were crosslinked with formaldehyde.
Genomic DNA was fragmented by sonification to a
fragment size of 500–1500 bp and subjected to
immunoprecipitation (IP) using a c-Fos specific antibody
(sc-52, Santa Cruz Biotechnology). PCR was performed
using specific primers flanking the AP-1 binding site of
trex1 (mTREX1-CHIP-up: GAGATGGCCCCATGGT
AACTG, mTREX1-CHIP-low: CCCCCAGTCCTTGAT
CCAGGCC) and, as negative control, b-actin.

Preparation of nuclear extracts and electromobility shift
assay

Nuclear cell extracts were prepared and subjected to
electromobility shift assay (EMSA) or western blot
analysis as described previously (35). The sequence of
the oligonucleotides specific for the AP-1 binding site of
the mouse collagenase promoter was 50-AGTGGTGACT
CATCACT-30 and the oligonucleotide sequences specific
for the AP-1 binding site of the mouse trex1 promoter
were: trex1 AP-1a: 50-GGAATTACCCTGAGTCATAG
CTTTG-30. The sequence of the oligonucleotides specific
for the AP-1 binding site of the human trex1 promoter
were: hTrex1-EMSA-up 50-GGAATTGTCCTGAGTCA
TTGCTTTG-30. For supershift experiments, 2 ml of
antibodies specific for junD (sc74), junB (sc47) and c-jun
(sc45) were pre-incubated with 2 mg protein extract for
30min at room temperature.

Immunofluorescence

Cells were seeded on cover slips. Following genotoxin
exposure, cells were fixed with 4% formaldehyde at differ-
ent time points. A second fixation step was performed
using methanol/aceton (3:1) (�20�C, 8min). Cells were
then blocked in 5% BSA, TBS/0.3% Triton X-100. The
antibodies used were monoclonal anti-TREX1 (611987,
BD Transduction Laboratories), polyclonal anti-gH2AX
(#05-164, Upstate), anti-pATR (#2853S, Cell Signaling),
anti-p53Bp (#4937, Cell Signaling) and as secondary
antibodies Alexa Fluor 488 labelled anti-mouse (molecu-
lar probes) and Cy3 labelled anti-rabbit (Jackson Immuno
Research). Between all staining steps, cells were washed
three times in TBS/0.3% Triton X-100 for 5min. Slides
were mounted in anti-fade medium (Glycerol:PBS 1:1,
2.5% DABCO, pH 8.6 with HCl) and analysed using a
confocal laser scanning microscope (LSM 710, Zeiss). For
quantification of TREX1 localization, cells with more
than 20 nuclear TREX1 foci per cell were counted in
three experiments analysing each time 100 cells.
Calculation of statistical significance was performed by
Student’s t-test.

RESULTS

Expression of trex1 is enhanced by UV light

The expression of DNA repair genes was studied by
microarray analysis using a self-designed DNA repair
array. Comparing wt and fos�/� cells treated with UV,
we observed a significant differential expression of tran-
scripts encoding trex1 (data not shown). The findings were
substantiated by quantitative real-time RT-PCR using
primers located in the coding region of the gene.
Treatment of wt cells with UV light transiently increased
the mRNA level of trex1, reaching a maximum 3–6 h after
UV exposure (Figure 1A). Accumulation of trex1 mRNA
was a linear function of dose (Figure 1B). Comparable
results were obtained by semi-quantitative RT-PCR,
which at the same time confirmed the specificity of the
amplification products (Figure 1C). To analyse whether
the increased expression of trex1 mRNA leads to an
increased protein level, the amount of TREX1 was
studied by western blot analysis. As shown in
Figure 1D, a strong time- and dose-dependent accumula-
tion of TREX1 protein was determined in whole cell
extracts. Increase in TREX1 protein followed the
mRNA up-regulation, starting 6 h after UV exposure. It
could be detected already at a low-dose level (�5 J/m2).

