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Recent analyses of mummified or long-frozen human speci-
mens have revealed that the outermost layer of our skin,
the epidermis, is one of the most durable soft tissues of the
body. The major function of the epidermis is to provide a
protective barrier, and recent work now suggests that evo-
lution has devoted an enormous amount of energy to pro-
viding this critical function. Several recent publications and
three papers in this issue have shed new light on the com-
plexity and redundancy of barrier function in the epidermis.

During terminal differentiation, stratified squamous epi-
thelia, including internal wet and external dry epithelia,
such as the epidermis, make a specialized structure termed

 

the cell envelope (CE)

 

1

 

 (Reichert et al., 1993; Nemes and
Steinert, 1999). This is a key aspect of barrier function, as it
provides a flexible physical protection against trauma and
wear-and-tear, and a platform for organized layers of lipids,
which in turn afford water barrier function. The CE is an
insoluble proteinaceous layer 10-nm thick and of uniform
density (Jarnik et al., 1998) deposited subjacent to the
plasma membrane. The constituent proteins become cross-
linked together by transglutaminases. As the isopeptide
bond formed by these enzymes cannot be cleaved in verte-
brate cells, this affords a clever method of forming a per-
manent, stable, insoluble macromolecular protein complex.

To date, cell biological, biochemical, and protein sequenc-
ing studies have shown that at least 20 proteins are used to as-
semble CEs. How CE assembly proceeds during differentia-
tion in epithelia is still speculative, but extant data have now
provided the following working model (Fig. 1). An early
event upon initiation of terminal differentiation is the expres-
sion of envoplakin and periplakin (Ruhrberg et al., 1996,
1997) that become associated together at, and in between,
desmosomes. A short time later, involucrin is expressed,
which was the first described CE precursor (Rice and Green,
1979). Data from this laboratory have suggested that it binds

 

spontaneously to membranes in a Ca
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 dependent manner
(Nemes et al., 1999a). Another early expression product is
the transglutaminase 1 enzyme (Kim et al., 1995), which self-

assembles onto membranes by way of its acyl lipid adducts.
As localized Ca

 

2

 

1

 

 concentrations rise, the enzyme cross-links
involucrin to form a two-dimensional head-to-head and
head-to-tail oligomeric mesh, and involucrin to envoplakin
(and perhaps periplakin; LaCelle et al., 1998; Steinert and
Marekov, 1999). Shortly later, members of the small proline
rich (SPR) family of proteins become cross-linked to both en-
voplakin and involucrin. Eventually, this amalgam spreads
across the inner surface of the plasma membrane, including
the desmosomes, so that many cell junctional proteins, in-
cluding desmoplakin, annexin I, and keratin intermediate fil-
aments become cross-linked too. Together, these form a
uniform layer that serves as a template or scaffold for subse-
quent maturation or reinforcement stages of CE assembly
(Yaffe et al., 1992; Ruhrberg et al., 1997; Steinert and
Marekov, 1999). This process varies between epithelia, pre-
sumably in concert with tissue-specific requirements. For ex-
ample, in the epidermis, the major CE reinforcement pro-
teins are loricrin cross-linked together with lesser amounts of

 

SPRs; in oral epithelia, the CEs are 

 

z

 

70% SPRs and 

 

z

 

10%
loricrin; and in the hair cuticle, cysteine-rich proteins are
used. In addition, in the epidermis, transglutaminase 1 at-
taches ceramide lipids by ester linkages to involucrin, en-
voplakin, and periplakin for water barrier function (Marekov
and Steinert, 1998; Nemes et al., 1999b).

Based on this hypothetical model of CE structure and as-
sembly, which predicts a key role for involucrin, what
would be the expected phenotype of an involucrin knock-
out mouse? The answer, presented by Djian et al. (2000,
this issue) is: none. Surprisingly, by several tests, the mice
were phenotypically normal. Two tested CE precursor pro-
teins were expressed in normal amounts. However, it
would be of interest to also examine the levels of en-
voplakin, periplakin, and multiple members of the SPR
family, which are typically expressed in stratified squamous
epithelia, or repetin or trichohyalin, commonly expressed
in the CEs of toughened epithelia, including the epidermis.
Some of these are known to be upregulated in response to
epidermal injury. Previous studies have shown that overex-
pression of involucrin in transgenic mice leads to an abnor-
mal epithelial phenotype (Crish et al., 1993). Thus, the ob-
servation of Djian et al. (2000) implies that compensatory
mechanisms exist in epithelia that can overcome the ab-
sence of involucrin.
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Further, young envoplakin

 

2

 

/

 

2

 

 mice also have no discern-
able phenotype (Määttä, A., and F. Watt, personal commu-
nication). Does this mean that envoplakin and involucrin
are redundantly used for CE scaffold formation, and that
one can substitute for the other? The obvious experiment
of breeding the two knockout mouse lines is in progress.

