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Abstract: Hexarelin, a synthetic hexapeptide, exerts cyto-protective effects at the mitochondrial level
in cardiac and skeletal muscles, both in vitro and in vivo, may also have important neuroprotec-
tive bioactivities. This study examined the inhibitory effects of hexarelin on hydrogen peroxide
(H2O2)-induced apoptosis in Neuro-2A cells. Neuro-2A cells were treated for 24 h with various
concentrations of H2O2 or with the combination of H2O2 and hexarelin following which cell viability
and nitrite (NO2

−) release were measured. Cell morphology was also documented throughout and
changes arising were quantified using Image J skeleton and fractal analysis procedures. Apoptotic
responses were evaluated by Real-Time PCR (caspase-3, caspase-7, Bax, and Bcl-2 mRNA levels)
and Western Blot (cleaved caspase-3, cleaved caspase-7, MAPK, and Akt). Our results indicate that
hexarelin effectively antagonized H2O2-induced damage to Neuro-2A cells thereby (i) improving cell
viability, (ii) reducing NO2

− release and (iii) restoring normal morphologies. Hexarelin treatment
also reduced mRNA levels of caspase-3 and its activation, and modulated mRNA levels of the
BCL-2 family. Moreover, hexarelin inhibited MAPKs phosphorylation and increased p-Akt protein
expression. In conclusion, our results demonstrate neuroprotective and anti-apoptotic effects of
hexarelin, suggesting that new analogues could be developed for their neuroprotective effects.

Keywords: hexarelin; GHS; neuroprotection; apoptosis; hydrogen peroxide; oxidative stress

1. Introduction

Growth hormone secretagogues (GHS) are a class of synthetic oligopeptides and
non-peptidyl molecules endowed with endocrine and extra-endocrine properties. GHS
preferentially recognize and bind the ghrelin receptor, known as growth hormone sec-
retagogue receptor type-1a (GHS-R1a) [1]. The GHS-R1a is predominantly found in the
hypothalamus and pituitary gland where it mediates the release of growth hormone (GH).
The GHS-R1a is also implicated in regulation of gastrointestinal motility, as well as energy
and glucose homeostasis [2].

In addition to their endocrine effects, GHS also target peripheral tissues; to illustrate,
GHS improve muscle function in several pathological conditions by inhibiting the apoptosis
pathway, reducing nitric oxide (NO) production, and counteracting inflammation [3,4].

Hexarelin (a synthetic hexapeptide) binds not only to the GHS-R1a but also the CD36
receptor and manifests varied beneficial effects in diseases associated with muscle wast-
ing [5–7], chronic heart failure [8], excitotoxicity, neurological disorders, epilepsy and
diabetes [9]. Despite the emerging biological importance of hexarelin, its signalling mecha-
nisms have been only partially elucidated. Some studies have demonstrated that hexarelin
modulates activation of different intracellular pathways, such as mitogen-activated protein
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kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) [10,11],
and, thereby, could indirectly influence intracellular calcium (Ca2+) concentrations [12].
Furthermore, hexarelin protects cells in vitro from apoptosis by inhibiting NO synthesis
and reactive oxygen species (ROS) release, modulating caspases activity as well as the
expression of proteins belonging to the BCL-2 family [6,12–16].

Oxidative stress is involved in the progression of many neuronal disorders, such
as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and
amyotrophic lateral sclerosis (ALS), as well as in cancer, diabetes, and aging [17–19].

Hydrogen peroxide (H2O2) is the most abundant ROS generated through oxidative
stress in mitochondria [20]. H2O2 is formed by dismutation of superoxide radical anions
catalysed by superoxide dismutase (SOD); it is freely soluble in aqueous solutions and
easily penetrates biological membranes [21]. The diffusibility of H2O2 in intercellular fluids
and the intracellular space can enhance mitochondria damage and potentiate the intrinsic
apoptotic pathway [21–23].

The neuroprotective and anti-apoptotic effects of hexarelin have not yet been assessed.
Therefore, the primary aims of this study are to characterize the effects of hexarelin on
H2O2-induced stress and to explore its neuroprotective mechanisms of action in a mouse
neuroblastoma cell line (Neuro-2A cells), a well-established in vitro model, frequently used
to study the neuroprotective activities of new drugs [24–26].

2. Results
2.1. Effects of Hexarelin on H2O2-Induced Toxicity in Neuro-2A Cells

Neuro-2A cells were treated with increasing concentrations of H2O2 (50–200 µM) for
24 h in order to assess its effects on cell replication and to identify the lower concentration
that significantly and reproducibly inhibited cell growth. H2O2 reduced cell replication
in a concentration-dependent manner (Figure 1A). As H2O2 at 100 µM significantly and
reproducibly decreased cell replication (p < 0.001) compared with control, it was used
in subsequent experiments. The effects of H2O2 were also confirmed by morphological
observation of cells using Motic AE2000 Inverted Microscope. Neuro-2A cells exposed
to H2O2 exhibited loss of confluence, disappearance of neurites, as well as grouping and
shrinkage that were more marked with increasing H2O2 concentrations (Figure 1B).

Exposure of Neuro-2A cells to various concentration of hexarelin (10 Nm–10 µM)
alone for 24 h did not reduce cell viability; consequently, 1 µM hexarelin was used in
subsequent experiments (Figure 2A). The viability of cells treated with the combination
of H2O2 and hexarelin for 24 h was similar to that of control but significantly (p < 0.001)
greater than that of cells treated with H2O2 alone (Figure 2B).