Induction of trex1 mRNA is caused by promoter
activation and depends on c-Fos

To identify the mechanism responsible for the increase in
trex1 mRNA level upon UV treatment, mRNA de novo
synthesis was determined. To this end, wt cells were
exposed to 7.5 J/m2 UV in the presence or absence of
the transcription blocking agent actinomycin D.
Treatment of wt cells with the inhibitor strongly reduced
the amount of trex1 mRNA, indicating its high instability
(Supplementary Figure S1A). Treatment with actinomycin
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D completely abrogated the induction of trex1 mRNA by
UV light, which demonstrates that the observed accumu-
lation of trex1 mRNA is dependent on RNA de novo syn-
thesis. As mentioned above, microarray analysis showed
trex1 induction only in wt but not fos�/� cells. To further
substantiate the role of c-Fos in the regulation of trex1, we
compared the UV-mediated trex1 mRNA induction by
quantitative real-time RT-PCR in MEFs wt and fos�/�.

Whereas trex1 expression was increased by a factor of
four in the wt, induction was marginal in fos�/� cells
(Figure 1E). The abrogated induction of TREX1 in
fos�/� cells was also observed on protein level
(Figure 1F), supporting the view that TREX1 is regulated
via c-Fos. Interestingly, also in c-Jun-deficient cells a
reduced up-regulation of TREX1 was observed
(Figure 1F).
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Figure 1. UV light-triggered induction of TREX1. (A and B) Exponentially growing wt MEFs were exposed to 7.5 J/m2 UV for 3, 6 and 9 h (A) or
exposed to 2.5, 7.5 and 20 J/m2 UV for 6 h (B). Total RNA was isolated and real-time RT-PCR was performed using trex1- and gapdh-specific
primers. For quantification, the expression was normalized to gapdh and the untreated control was set to 1. Data are the mean of three independent
experiments+/� SD. (C) In a different set of experiments, wt MEFs were also exposed to 7.5 J/m2 UV for 3, 6 and 9 h (left panel) or exposed to 2.5,
7.5 and 20 J/m2 UV for 6 h (right panel), total RNA was isolated and semi-quantitative RT-PCR was performed using trex1 or, as loading control,
gapdh-specific primers (con, non-exposed control). (D) Exponentially growing wt MEFs were exposed to 7.5 J/m2 UV for different time points or
exposed to different doses of UV for 9 h. Total protein extract was isolated. Immunodetection was performed using TREX1 or, as loading control,
ERK2-specific antibody. Induction factor (IF) is derived from densitometric measurement of TREX1 signal and normalized to ERK2 expression (E)
Exponentially growing wt and fos�/� MEFs were exposed to 7.5 or 20 J/m2 UV for 6 h. Total RNA was isolated and real-time RT-PCR was
performed using trex1- and gapdh- specific primers. For quantification, the expression was normalized to gapdh and the untreated control was set to
1. Data are the mean of three independent experiments+/� SD. (F) Exponentially growing wt, c-jun�/� and c-fos�/� MEFs were exposed to 20 J/m2

UV for 9 h. Total protein extract was isolated. Immunodetection was performed using TREX1 or, as loading control, ERK2-specific antibody.
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To analyse whether the trex1 promoter is recognized by
c-Fos under in vivo conditions, ChIP experiments were
performed using a c-Fos-specific antibody. As shown in
Figure 2A, c-Fos clearly binds to the trex1 promoter. This
binding was significantly enhanced in wt cells treated with
UV light. As negative control, we utilized either no
antibody or an unrelated one, i.e. against ERK2. In
addition, we used for control the b-actin promoter that
is not recognized by c-Fos.