Loricrin and SPRs have the dubious distinctions of hav-
ing the highest contents of glycine or proline residues, re-
spectively, of any other proteins. Whereas the amount of
SPRs in CEs varies from 

 

,

 

1% in human trunk epidermis,
to 

 

.

 

10% in palmaplantar and lip epidermis, the sum of
loricrin plus SPRs seems to remain constant at 

 

z

 

85%
(Steinert et al., 1998). Together, these two are thought to
form a flexible, tough, cross-linked layer that forms the
bulk of the CE barrier in human epidermis. Loricrin thus
constitutes 

 

z

 

10% of the mass of the epidermis.
What would be the expected phenotype of loricrin

knockout mouse? The answer, presented in a paper by
Koch et al. (2000, this issue), reveals that there is almost no
phenotype. At birth, there is mild epidermal erythema and
the CEs are fragile as demonstrated by experimental frag-
mentation. However, the CEs and skin condition improve
within a few days after birth, apparently coincident with
upregulation of certain members of the SPR family (mouse

 

Sprr

 

2D and 

 

Sprr

 

2H), and repetin. Thus, these and perhaps
other proteins seem to have compensated for the absence
of loricrin. One interesting aspect of this study is that the
content of glycine in CEs in the loricrin

 

2

 

/
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 mice was similar
to that of wild-type (Steven, A., personal communication).
Does this mean that other loricrin-like CE proteins exist
which, while normally silent, are upregulated in loricrin

 

2

 

/

 

2

 

mice? Two ways to explore these possibilities are: examine

mRNAs from the loricrin

 

2

 

/

 

2

 

 mice for novel expression
products; and undertake the somewhat laborious sequenc-
ing of CEs from the loricrin

 

2

 

/

 

2

 

 mice, as has been done for
normal epidermal CEs.

In addition, mutations in the human loricrin gene occur
in the rare ichthyosis disorders, Vohwinkel’s Syndrome
(Meastrini et al., 1996), and progressive symmetric eryth-
rokeratoderma (Ishida-Yamamoto et al., 1997). They arise
from similar nucleotide deletions in the latter half of the
coding sequences, causing a frameshift that converts a gly-
cine-rich segment into an arginine-rich one, and loss of
residues involved in cross-linking. These disorders cause
phenotypes with diminished barrier function, generalized
scaling, and epidermal constrictions on the digits. In an ad-
joining article, Suga et al. (2000) have successfully recre-
ated this phenotype in transgenic mice. However, they
note the mutant protein relocates to the nucleus instead of
the CE because it possesses a nuclear localization signal.
Mating with the above loricrin

 

2

 

/

 

2

 

 mice revealed that the
phenotype observed in the mutant mice is probably caused
by general interference with transcriptional function, that
is, a gain of function rather than a dominant negative ef-
fect per se. Further studies will be needed to address more
general questions pertaining to the role of loricrin in bar-
rier function. How is this incredibly insoluble protein dis-
patched to the cell periphery for CE assembly? What is
the function of the extraordinarily long runs of glycines
that are also present on the keratins 1, 2e, and 10, which
form the bulk of the mass of the epidermal keratinocyte?

Several hundred million years ago, our early vertebrate
ancestors crawled out of swamps to begin a new era of life
on land. One of their earliest adaptations to this new envi-

Figure 1. A model of the epi-
dermal CE. Loricrin (white cir-
cles) is the major CE protein,
admixed with small amounts of
SPRs 1 and 2 (pink ellipsoids).
Together, these constitute
z85% of the CE and represent
the final reinforcement stage
of CE assembly. However, the
number of layers of loricrin re-
mains unresolved. It may be
one (Jarnik et al., 1998), in
which case the axial ratio of
each loricrin molecule should
be z1:4, or at least two and up
to four, if the loricrin mole-
cules are spherical. In the case
of the loricrin2/2 mice (Koch
et al., 2000), it is anticipated
that SPRs and some other pro-
teins (blue circles), such as
repetin and trichohyalin, com-
pensate for absent loricrin. It is
speculated that the loricrin–
SPR complex is cross-linked

onto a scaffold composed of several proteins cross-linked together at or near the plasma membrane, including keratin filaments (long
red rod), envoplakin (red box), periplakin (blue box), and involucrin (green box), perhaps by transglutaminase 1 (green circles). If these
do form a redundant scaffold, this could explain the individual phenotypes of the involucrin2/2 (Djian et al., 2000) and envoplakin2/2

(Määttä, A., and F. Watt, personal communication) mice, as one may compensate for the absence of the other. The yellow rods denote
ceramide lipids that become ester-linked by transglutaminase 1 onto involucrin, envoplakin, and periplakin. These replace the plasma
membrane of the cornified cell and are important for interdigitation with extracellular lipids that together confer water barrier function.
Modified from Nemes and Steinert (1999).
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ronment was improved barrier function of their skin. These
three new papers, together with a number of other recent
studies, suggest that the subsequent evolution of barrier
function has not only been bewilderingly complex, but
compensatory backup systems have been built in to substi-
tute in the absence of one or other of the major players.
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