2.2. Effects of Hexarelin on NO2
− Production on H2O2-Induced Neuro-2A Cells

Nitric oxide (NO) is a highly reactive cytotoxic free radical, which can be induced by
oxidative stress. Extracellular nitrite (NO2

−) concentrations, proportional to NO formation
induced by H2O2, were measured by the Griess assay.

Treatment of cells with 1 µM hexarelin alone had no significant effect on NO2
− release

compared with control; by comparison, H2O2-treatment (100 µM) alone significantly
increased levels of NO2

− (p < 0.05) compared with control (Figure 3). In sharp contrast,
extracellular NO2

− levels in cells co-incubated with 1 µM hexarelin and 100 µM H2O2
were significantly (p < 0.05) lower than in cells treated with H2O2 alone.
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Figure 1. Cytotoxic effect and morphological alterations of Neuro-2A cells in response to increasing concentration of H2O2. 

(A) Neuro-2A cells were treated for 24 h with different concentrations of H2O2 (0, 50, 80, 100, 150, 200 μM) and assessed 

for MTT assay. The assay was performed in at least three independent experiments (n = 21). Statistical significance: *** p < 

0.001 vs. CTRL. (B) Morphological changes in Neuro-2A cells were observed by Motic AE2000 Inverted Microscope, at 10 

× magnification. Representative images of cells treated with increasing concentration of H2O2. 

Exposure of Neuro-2A cells to various concentration of hexarelin (10 Nm–10 µM) 

alone for 24 h did not reduce cell viability; consequently, 1 µM hexarelin was used in 

subsequent experiments (Figure 2A). The viability of cells treated with the combination of 

H2O2 and hexarelin for 24 h was similar to that of control but significantly (p < 0.001) 

greater than that of cells treated with H2O2 alone (Figure 2B). 

Figure 1. Cytotoxic effect and morphological alterations of Neuro-2A cells in response to increasing
concentration of H2O2. (A) Neuro-2A cells were treated for 24 h with different concentrations
of H2O2 (0, 50, 80, 100, 150, 200 µM) and assessed for MTT assay. The assay was performed in
at least three independent experiments (n = 21). Statistical significance: *** p < 0.001 vs. CTRL.
(B) Morphological changes in Neuro-2A cells were observed by Motic AE2000 Inverted Microscope,
at 10× magnification. Representative images of cells treated with increasing concentration of H2O2.
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These results suggest that the anti-apoptotic properties of hexarelin may be mediated 

by a presumptive antioxidant mechanism. 

Figure 2. Protective action of hexarelin in Neuro2A cells. (A) Neuro-2A cells were treated for 24 h
with different concentrations of hexarelin (10 nM, 100 nM, 1 µM, and 10 µM), (B) with or without
hexarelin (1 µM) and H2O2 (100 µM) and assessed for MTT assay. All assays were performed
in at least three independent experiments (n = 21). Statistical significance: ** p < 0.01 vs. CTRL;
◦◦◦ p < 0.001 vs. H2O2.
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Figure 3. Hexarelin reduced the extracellular NO2− release induced by H2O2. Neuro-2A cells were treated for 24 h with or 

without hexarelin and 100 µM H2O2. The culture media were used for Griess reaction to measure NO2− extracellular re-

lease. Data are expressed as mean ± SEM of 4 replicates (n = 24). Statistical significance: * p < 0.05 vs. CTRL; ° p < 0.05 vs. 

H2O2. 
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Neuro-2A cells in a fixed area (Figure 4B) by the use of a specific macro for ImageJ software 

[27]. As shown in Figure 4B, H2O2 induced a significant reduction in the number of cells per 

field (p < 0.001) compared with control; by comparison, cell numbers were significantly 
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ramifications.  

Figures 4C,D reveal that H2O2 treatment alone caused both a reduction of cellular 

process endpoints and a reduction in summed process length per cell compared with con-

trol (p < 0.001 and p < 0.01, respectively); by comparison, these effects of H2O2 alone were 

significantly antagonized by hexarelin co-incubation (p < 0.001 and p < 0.05, respectively). 

Figure 3. Hexarelin reduced the extracellular NO2
− release induced by H2O2. Neuro-2A cells were

treated for 24 h with or without hexarelin and 100 µM H2O2. The culture media were used for Griess
reaction to measure NO2

− extracellular release. Data are expressed as mean ± SEM of 4 replicates
(n = 24). Statistical significance: * p < 0.05 vs. CTRL; ◦ p < 0.05 vs. H2O2.

These results suggest that the anti-apoptotic properties of hexarelin may be mediated
by a presumptive antioxidant mechanism.

2.3. Effects of Hexarelin on Morphological Changes Induced by H2O2 Treatment

Neuro-2A cells were stained as described in Materials and Methods and observed with
a confocal laser-scanning microscope (LSM 710, ZEISS, Jena, Germany) in order to charac-
terize morphological changes induced by treatments. A representative photomicrograph
for each treatment is presented in Figure 4A. First, we quantified the number of Neuro-2A
cells in a fixed area (Figure 4B) by the use of a specific macro for ImageJ software [27]. As
shown in Figure 4B, H2O2 induced a significant reduction in the number of cells per field
(p < 0.001) compared with control; by comparison, cell numbers were significantly greater
when treated with the combination of H2O2 and hexarelin 1 µM (p < 0.05).