Identification of the minimal inducible trex1 promoter

In order to analyse whether induction of TREX1 is caused
via induction of the corresponding promoter, a 923 bp
genomic fragment 50 of the ATG codon of trex1 was
cloned from DNA of wt MEFs (sequence shown in
Supplementary Figure S2) and its activity and
UV-inducibility was studied by reporter assays
(Supplementary Figure S1B). To identify potential tran-
scription factor binding sites that were required for the
induction of trex1 by UV, we performed a computer-
based search for transcription factor binding sites (Patch
1.0/www.gene-regulation.com). A graphic visualization of
putative binding sites is shown in Figure 2B and
Supplementary Figure S2. The promoter harbours two
putative AP-1 binding sites around position �676 and
�33, which is in line with the requirement of c-Fos in
trex1 mRNA induction. To analyse whether these
binding sites are essential, several deletion constructs
were cloned. As shown in Figure 2C, the region �517 to
730 was essential for basal transcription and induction of
trex1. Thus, the �730 fragment showed 60% of the basal
promoter activity compared to the full length fragment. In
contrast, the �517 fragment showed only �10% promoter
activity (Figure 2C). Regarding the UV provoked
promoter stimulation, both the �923 and the �730 frag-
ments were similarly inducible. In both cases, a >2-fold
induction was detected, whereas neither the �517 nor the
�157 fragment was inducible (Figure 2D). To further sub-
stantiate that the AP-1 binding site around position �676
is essential, the binding site was mutated via the
QuickChange II XL site directed mutagenesis kit
(Agilent Technology/Stratagene) at two positions
(GT!CC; Figure 2E). Mutations introduced in this
AP-1 site only weakly reduced basal promoter activity,
but nearly completely abrogated the promoter induction
following UV treatment of cells (Figure 2E, right).

The trex1 promoter harbours a functional AP-1 site

To analyse whether the AP-1 binding site around position
�676 was indeed recognized by AP-1, EMSAs were per-
formed using radioactively labelled oligonucleotides har-
bouring this site (trex1 AP-1a) or, for control, the AP-1
binding site of the collagenase promoter (col AP-1). The
oligonucleotides were incubated with nuclear extracts
obtained from MEFs, either untreated or treated with
20 J/m2 UV light. As shown in Figure 3A, a
time-dependent induction of AP-1 binding activity was
observed using the collagenase AP-1 binding site (left
part of the figure) or the potential AP-1 binding site
(trex1 AP-1a) within the trex1 promoter. The second

potential AP-1 biding site (trex1 AP-1b) derived from
the computer screen presented in Figure 2B was not
recognized in vitro by AP-1 (data not shown).
Competition experiments with non-radioactively labelled
oligonucleotides containing the AP-1 sequence of the
collagenase promoter (col AP-1), but not with
non-radioactively labelled oligonucleotides containing
the p53 binding site of the p21 promoter (p21 p53),
abrogated the recognition of the trex1 promoter by AP-1
(trex1 AP-1a), showing the specificity of the binding
complex (Supplementary Figure S1C). To identify
binding partners for c-Fos involved in the recognition of
the trex1-specific AP-1 site, supershift experiments were
performed. Whereas the collagenase AP-1 site (col AP-1)
is mainly recognized by c-Jun, the trex1-specific AP-1 site
(trex1 AP-1a) is recognized by both c-Jun and Jun D
(Figure 3B). Binding activity of the trex1 AP-1a binding
site was also compared between wt, fos�/�, c-jun�/� and
p53�/� cells, showing a reduced binding activity in
c-fos�/�and c-jun�/�, but not in p53�/� cells (Figure 3C).
Complete abrogation of AP-1 binding activity in the null
MEF cell extracts was not observed, indicating that at
least in vitro it is likely that other members of the Jun
and Fos family are able to recognize the trex1-specific
AP-1 binding site as well.

Induction of TREX1 by different DNA damaging agents

To investigate whether TREX1 can be up-regulated by
genotoxic stress other than UV light, we analysed the ex-
pression of TREX1 on mRNA and protein level upon
treatment of MEFs with the polycyclic aromatic hydro-
carbon (B(a)P), the methylating agents MMS and
MNNG, the radical forming H2O2 and ionising radiation
(IR) as well as the tumour promoter and potent aryl
hydrocarbone (Ah) receptor activator TCDD. As shown
in Figure 4A and Supplementary Figure S1D (for semi--
quantitative RT-PCR) and in Figure 4B (for quantitative
real-time RT-PCR), trex1 expression was induced by
B(a)P and H2O2 but not by IR, MMS, MNNG or
TCDD. The same holds true for the up-regulation of the
TREX1 protein that was observed after B(a)P and H2O2,
but not IR, MMS, MNNG or TCDD treatment (Figure
4C, see induction factors for quantification). Parallel
analysis of c-fos mRNA expression revealed that only
the genotoxic agents that clearly induced c-fos mRNA,
namely B(a)P and H2O2, were able to up-regulate the
TREX1 protein (Figure 4A). Interestingly, the basal ex-
pression of TREX1 was dependent on cell proliferation
since it was strongly reduced in confluent cells (arrested
in G1) and recovered after reseeding of cells (Figure 4D).
The same was true for the induced response following UV
(data not shown).