The number of cells in each field was used for normalizing data of skeleton analysis,
which in turn was used to quantify endpoints and process length [28,29], since the loss
of ramifications is a typical characteristic of morphological cytoskeletal changes in apop-
tosis. Briefly, Analyze Skeleton Plugin was applied to skeleton images obtained after a
series of ImageJ plugin protocols of original photomicrographs, as described in Material
and Methods, and shown in Figure 12. Process length (Figure 12B, orange) indicate the
measure of processes elongation, while endpoints (Figure 12B, blue) are the termination of
cellular ramifications.

Figure 4C,D reveal that H2O2 treatment alone caused both a reduction of cellular
process endpoints and a reduction in summed process length per cell compared with control
(p < 0.001 and p < 0.01, respectively); by comparison, these effects of H2O2 alone were
significantly antagonized by hexarelin co-incubation (p < 0.001 and p < 0.05, respectively).
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We used FracLac for ImageJ to investigate and quantify morphological changes of 

Neuro-2A cells as a consequence of treatments. Examples of cropped photomicrographs, 

binary and outline transformations are shown in Figure 5. 

Figure 4. Hexarelin reduces Neuro-2A cells de-ramification induced by H2O2. (A) Neuro-2A cells
were seeded on poly-D-lysine pre-treated coverslips and incubated for 24 h with or without hexarelin
and 100 µM H2O2. At the end of the treatment, cells were fixed and stained for phalloidin and
DAPI. Images were captured with confocal laser scan microscope. Scale bar: 20 µm. (B) Graphical
representation of the number of cells in the same areas per each treatment, (C) of the process
endpoints/cells and (D) process length/cells. Data are expressed as mean ± SEM of 3 replicates
(total number of cells analyzed = 160). Statistical significance: ** p < 0.01, *** p < 0.001 vs. CTRL;
◦ p < 0.05, ◦◦◦ p < 0.001 vs. H2O2.
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We used FracLac for ImageJ to investigate and quantify morphological changes of
Neuro-2A cells as a consequence of treatments. Examples of cropped photomicrographs,
binary and outline transformations are shown in Figure 5.
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shown in Figure 6A, H2O2 significantly decreased D (p < 0.001) compared with the control, 

indicating a reduced branch complexity, according to skeleton analysis. Conversely, 

Figure 5. Effects of hexarelin on morphology of Neuro-2A cells stimulated with H2O2. Representative
photomicrographs of Neuro-2A cells incubated for 24 h with or without hexarelin and 100 µM
H2O2, and examples of cell binarized and outlined. Cells were seeded on poly-D-lysine pre-treated
coverslips and, at the end of the treatments, were fixed and stained with phalloidin and DAPI. Images
were captured with a confocal laser scan microscope. Scale bar: 20 µm.
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Fractal dimension (D) is an index of cell complexity pattern which is used to identify
cellular forms ranging from simple rounded to complex branched (Figure 13B) [29,30].
As shown in Figure 6A, H2O2 significantly decreased D (p < 0.001) compared with the
control, indicating a reduced branch complexity, according to skeleton analysis. Conversely,
Neuro-2A cells treated with the combination of H2O2 with 1 µM hexarelin exhibited a
significantly greater D value (p < 0.001) compared with cells treated with H2O2 alone and
which was similar to the D value of controls.
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Figure 6. Hexarelin modulates morphological changes of Neuro-2A cells induced by H2O2 treatment. (A) Fractal dimension,
(B) lacunarity, (C) maximum span across hull, (D) perimeter, and (E) area graphical representation of Neuro-2A cells treated
for 24 h with or without hexarelin and 100 µM H2O2. Total number of cells analyzed for each condition = 10. Data are
expressed as mean ± SEM. Statistical significance: * p < 0.05, *** p < 0.001 vs. CTRL; ◦◦◦ p < 0.001 vs. H2O2.
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The lacunarity values of cells treated with 100 µM H2O2 alone, which ranged from
0.12 to 0.38, were significantly smaller than those of the control group. Lacunarity is a
property of the soma based on the heterogeneity or translational and rotational invariance in
a shape (Figure 13C); lower lacunarity values indicate a loss of shape heterogeneity [29,30].
Hexarelin antagonized the effects of H2O2, since cells treated with their combination
showed values ranging 0.33 to 0.67, significantly greater (p < 0.001) compared to those
treated with H2O2 alone (Figure 6B).

Finally, we analyzed Neuro-2A cell size by: (i) the maximum span across the convex
hull (MSACH), which is the maximum distance between two points across the convex hull
(Figure 13E); (ii) perimeter, calculated as the number of pixels on the outline cell shape
(Figure 13D); and (iii) area, quantified as the total number of pixels present in the filled
shape of cell image (Figure 13A “Binary”).

H2O2 treatment alone significantly reduced MSACH, perimeter and area (Figure 6C–E;
p < 0.001 for all); this reduction was attenuated by co-incubation with hexarelin.

The morphological results obtained with skeleton and fractal analysis in a 3D scatter
plot are summarized in Figure 7. We have chosen to represent endpoints/cell, fractal dimen-
sion and lacunarity because they are independent variables and allow better appreciation
of apoptosis-induced cytoskeletal changes.
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Figure 7. Summary representation of Skeleton and FracLac analysis by 3D scatter plot. The figure
summarizes the relationship between ramifications (endpoints/cell), shape changing (lacunarity)
and complexity (fractal dimension). Pearson’s correlation demonstrates that fractal dimension
significantly correlates with endpoints/cell (r = 0.9806, p = 0.0098) but not with lacunarity (r = 0.8134,
p = 0.0981). Endpoints/cell directly correlates with both fractal dimension (r = 0.9806, p = 0.0098) and
lacunarity (r = 0.7765, p = 0.0038).

2.4. Effects of Hexarelin on Caspases-3 and -7 and on BCL-2 Family mRNA Levels

Caspase-3 and caspase-7 activation after damage induced by H2O2 occur at an early
stage of apoptotic cell death; therefore, we hypothesized that hexarelin could inhibit
caspase-3 and caspase-7 mRNA levels.

First, we demonstrated that mRNA levels of both caspases were increased by H2O2 in
a dose-dependent manner and that 100 µM H2O2 induced a significant increase in caspase-
3 (p < 0.01) and caspase-7 (p < 0.001) mRNA levels (Figure 8A,B). Hexarelin alone did not
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affect mRNA levels of both caspases (Figure 8C,D). Notably, 1 µM hexarelin antagonized
the increase in caspase-3 mRNA levels induced by 100 µM H2O2 (Figure 8D), whereas it did
not oppose the effects of 100 µM H2O2 on caspase-7 mRNA levels (p < 0.001, Figure 8C).
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Figure 8. Analysis of caspase-3 and caspase-7 mRNA levels following H2O2 exposure and their modulation induced by
hexarelin. Neuro-2A cells were treated with different concentrations of H2O2 (80, 100, 150 µM) or co-incubated with 1 µM
hexarelin and 100 µM H2O2 for 24 h. Caspase-3 (A,C) and caspase-7 (B,D) mRNA levels were measured by RT-PCR and
normalized for the respective β-actin mRNA levels. Data are expressed as mean ± SEM of 3 replicates (n = 18). ** p < 0.01,
*** p < 0.001 vs. CTRL; ◦◦◦ p < 0.001 vs. H2O2.

Moreover, we also quantified the cellular content of activated caspase-3 and -7 proteins;
both species are effector caspases, which are activated through proteolytic processing by
upstream caspases to produce the mature subunit. Western blot analysis showed that
H2O2 treatment significantly increased cleaved caspase-3 and cleaved caspase-7 (p < 0.001)
(Figure 9A,B), whereas co-incubation with hexarelin blunted these effects only for caspase-3
activation (p < 0.05) (Figure 9A).

Mitochondria also play a crucial role in the process of cell apoptosis with the activation
of the BCL-2 protein family. H2O2, in a concentration-dependent manner, caused a signifi-
cant increase in the pro-apoptotic Bax mRNA levels (Figure 10A) and tended to increase
levels of the anti-apoptotic Bcl-2 mRNA (Figure 10B). Co-incubation for 24 h with hexarelin
and H2O2 reveal the anti-apoptotic effects of hexarelin (Figure 10C,D). The mRNA levels of
Bax (stimulates by H2O2) were significantly (p < 0.05) reduced by hexarelin co-incubation;
by contrast, hexarelin co-incubation significantly (p < 0.01) increased Bcl-2 mRNA levels.



Pharmaceuticals 2021, 14, 444 11 of 23

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 9. Hexarelin inhibits apoptotic pathway through caspase-3 inactivation. Neuro-2A cells were treated with or with-

out hexarelin and H2O2 for 24 h and assessed in Western blot for cleaved caspase-3/β-actin (A), and cleaved caspase-7/β-

actin (B). All assays were performed in at least 3 independent experiments (n = 3). Statistical significance: ** p < 0.01, *** p 

< 0.001 vs. CTRL; ° p < 0.05 vs. H2O2. 

Mitochondria also play a crucial role in the process of cell apoptosis with the activa-

tion of the BCL-2 protein family. H2O2, in a concentration-dependent manner, caused a 

significant increase in the pro-apoptotic Bax mRNA levels (Figure 10A) and tended to in-

crease levels of the anti-apoptotic Bcl-2 mRNA (Figure 10B). Co-incubation for 24 h with 

hexarelin and H2O2 reveal the anti-apoptotic effects of hexarelin (Figure 10C,D). The 

mRNA levels of Bax (stimulates by H2O2) were significantly (p < 0.05) reduced by hexar-

elin co-incubation; by contrast, hexarelin co-incubation significantly (p < 0.01) increased 

Bcl-2 mRNA levels. 

Figure 9. Hexarelin inhibits apoptotic pathway through caspase-3 inactivation. Neuro-2A cells were
treated with or without hexarelin and H2O2 for 24 h and assessed in Western blot for cleaved caspase-
3/β-actin (A), and cleaved caspase-7/β-actin (B). All assays were performed in at least 3 independent
experiments (n = 3). Statistical significance: ** p < 0.01, *** p < 0.001 vs. CTRL; ◦ p < 0.05 vs. H2O2.
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Figure 10. Analysis of mRNA levels of apoptosis markers following H2O2 exposure and their modulation induced by
hexarelin. Neuro-2A cells were treated with different concentrations of H2O2 (80, 100, 150 µM) or co-incubated with
hexarelin 1 µM and H2O2 100 µM for 24 h. Bax (A,C) and Bcl-2 (B,D) mRNA levels were normalized for the respective
β-actin mRNA levels. Data are expressed as mean ± SEM of 3 replicates (n = 18). * p < 0.05, ** p < 0.01 vs. CTRL; ◦ p < 0.05,
◦◦ p < 0.01 vs. H2O2.

2.5. Effects of Hexarelin on ERK 1/2, p38 and Akt Protein Levels in H2O2-Treated Neuro-2A Cells

We hypothesized that hexarelin could modify MAPK signalling as well. Among
members of the MAPK family, ERK and p38 are known to be associated with cell death or
survival, respectively [10].