TREX1 induction in human cells after genotoxic stress

To investigate whether induction of trex1 upon genotoxic
stress occurs also in human cells, we analysed trex1 ex-
pression in the human fibroblast cell line GM637 exposed
to UV light or B(a)P. As shown in Figure 5A
(semi-quantitative RT-PCR), trex1 is clearly induced
also in human fibroblasts after UV and B(a)P treatment.

6422 Nucleic Acids Research, 2010, Vol. 38, No. 19



This was confirmed in GM637 cells by real-time RT-PCR
(Figure 5B). To clarify whether induction of human trex1
is due to de novo synthesis and not stabilization of RNA,
GM637 cells were exposed to UV light in the presence or

absence of actinomycin D. As shown in Supplementary
Figure S3A, treatment with the RNA synthesis inhibitor
prevented induction of trex1, demonstrating that it
depends on RNA de novo synthesis. Similar to MEFs,
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albino 3T3 cells. (C) Basal promoter activity was determined by b-Gal assay and compared between untreated cells. The activity of the �923
fragment was set to 100. (D) UV-induced promoter activity was determined after exposure to 7.5 J/m2. Therefore, the promoter activity in
UV-exposed cells was set in relation to the promoter activity in non-exposed cells resulting in fold induction. Data are the mean of three independent
experiments +/� SD. (E) The putative AP-1 binding site (AP-1a as indicated under B) within the 923 bp genomic fragment containing pBlue-Topo
vector was mutated via site-directed mutagenesis (left panel for sequences) and transiently transfected in exponentially growing Swiss albino 3T3 cells.
Basal promoter activity and UV-induced promoter activity was determined after exposure to 7.5 J/m2. Data are the mean of three independent
experiments +/� SD.
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induction of human trex1 mRNA leads to increased
TREX1 protein expression. As shown in Figure 5C,
exposure of human GM637 cells to UV or B(a)P
resulted in a time-dependent accumulation of TREX1,
showing the highest induction level between 16 and 32 h.
Comparing the mouse and the human trex1 promoter

sequence (Supplementary Figure S4), a high similarity in
the most apical region is evident. Whereas the overall
identity is 61.5%, an 87 bp region (about 800 bp 50 of
the ATG) shows 82.8% identity. This region harbours
the trex1-AP-1 binding site that is entirely identical to
the mouse trex1-AP-1 binding site (CTGAGTCA)
(Figure 5D). To demonstrate binding of AP-1 to the
human promoter fragment, EMSA was performed using
oligonucleotides harbouring either one of the AP-1
binding sites of the human trex1 promoter (htrex1-AP-1)
or, for control, the AP-1 binding site of the collagenase
promoter (col AP-1). The oligonucleotides were incubated
with nuclear extracts obtained from GM637 cells, either

untreated or treated with UV light or B(a)P. As shown in
Figure 5D, a time-dependent induction of AP-1 binding
activity was observed with the human trex1 promoter
fragment containing the AP-1 binding site upon
exposure to UV light and B(a)P (for presentation of the
complete blot see Supplementary Figure S3B). The speci-
ficity of the binding complex was substantiated in compe-
tition experiments with non-radioactively labelled
oligonucleotides (data not shown).