Compared to the control group, exposure to 100 µM H2O2 alone significantly increased
the p-ERK/t-ERK ratio (p < 0.05), whereas 1 µM hexarelin alone did not affect ERK protein
levels. Notably, co-incubation with hexarelin and H2O2 induced a trend toward a reduction
of p-ERK protein levels compared to the H2O2 alone group (Figure 11A).

Incubation with 100 µM H2O2 alone significantly increased the p-p38/t-p38 ratio
compared to controls, and this effect was significantly antagonized by co-incubation with
hexarelin (p < 0.05) (Figure 11B).

Furthermore, levels of p-Akt, associated with cell survival after oxidative stress [31],
were significantly reduced by H2O2 treatment (p < 0.05, Figure 11C). Notably, p-Akt levels
in cells coincubated with hexarelin and H2O2 were significantly (p < 0.01) greater than
those in cells treated with H2O2 alone.
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Figure 11. Hexarelin modulates ERK, p38 and Akt activation. Neuro-2A cells were treated with or without hexarelin
and H2O2 for 24 h and Western blot was used to measure p-ERK/t-ERK (A), p-p38/t-p38 (B), and p-Akt/t-Akt (C) levels.
β-actin was used to control even protein loading in all lines. All assays were performed at least 3 independent experiments.
Statistical significance: * p < 0.05, ** p < 0.01 vs. CTRL; ◦ p > 0.05, ◦◦ p < 0.01 vs. H2O2.
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3. Discussion

Our in vitro findings clearly demonstrate that hexarelin protects Neuro-2A cells from
H2O2-induced damage.

Oxidative stress arises when the balance between oxidants and antioxidants is dis-
rupted in favour of the former, resulting in potential damage to the organism [21,32].
Although each neurodegenerative disease (NDD) has its own distinct aetiology and dif-
ferentially affects brain regions, NDDs share elements of oxidative stress, free radical
generation and mitochondrial changes, leading to apoptosis [33].

Apoptosis is known to be one of the most sensitive biological markers for evaluat-
ing oxidative stress caused by imbalance between ROS generation and efficient activity
of antioxidant systems [34,35]. Apoptotic cell death is an active process initiated by ge-
netic programs and culminating in DNA fragmentation, characterized by morphological
changes, including cell shrinkage, formation of membrane-packaged inclusions, called
apoptotic bodies [23], activation of caspases, nucleases, inactivation of nuclear repair
polymerases [36], and finally condensation of nuclei [37].

There are numerous inducers of oxidative stress that are capable of causing cytotoxicity
and apoptosis in in vitro models. In our study, we used H2O2 because it is an established
method for potency measurement of neuroprotective agents candidates [38,39].

In this study, H2O2 induced neuronal cytotoxicity in Neuro-2A cells in a dose-dependent
manner, as demonstrated by both MTT assay and morphological observations, while in-
creasing concentrations of hexarelin, which by itself did not affect cell viability. In order
to determine the protective effects of GHS against H2O2-induced cytotoxicity, Neuro-2A
cells were treated with 1 µM hexarelin. As expected, cell viability of the hexarelin treated
group was similar to control cells; by contrast, H2O2-induced cell death was significantly
attenuated by hexarelin.

The protective effects of hexarelin were further confirmed by Griess assay. Excessive
levels of NO, an important mediator of cellular communication, implicated in the patho-
genesis of NDDs [40] and in caspase-dependent cellular death [41], could be quantified
by the measurement of extracellular NO2

−, a primary stable product of NO breakdown.
Previous studies reported that H2O2-induced insult resulted in increased production of
NO in neuronal and glial cells [42,43] through the induction of inducible nitric oxide syn-
thase. In this study, we demonstrated that in Neuro-2A cells H2O2 increased extracellular
NO2

− release, an effect that was blunted by the coincubation with hexarelin. The ability of
hexarelin to reduce NO2

− release suggests that its protective effects against H2O2 oxidative
stress could be mediated through the modulation of apoptosis and downstream pathways.

Moreover, H2O2-stimulation of Neuro-2A cells induced morphological changes char-
acteristic of an apoptotic phenotype, including de-ramification and reduction of process
length, loss of cellular complexity and shape, as well as reduction of cell size. Both skeleton
and fractal analysis suggested that hexarelin preserve the cellular complexity, ramification,
dimension, heterogeneity and shape comparable to values observed in the control group.

Hexarelin is a synthetic hexapeptide ligand of the GHS-R1a, which is chemically
more stable and functionally more potent when compared with ghrelin [44]; consequently,
these characteristics make hexarelin a promising alternative to ghrelin [45]. Ghrelin has
been demonstrated to protect several cell types such as adipocytes [46], osteoblasts [47],
cardiomyocytes and endothelial cells [48] by inhibiting apoptotic stimuli. As well, ghrelin
has been shown to have protective effects in vivo, in rats exposed to status epilepticus [49]
or in a rat model of cisplatin-induced cachexia [4], and to promote neurogenesis [50].

Similarly to ghrelin, hexarelin has been shown to stimulate cell proliferation of adult
hippocampal progenitor (AHP) cells and to protect against growth factor deprivation-
induced apoptosis and necrosis [51], principally through the activation of PI3K/Akt path-
way [50,52]. Interestingly, hexarelin also blunts the inflammatory process activated by
neurodegenerative diseases, stroke, and tumor invasion [53] largely by modulating the
release of pro-inflammatory mediators such as cytokines, reactive oxygen species, free
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radical species and nitric oxide, which could contribute to both neuronal dysfunction and
cell death [54,55].

Hexarelin also exert cardioprotective effects, attenuating cardiomyocyte hypertro-
phy and apoptosis [56], and attenuates mitochondrial abnormalities reported in cancer
cachexia [5,57], inducing biogenesis, mitochondrial mass and dynamics restoration, reduc-
ing expression of autophagy-related genes and ROS production. This study demonstrates
anti-apoptotic effects of hexarelin via the inhibition of caspases activation. Neuro-2A cells
treated for 24 h with increasing concentrations of H2O2 showed a significant activation of
caspase-3 and -7. Treatment of cells with 1 µM hexarelin attenuated primarily the activation
of caspase-3, both in terms of mRNA levels and protein activation. Our hypothesis was
that the modulation of caspase mRNA levels induced by hexarelin was dependent on the
intracellular pro-apoptotic signalling molecules belonging to the BCL-2 family.

The BCL-2 family consist of two groups of mediators including (i) anti-apoptotic
group mainly represented by Bcl-2, and (ii) a pro-apoptotic group, represented principally
by Bax. Both groups play important roles in mitochondrial related apoptosis pathways [58].

Therefore, we quantified, by RT-PCR, the effects of hexarelin on modulation of the
expression in Bcl-2 and Bax mRNA levels. As expected, H2O2 treatment of Neuro-2A cells
induced a concentration-dependent activation of pro-apoptotic Bax, and the inhibition of
anti-apoptotic Bcl-2. Hexarelin treatment did not affect mRNA levels of apoptotic signalling
molecules compared to the control group, demonstrating that hexarelin does not stimulate
the apoptosis pathway. At the same time, the decrease in Bax mRNA levels and the increase
in Bcl-2 mRNA levels, in the group incubated with the combination of hexarelin and H2O2
confirmed the anti-apoptotic effect of hexarelin.

In order to investigate the molecular pathways involved in hexarelin neuroprotection,
we quantified the expression of MAPKs (ERK and p38) and PI3K/Akt. MAPKs activation
contribute to neuronal dysfunction and are involved in NDDs [59,60]. Furthermore, ERK
has been shown to participate in the regulation of cell growth and differentiation, and
responses to cellular stress [61].

In this study, treatment of Neuro-2A cells with H2O2 led to cell death by up-regulating
p-ERK and p-p38 protein expression. The up-regulation of MAPKs induced by H2O2
stimulation were blunted by hexarelin treatment. In addition, hexarelin alone did not affect
the MAPKs proteins compared to the control.

PI3K/Akt is a key anti-apoptotic effector in the growth factor signalling pathway [62].
In particular, the phosphorylation of Thr-308 and Ser-473 of Akt serves a key role in
mediating the anti-apoptotic actions of growth factors on cells and plays an important role
in neuronal protection [63,64]. In this study, H2O2-induced oxidative stress significantly
increased the de-phosphorylation of Akt, which stimulated the activation of the apoptotic
pathway. Hexarelin treatment did not alter the p-Akt/t-Akt ratio compared to controls, but
in cells treated for 24 h with both hexarelin and H2O2, Akt protein levels were significantly
increased compared with cells treated with H2O2 alone.

In conclusion, our findings demonstrate that H2O2 caused early and late apoptotic
pathways in Neuro-2A cells. Treatment of cells with hexarelin antagonized H2O2 cellular
cytotoxicity, inhibited apoptosis and potentiated MAPKs and PI3K/Akt survival pathways.

This study demonstrates that hexarelin is capable of protecting Neuro-2A cells from
H2O2-caused cytotoxicity effects; however, further investigations are required to clarify
hexarelin molecular mechanisms of action, and whether its effects are mediated by the
ghrelin receptor (GHS-R1a).

4. Materials and Methods
4.1. Chemicals

Hexarelin, Dulbecco’s Modified Eagle’s Medium (DMEM)-high glucose, hydrogen
peroxide (H2O2), 3 (4,5 dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT),
Griess reagent, poly-D-lysin hydrobromide, 4’,6-diamidino-2-phenylindole dihydrochlo-
ride (DAPI), fluoromount aqueous mounting medium and bovine serum albumin (BSA)
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were purchased from Sigma-Aldrich (St. Louis, MO, USA). Penicillin, streptomycin, L-
glutamine, trypsin-EDTA, phosphate-buffer saline (PBS) and fetal bovine serum (FBS) were
obtained from Euroclone (Pero, Milan, Italy). Alexa Fluor 488 Phalloidin was purchased
by ThermoFisher Scientific (Waltham, MA, USA). Prior to assay, hexarelin was dissolved
in ultrapure water; both hexarelin and H2O2 were diluted in culture medium to final
working concentrations.

4.2. Cell Culture

Immortalized Neuro-2A murine neuroblastoma cells were obtained from Interlab Cell
Line Collection (ICLC, Genoa, Italy) and cultured in DMEM-high glucose (Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 10% heat-inactivated FBS, 100 IU/mL penicillin,
100 µg/mL streptomycin and 2 mM L-glutamine (all Euroclone, Pero, Italy) and Mycozap
Prophylactic (Lonza, Walkersville, MD, USA) under standard cell culture conditions (37 ◦C,
5% CO2) [24,25]. Confluent cultures were washed with PBS, detached with trypsin-EDTA
solution (all Euroclone, Pero, Italy), and used for experiments.