UV light and B(a)P induce nuclear translocation of
TREX1

TREX1 is mostly localized in the cytoplasm. If the protein
plays a role in the defence against genotoxic stress, it
might be required in the nucleus. Therefore, we analysed
whether nuclear translocation of TREX1 occurs following
UV by determining the sub-cellular localization of
TREX1. Whereas in untreated cells the major amount of
TREX1 was found in the cytoplasmic fraction, upon UV
exposure a strong increase in TREX1 in the nuclear
fraction was observed (Figure 6A; the purity of nuclear
and cytoplasmic extracts was controlled by the expression
of PCNA and GAPDH). We substantiated nuclear trans-
location of TREX1 upon exposure of cells to UV light and
B(a)P by immunofluorescence and confocal laser scanning
microscopy. As shown in Figure 6B, in untreated cells
TREX1 is localized in the cytoplasm. In TREX1-deficient
cells (sc8�/�) TREX1 was not detectable (Supplementary
Figure S5), confirming the specificity of the
immunoreaction. Interestingly, we observed an accumula-
tion of TREX1 in micronuclei (Supplementary Figure S5).
Upon exposure to UV or B(a)P, a clear translocation of
TREX1 from the cytoplasm into the nucleus was observed
(Figure 6B). This nuclear translocation was most obvious
in exponentially growing cells and strongly reduced when
confluent cells were reseeded and UV irradiated in the G1
phase (Supplementary Figure S6). Analysing exponential-
ly growing populations, cells with more than 20 nuclear
TREX1 foci were observed in 3 % of non-exposed cells
compared to 17 and 24 % in B(a)P- and UV-exposed cells,
respectively (Figure 6B). The difference between control
and UV- and B(a)P-treated cells was statistically signifi-
cant (Student’s t-test: P< 0.01).

Impact of TREX1 on DNA replication

Since Trex1 foci co-localize with BrdU (36), we analysed
whether TREX1 has an impact on DNA replication in
cells treated with UV light or B(a)P. Hence we analyzed
the genotoxin-induced replication arrest in
TREX1-proficient (sc14+/+) and -deficient (sc3�/� and
sc8�/�) MEFs by BrdU incorporation. As shown in
Figure 7A (left panel), 2 h after treatment with 7.5 J/m2

UV DNA synthesis was reduced in sc14+/+ cells to 30%
of the control level. It almost completely recovered 12 h
later. In contrast, the two TREX1-deficient cell lines
sc3�/� and sc8�/� displayed an incomplete recovery
within the 12 h post-exposure period (Figure 7A).
Similar results were obtained after B(a)P treatment,
although the effect was not as pronounced as after UV
treatment (Figure 7A, right panel).
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promoter. (A) Binding of AP-1 to promoter fragments as determined
by EMSA. Oligonucleotides containing either the AP-1 binding site of
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We further analysed whether TREX1 acts at the repli-
cation fork following UV by performing co-localization
and co-IP experiments with PCNA. Although significant
amounts of TREX1 and PCNA were found in the nucleus,
TREX1 only marginally co-localized with PCNA
(Figure 7B). To analyse a potential interaction of
TREX1 with PCNA, protein extracts were isolated from
exponentially growing wt MEFs exposed to 20 J/m2 UV or
treated with 2.5mM B(a)P for 6 h. IP occured by a specific
TREX1 antibody (utilizing the Catch and Release� v2.0
system from Milipore). Co-immunoprecipitating proteins
were visualized by specific antibodies against PCNA and
ERK2 (negative control). Extract from 3T3 cells was
included as positive control (‘input’). Co-IP of PCNA
was observed following genotoxin treatment (Figure 7C).
However, co-IP of PCNA and TREX1 was not based on
protein–protein interaction. It was very likely due to sim-
ultaneous binding of the proteins to genomic DNA as
pre-treatment with DNAse1, which degrades DNA
thereby breaking the tether between DNA-bound
proteins, strongly reduced the level of PCNA in the
TREX1 immunoprecipitate.

TREX1 does not co-localize with cH2AX, ATR or p53Bp

Since only marginal co-localization between TREX1 and
the replication marker PCNA was observed, we addressed
the question of whether upon UV exposure TREX1 local-
izes to the region of DNA damage, such as DNA
double-strand breaks, or collapsed replication forks.
Therefore, co-localization of TREX1 with either
gH2AX, ATR or p53BP, all of which are implicated in

the DNA damage response (DDR) [for review see (37,38)],
was analyzed by immunofluorescence and confocal laser
scanning microscopy. In none of the cases co-localization
was observed (Figure 8).

TREX1 in the defence against UV light and B(a)P

Since TREX1 is up-regulated following genotoxic stress
and stimulates the recovery from the DNA replication
inhibition after UV and B(a)P treatment, the question
arose whether it also has impact on cell viability upon
genotoxic treatments. Therefore, we determined the level
of apoptosis in TREX1-proficient (sc14+/+) and -deficient
(sc3�/� and sc8�/�) cells upon UV and B(a)P exposure. As
shown in Figure 9A, TREX1-deficient cells were more
sensitive to UV light (left) and B(a)P (right) than the
isogenic wt. To substantiate the data, we analysed the sen-
sitivity of wt cells to UV light after down-regulation of
TREX1 by transfection with trex1-siRNA. The TREX1
protein was almost completely down-regulated as moni-
tored 18 and 36 h after transfection (Figure 9B). Similar to
the results with TREX1- deficient cell lines, the sensitivity
to UV light was significantly enhanced under TREX1
knockdown conditions (Figure 9C). Overall, the data
strongly suggest that TREX1 induction plays a significant
role in protecting cells against genotoxic stress.

DISCUSSION

Here we report on a novel player, TREX1, in the inducible
genotoxic stress response. TREX1 is a 30-50 exonuclease
that catalyses the excision of nucleoside monophosphates
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from the 30-termini of DNA (39). It is active as a
homodimer (40) that prefers a partial duplex DNA with
multiple mispaired 30-termini. TREX1 is also referred to
as DNase III. Mutations in TREX1 are associated with
the human disorders Aicardi–Goutières syndrome (41,42),
autosomal dominant retinal vasculopathy with cerebral
leucodystrophy (43), systemic lupus erythematosus (44)
and familial chilblain lupus (45). TREX1 knockout mice
develop inflammatory myocarditis, resulting in progres-
sive cardiomyopathy leading to circulatory failure and
reduced survival (46). Although mutations in TREX1
have far-reaching consequences, the biological function
and regulation of TREX1 are rather unknown. It was
shown that TREX1 interacts with members of the SET
complex that plays a role in DNA degradation during

granzyme A-mediated cell death (47). It was also shown
that human TREX1 is involved in the response to IR and
hydroxyurea (36), camptothecin (48) and prevents the
cell-intrinsic initiation of autoimmunity (49).

We demonstrate for the first time that trex1 is a
genotoxic stress-inducible gene. trex1 mRNA is induced
time- and dose-dependently upon exposure of cells to UV
light. The induction was not observed in MEFs derived
from c-fos knockout mice indicating that c-Fos plays an
essential role in the genotoxin provoked up-regulation of
TREX1. Induction of TREX1 is due to promoter activa-
tion and results in a significantly enhanced level of the
protein after UV treatment. To further analyse the regu-
lation of trex1 we cloned the trex1 promoter and showed
that it is inducible by UV light. The mouse promoter
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contains two AP-1 binding sites, one of which (676 bp
upstream of the ATG start codon) is recognized by
c-Fos (AP-1), as demonstrated by ChIP and EMSA.
Deletion of the AP-1 binding site clearly abrogated the
UV-induced activation of the trex1 promoter. In fos�/�

and jun�/� cells induction of TREX1 was strongly
reduced, but not completely abrogated, indicating that
in addition to c-Fos and c-Jun other members of the

Fos and Jun family are involved in the regulation of
TREX1. This is supported by EMSA, showing the
binding of JunD and, at a very low level, JunB to the
trex1-specific AP-1 binding site. We should note that for
the basal activity of the trex1 promoter, the AP-1 site
seems to be of minor importance because deletion of this
site reduces basal activity only by 25%. Also, under
non-stress condition there is a weak binding activity of