In each experiment, Neuro-2A cells were incubated with H2O2 alone or the combina-
tion of 100 µM H2O2 and 1 µM hexarelin for 24 h.

4.3. Cell Viability

Neuro-2A cells were seeded in 96-well culture plates at the density of 4 × 104 cells/well
and cultured for 24 h at 37 ◦C. The day after seeding, the cells were treated with increasing
concentrations (50–200 µM) of H2O2 or hexarelin (10 nM–10 µM) or with 100 µM H2O2
and hexarelin (1 µM). After 24 h of treatment, a 10 µL aliquot of 5 mg/mL MTT (M5655,
Sigma-Aldrich, St. Louis, MO, USA) was added to each well and incubated at 37 ◦C for 3 h.
Then, the culture medium was removed and a 200 µL aliquot of acidified isopropanol was
added in order to dissolve the formazan crystals. Absorbance was read at 570 nm using a
multilabel spectrophotometer VICTOR3 (Perkin Elmer, Waltham, MA, USA). Cell viability
of control cells was set to 100% and the relative absorbances of experimental groups were
converted to relative percentages (relative absorbance of experimental group/relative
absorbance of control) × 100 = % of viable cells.

4.4. Griess Assay

NO production was evaluated measuring the nitrite (NO2
−) content of culture media

with the Griess reaction. Briefly, Neuro-2A cells were plated in 96-well culture plates
and treated with 100 µM H2O2 and 1 µM hexarelin for 24 h. At the end of the treatment,
100 µL aliquots of medium were transferred to a new 96-well plate and were mixed with
100 µL of Griess reagent 1 × (G4410, Sigma-Aldrich, St. Louis, MO, USA). Absorbance
was measured at 540 nm with the VICTOR3 spectrophotometer (Perkin Elmer, Waltham,
MA, USA), after 15 minutes in the dark at room temperature. A standard curve with
varied concentrations of sodium nitrite (S2252, Sigma-Aldrich, St. Louis, MO, USA) was
conducted in parallel and used for quantification. NO2

− of control cells was set to 100%
and the relative absorbance of experimental groups were converted to relative percentages
(relative absorbance of experimental group/relative absorbance of control) × 100 = % of
NO2

−. The final nitrite concentration is proportional to the NO metabolite present in
the sample.

4.5. Observation of Morphological Changes

Neuro-2A cells were seeded in 6-well culture plates at a density of 80 × 104 cells/well
and incubated at 37 ◦C for 24 h. Cells were incubated with various concentrations (50 to
200 µM) of H2O2 and photographed 24 h later using a Motic AE2000 Inverted Microscope
(Motic, Hong Kong, China).
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4.6. Actin Staining Assay

Neuro-2A cells (2 × 105 cells/well) were seeded on coverslips coated with poly-D-
lysine (P0899, Sigma-Aldrich, St. Louis, MO, USA) for 24 h. Cells were incubated at
37 ◦C with 100 µM H2O2 for 24 h with or without hexarelin 1 µM, then washed with PBS
and fixed with 4% paraformaldehyde (Titolchimica, Rovigo, Italy) for 10 min at room
temperature. Cells were subsequently washed with PBS, incubated with cold acetone for
5 min at −20 ◦C and blocked in PBS with 1% BSA for 30 min at room temperature. In order
to stain actin, Neuro-2A cells were incubated with 2 U/mL of Alexa Fluor 488 Phalloidin
diluted in PBS with 1% BSA at room temperature for 20 min and then washed with PBS.
Counterstaining of nuclei was made with 1 µg/mL of DAPI for 10 min at room temperature.
After washing cells with PBS, fluoromount aqueous mounting medium was added, and
the cells were observed under a confocal laser scanning microscope (LSM 710, ZEISS, Jena,
Germany); images were captured at 40× and 63× magnification by ZEN software (ZEISS,
Jena, Germany).

4.7. Morphological Analysis

Photomicrographs obtained at 40x magnification were used to evaluate the number of
cells in the same area using a specifically designed macro with ImageJ software (National
Institutes of Health, Bethesda, MD, USA) [27]. The same photomicrographs were used for
skeleton analysis [28]. Skeleton analysis was applied to quantify the number of process
endpoints and length normalized by the number of cells in the same area. Briefly, the
photomicrographs were filtered to soften the background, enhance the contrast and remove
noise, by using the application Fiji free software (https://imagej.net/fiji, accessed on
8 March 2021). All the images were then binarized, subsequently skeletonized and analysed
with Analyze Skeleton (2D/3D) plugin (http://imagej.net/AnalyzeSkeleton, accessed on
8 March 2021). The overlay of skeleton to original image is reported to demonstrate that
skeletons are representative of the original image; all the modification steps are illustrated
in Figure 12.

Moreover, we applied fractal analysis using FracLac plugin for ImageJ
(https://imagej.nih.gov/ij/plugins/fraclac/fraclac.html, (accessed on 8 March 2021) in
order to evaluate the Neuro-2A shape and morphology by different parameters (fractal
dimension, lacunarity, maximum span across the hull, perimeter and area) [30]. Photomi-
crographs obtained with 63 × oil immersion objective were modified similarly to skeleton
analysis. Photomicrographs of cells were cropped and transformed to 8-bit grayscale
images. Then, cell images were binarized and manually edited to obtain a single cell made
of continuous set of pixels. To avoid bias, this modification was done taking into account
the original image. Binary images were outlined and analyzed with Fractal Analysis plugin.
All the modification steps and representative images of FracLac box counting analysis are
shown in Figure 13.