control
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Figure 6. Nuclear translocation of TREX1. (A) Exponentially growing wt MEFs were non-exposed or exposed to 20 J/m2 UV for 3 and 6 h. Nuclear
and cytoplasmic extracts were isolated. Immunodetection was performed using TREX1, PCNA, GAPDH or, as loading control, b-Actin-specific
antibody. Induction factor (IF) is derived from densitometric measurement of TREX1 signal and normalized to b-Actin expression.
(B) Exponentially growing wt MEFs were not exposed (control) or exposed to 20 J/m2 UV light or 2.5 mM B(a)P for 6 h and thereafter fixed as
described. TREX1 localization was visualized by the use of a specific antibody and detected by confocal laser scanning microscopy.
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c-Fos/AP-1 to the promoter, and TREX1 expression in
unexposed c-Fos-deficient cells is only slightly lower
than in wt cells.
We observed that TREX1 is not only induced by UV

light, but also by other genotoxins such as B(a)P and
H2O2. Interestingly, the methylating agents MNNG and
MMS as well as IR did not trigger TREX1 induction. We
should note that under the treatment conditions with these
agents, which elicited similar cytotoxic effects, MNNG,
MMS and IR did not induce c-Fos, whereas B(a)P and
H2O2 similar to UV light showed up-regulation of c-Fos.
c-Fos up-regulation preceded trex1 induction (data not
shown), which further supports that induction of
TREX1 following UV, B(a)P and H2O2 is regulated via
AP-1.
There are only few DNA repair genes that were shown

to be up-regulated following genotoxic stress (2) and some
of them, e.g. mgmt and fen1, were shown to be
up-regulated in rodent, but not human cells upon DNA
damage [(7,50), unpublished data]. Therefore, the finding

attracts notice that TREX1 is induced on RNA and
protein level in both mouse and human cells following
genotoxic stress. A comparison of the mouse and human
trex1 promoter revealed an overall identity of 61.5%. The
mouse and human AP-1 binding sites in the trex1
promoter are identical (for sequence see Supplementary
Figure S4); they are located within a highly conserved
promoter region of 87 bp exhibiting 82.8% identity.
Both the mouse and the human trex1 AP-1 binding site
is recognized in vitro by AP-1. The binding is enhanced
after treatment of cells with UV and B(a)P, substantiating
that in mouse and human cells trex1 is regulated via AP-1.
We should note that the position of the human AP-1
binding site at position �656 is nearly identical to the
position of the transcription initiation site in the human
trex1 promoter (position �650), which was suggested on
the basis of NNPP (51).

TREX1 (DNase III) activity was first identified in nuclei
of rabbit tissues (52). In human cells, DNase III is present
in similar amounts in the nuclei of non-growing, e.g. adult
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liver, and rapidly proliferating tissues (53). In MEFs, the
expression of TREX1 was related to proliferation. It was
strongly reduced in confluent cells and recovered after the
resumption of proliferation. Previous studies showed that
murine TREX1 is mainly localized in the endoplasmatic
reticulum and translocates into the nucleus upon IR and
hydroxyurea (36). In human cells TREX1 was reported to
translocate into the nucleus during granzyme A-mediated
cell death (47). Here, we extend these observations and
demonstrate that TREX1 is translocated into the nucleus
upon UV light and B(a)P exposure. This nuclear transloca-
tion parallels the up-regulation of trex1 gene activity and
increase in the TREX1 protein level. It therefore seems that
TREX1 is complex regulated in cells exposed to genotoxins
that have the ability to induce c-Fos/AP-1.

An association between TREX1 and DNA replication is
further substantiated by our finding that upon UV and

B(a)P treatment, TREX1-deficient cells are defective in
the recovery from the genotoxin-induced block to replica-
tion. This might indicate an active role of TREX1 during
replication of damaged DNA, as suggested from
co-localization of TREX1 with BrdU (36) and from the
fact that TREX1 knockout cells show a chronic activation
of the ATM-triggered DNA damage checkpoint (36). To
further examine the association of TREX1 with replica-
tion, we investigated a potential interaction with PCNA,
conducting IP and co-localization experiments. Co-IP of
PCNA and TREX1 was found, which was however not
observed after treatment with DNAse I. Thus, the data do
not support a physical interaction of TREX1 with PCNA.
This was confirmed by lack of significant co-localization
of TREX1 and PCNA. Overall, the data suggest that
TREX1 does not directly interact with the replication
machinery upon DNA damage.
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Figure 8. TREX1 does not co-localize with DNA damage markers. Exponentially growing wt MEFs were exposed to 20 J/m2 UV light for 6 h and
thereafter fixed as described. Possible co-localization between TREX1 and gH2AX, pATR and p53BP was analyzed by the use of corresponding
antibodies and detected by confocal laser scanning microscopy.
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Following UV irradiation, TREX1 accumulates in the
nucleus and becomes visible as small foci (Figure 8). To
analyse whether TREX1 foci are associated with proteins
involved in the DDR we examined whether TREX1
co-localizes with well-known players of the DDR (37,38).
While UV irradiation induces the formation of gH2AX,
p53BP and ATR foci, a significant co-localization with
TREX1 foci was not observed. The data might indicate
that TREX1 is not directly involved in the DDR.
To analyse whether induction of TREX1 is required for

protecting cells against genotoxins, we utilized trex1 null
mouse fibroblasts and compared their cell death response
with the isogenic wt following UV light and B(a)P treat-
ment. We show that TREX1-deficient cells are more sen-
sitive to UV and B(a)P than the wt. Cell death was
executed by apoptosis. The hypersensitivity of TREX1
lacking cells was confirmed by down-regulation of
TREX1 via siRNA transfection. The data suggest a func-
tional role of TREX1 induction in the defence against
DNA damaging agents. The protective function of
TREX1 seems to be specific for agents inducing bulky
lesions such as UV light and B(a)P since it was not
observed in MEFs lacking TREX1 following IR (36).
TREX1 induction was also not observed following
MNNG and MMS that do not strongly induce c-Fos/
AP-1 unless high toxic doses were applied (17). We

should note that for IR replication is not essential for
executing cell death whereas DNA replication is a pre-
requisite for apoptosis induction following UV and very
likely also B(a)P treatment (54). This could explain the
different role of TREX1 in cells exposed to IR on the
one hand and UV and B(a)P on the other.

Overall, we show that the DNA repair protein TREX1
is up-regulated and becomes translocated into the nucleus
in cells treated with UV light and the powerful environ-
mental carcinogen B(a)P, both are representative of bulky
lesion-inducing genotoxins. Genotoxin-induced
up-regulation of TREX1 expression occured in mouse
and human cells and was found to be c-Fos/
AP-1-dependent. TREX1 is involved in the recovery
from the genotoxin-induced inhibition of replication and
protects against apoptotic cell death following UV light
and B(a)P treatment. The complex regulation of TREX1
involving gene induction and nuclear translocation repre-
sents a novel mechanism in the cellular stress response that
counteracts DNA damage. The data may clarify at the
same time the complex phenotype of cells lacking c-Fos,
which have been shown to be hypersensitive to UV light
and B(a)P, but not IR (20,28). It is reasonable to posit that
the observed lack of TREX1 induction in cells deficient in
c-Fos contributes to the hypersensitivity of these cells.
Since c-Fos is expressed at variable levels in different
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Figure 9. Impact of TREX1 on sensitivity to UV and B(a)P. (A) Exponentially growing TREX1wt cells (sc14+/+) and TREX1-deficient cells (sc3�/�

and sc8�/�) were exposed to different doses of UV (left panel) or B(a)P (right panel). Cells were harvested 72 h later and the SubG1 fraction was
determined. *P< 0.05, **P< 0.01, ***P< 0.001. (B) Exponentially growing wt MEFs were transiently transfected with TREX1-siRNA or a
non-silencing siRNA (ns-siRNA). total protein extract was isolated 18 and 36 h later. Immunodetection was performed using TREX1 or, as
loading control, ERK2-specific antibody. (C) Exponentially growing wt MEFs were transiently transfected with TREX1-siRNA or a non-silencing
siRNA (ns-siRNA). Cells were exposed to UV light (20 J/m2) 18 h later. Cells were harvested 72 h later and the SubG1 fraction was determined.
*P< 0.05.
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types of cancer (55,56), we hypothesize that TREX1 is
induced during tumour therapy to different extent,
which might have an impact on anticancer drug resistance.
The question of whether TREX1 is induced by anticancer
drugs thus contributing to tumour cell resistance will be an
interesting issue of future studies.
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