4.8. Real-Time PCR Analysis

In order to monitor the apoptosis pathway, Neuro-2A cells were plated in 24-well
culture plates at a density of 2 × 105 cells/well, and treated for 24 h according to specific
protocols. Following treatment, Neuro-2A cells were washed with PBS and total RNA was
extracted using EuroGOLD Trifast reagent (Euroclone, Pero, MI, Italy), according to the
manufacturer’s instructions and quantified using a Nanodrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Reverse transcription was performed using
iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) to equal amounts (140 ng) of
RNA. Amplification of cDNA (21 ng) was performed in a total volume of 20 µL of iTaq
Universal Probes Supermix (Bio-Rad), using Real-Time QuantStudio7 Flex (Thermo Fisher
Scientific, Waltham, MA, USA). After 2 min at 50 ◦C and 10 min at 94.5 ◦C, 40 PCR cycles
were performed using the following conditions: 15 s at 95 ◦C and 1 min at 60 ◦C. Relative
mRNA concentrations of the target genes were normalized to the corresponding β-actin
internal control and calculated using the 2−∆∆Ct method.

https://imagej.net/fiji
http://imagej.net/AnalyzeSkeleton
https://imagej.nih.gov/ij/plugins/fraclac/fraclac.html
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 Figure 12. Skeleton Analysis application to quantify Neuro-2A cells morphology. (A) Representative photomicrograph
(40× magnification) and the series of ImageJ plugin protocols which were applied to each photomicrograph for skeleton
analysis. Original photomicrograph was modified enhancing the background, removing noise and using with FFT filter
prior to be converted to binary images. Binary image was skeletonized. The overlay of skeletonized and original images is
reported; cropped photomicrographs show the image details. Scale bar: 20 µm. (B) The workflow used to Analyze Skeleton
plugin: skeletonized process in orange, endpoint in blue, and junction in purple.
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Figure 13. FracLac Analysis application to quantify Neuro-2A cells morphology. (A) Representative
process applied to obtain an outlined single cell for FracLac plugin. After selecting a cell in the
photomicrograph (63× magnification), the image was cropped and modified to remove noise and
enhance the background. The image was then processed to obtain an 8-bit grayscale microphotograph,
and binarized. Binary image was manually edited to clear the background and to join all branches,
and finally outlined. FracLac quantifies cell complexity and shape with a box counting method which
permits to quantify fractal dimension (B), lacunarity (C), perimeter (D), and the maximum span
across the convex hull (E) by drawing a convex hull (pink) and a bounding circle (green).
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4.9. Western Blot Analysis

Neuro-2A cells were plated in 6-well culture plates at a density of 8 × 105 cells/well,
incubated at 37 ◦C for 24 h and then treated as previously described. Following treatment,
cells were rinsed with ice-cold PBS and lysed in RIPA buffer (Cell Signaling Technology,
Danvers, MA, USA), supplemented with a protease-inhibitor cocktail (Sigma-Aldrich, St.
Louis, MO, USA), according to the manufacture’s protocol.

Total protein concentrations were determined using the Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). Equal amounts of protein (20 µg) were
heated at 95 ◦C for 10 min, loaded on precast 4–12% gradient gels (Invitrogen, Carlsbad,
CA, USA), separated by electrophoresis, and transferred to a polyvinylidene difluoride
(PVDF) membrane (Thermo Fisher Scientific, Waltham, MA, USA). Non-specific binding
was blocked with 5% dried fat-free milk dissolved in phosphate-buffered saline (PBS)
supplemented with 0.1% Tween-20 (PBS-T) for 1 h at room temperature. After 3 washes
in PBS-T, membranes were incubated with the primary antibody overnight at 4◦C (Anti-
cleaved caspase-3 (Asp175) (5A1E) rabbit antibody, #9664, Cell Signaling Technology,
1:1000; anti-cleaved caspase-7 (Asp198) rabbit antibody, #9491, Cell Signaling Technology,
1:1000; anti-Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) rabbit antibody, #9101, Cell
Signaling Technology, 1:1000; anti-p44/42 MAPK (Erk1/2) rabbit antibody, #4695, Cell
Signaling Technology, 1:1000; anti-Phospho-p38 MAPK (Thr180/Tyr182) rabbit antibody,
#4511, Cell Signaling Technology, 1:1000; anti-p38 MAPK rabbit antibody, #9212, Cell
Signaling Technology, 1:1000; anti-Phospho-Akt rabbit antibody, #4060, Cell Signaling
Technology, 1:2000; anti-Akt rabbit antibody, #4685, Cell Signaling Technology, 1:1000; anti-
actin rabbit antibody, #A2066, Sigma Aldrich, 1:2500), and then with a peroxidase-coupled
goat anti-rabbit IgG (#31460, Thermo Scientific, 1:5000) for 1 h at room temperature.

Signals were developed with the extra sensitive chemiluminescent substrate LiteAblot
TURBO (Euroclone, Pero, Milan, Italy) and detected with Amersham ImageQuant 800 (GE
Healthcare, Chicago, IL, USA). Image J software was used to quantify protein bands.

4.10. Statistical Analysis

Statistical analysis was performed using the program GraphPad Prism (GraphPad
Software, La Jolla, CA, USA). Values are expressed as mean ± standard error of the mean
(SEM). Experiments were independently replicated at least three times. One-way ANOVA
followed by Tukey’s t-test was used for multiple comparisons. A p-value of less than 0.05
was considered significant.
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