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Abstract Non-small-cell lung cancer (NSCLC), the most common type of lung cancer accounting

for 85% of the cases, is often diagnosed at advanced stages owing to the lack of efficient early diag-

nostic tools. 5-Hydroxymethylcytosine (5hmC) signatures in circulating cell-free DNA (cfDNA) that

carries the cancer-specific epigenetic patterns may represent the valuable biomarkers for discriminat-

ing tumor and healthy individuals, and thus could be potentially useful for NSCLC diagnosis. Here,

we employed a sensitive and reliable method to map genome-wide 5hmC in the cfDNA of Chinese

NSCLC patients and detected a significant 5hmC gain in both the gene bodies and promoter regions

in the blood samples from tumor patients compared with healthy controls. Specifically, we identi-

fied six potential biomarkers from 66 patients and 67 healthy controls (mean decrease accuracy

>3.2, P < 3.68E�19) using machine-learning-based tumor classifiers with high accuracy. Thus,

the unique signature of 5hmC in tumor patient’s cfDNA identified in our study may provide valu-

able information in facilitating the development of new diagnostic and therapeutic modalities for

NSCLC.
Introduction

Lung cancer is one of the most common cancers and is the
leading cause of cancer-related mortality [1,2]. In particular,
non-small-cell lung cancer (NSCLC), which mainly consist of

adenocarcinoma (AC, 44%) and squamous cell carcinoma
(SCC, 26%), accounts for about 85% of lung cancers [3,4].
Patients with early stages of NSCLC mostly don’t have any
symptoms, leading to their diagnosis frequently at advanced

stages [5]. Low-dose computed tomography (LDCT) has been
used to improve the detection of early-stage lung cancer [6].
However, it is far from satisfactory as a screening approach

for its low specificity and radiation risks [7,8]. Although several
recent studies have tried to discover the sensitive and specific
blood-based circulating biomarkers for early detection of

NSCLC using multiple omics methods, including genomics,
transcriptomics, proteomics, and metabolomics, few biomark-
ers from clinical study have been successfully translated into

clinical routine screening for lung cancer mainly due to the poor
reproducibility, low sensitivity, or high false-positive rates [5,9].
Therefore, it is potentially significant to develop highly sensitive
and reliable diagnostic approaches for NSCLC.

Cell-free DNA (cfDNA) refers to the small nucleic acid
fragment circulating in the plasma or serum. Tumor cells
release DNA into the serum or plasma via multiple mecha-

nisms, allowing detection of cancer-associated genetic alter-
ations, including point mutations, copy number variations,
chromosomal rearrangements, and epigenetic aberrations

[10,11]. Non-invasive biomarkers in cfDNA offer substantial
advantages than tissue biopsy as they possess the entire genetic
marks of tumor tissue, and their easily accessible nature makes
them the ideal candidates for real-time and dynamic monitor

of the treatment response [12,13]. Detecting genetic and epige-
netic biomarkers in cfDNA has emerged as a promising non-
invasive approach for the diagnosis, prognosis, and treatment

of cancer [12–14].
Epigenetic alterations, especially for aberrant DNA methy-

lation processes, contribute to tumor initiation and progres-

sion [15–17]. DNA methylation, the conversion of cytosine
to 5-methylcytosine (5mC), is a well-established regulator of
gene expression [18]. 5-hydroxymethylcytosine (5hmC), an oxi-

dation product of 5mC, is an intermediate product of active
DNA demethylation [19]. Recent studies have shown that
5hmC plays a critical role in gene expression regulation, as well

as in the carcinogenesis of multiple solid tumors [20–22]. Given
its tissue- and cancer-specific distribution, DNA 5hmC may
serve as an ideal biomarker for cancer diagnosis and prognosis

[23]. Studies from our laboratory and others have demon-
strated that the 5hmC signatures in cfDNA could serve as
epigenetic biomarkers for several human cancers [24–26].
However, the potency and reliability of cell-free 5hmC as a

diagnostic biomarker for NSCLC remain largely unknown.
In this study, we utilized a highly sensitive and reliable

method to map the genome-wide distribution of 5hmC in the

cfDNA from a cohort of 66 NSCLC patients and 67 healthy
individuals. Our results revealed that 5hmC modifications in
cfDNA of NSCLC patients exhibit distinct features with

5hmC gains in both gene bodies and promoters compared to
those in the cfDNA of the healthy controls. Specifically, six
5hmC-based candidate biomarkers were identified in cancer

patient cfDNAs. The cell-free 5hmC signatures identified in
our study may provide potentially valuable biomarkers for
non-invasive diagnosis of Chinese NSCLC.

Results

Sample characteristics and cell-free 5hmC-Seal profiling

We first compared the 5hmC features of cfDNA between

NSCLC and healthy individuals using a sensitive 5hmC-Seal
method [27]. The 5hmC profiles in cfDNA were acquired from
66 NSCLC patients and 67 healthy controls (Figure 1A).
Detailed information regarding subject characteristics, tumor

features, and cancer biomarkers tested is illustrated in
Figure 1B and Table S1. The average age of NSCLC patients
and healthy controls was similar, which was 59 and 55 years

old, respectively. The gender ratio was about 1:1 in both
groups. Hematoxylin and eosin staining indicated that there
were 46 AC, 17 SCC, and 3 adenosquamous carcinoma

(ASC) patients in our NSCLC cohort (Figure 1B and C).
Among all patients, 29% (19 out of 66) were at advanced
stages (TNM stages III and IV). Moreover, 42% (28 out of

66) patients showed lymph node metastasis, and 1 patient
exhibited distal metastasis (Figure 1B). As a routine test, we
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measured the serum levels of seven conventional cancer
biomarkers, including carcinoembryonic antigen (CEA),
alpha-fetoprotein (AFP), carbohydrate antigen 19-9

(CA 19-9), carbohydrate antigen 15-3 (CA15-3), carbohydrate
antigen 125 (CA125), neuron-specific enolase (NSE), and
cytokeratin 19 fragment (CYFRA21-1). However, positive
results were only demonstrated in CEA, CA125, NSE, and

CYFRA21-1 in NSCLC patients with relatively lower positive
rates of 22.50%, 5.88%, 5.88%, and 37.93%, respectively
(Table S1), suggesting that the traditional routine biomarkers

are not sensitive enough to distinguish NSCLC patients from
healthy individuals.

To exclude the epigenetic alterations caused by gender

impact, we discarded the reads located on chromosomes X
and Y, and then compared the global genomic distribution
of cfDNA 5hmC between tumor and control groups. The

genome-wide read distribution of four samples (2 controls
and 2 tumor samples, respectively) was exemplified. According
to the read count, there was no obvious difference observed
between the two groups (Figure S1A). To determine whether

or not the cfDNA from the blood of NSCLC patients had
any abnormal 5hmC enrichment in certain region, we analyzed
5hmC-enriched regions (hMRs) by HOMER and identified
259,837 hMRs in 66 lung cancer patients and 67 healthy indi-

viduals (Figure 2A). The genome-wide analysis of hMRs
showed that >60% of hMRs are located in gene bodies with
the highest enrichment in exons (ratio of the number of peaks
observed to the number of peaks expected, o/e), whereas fewer

hMRs were found in intergenic regions (Figure 2B), which is
consistent with previous studies showing that the majority of
5hmC in mammals is enriched in the intragenic and promoter

regions [28,29]. Therefore, our genome-wide approach demon-
strated the widely distributed and highly exon-enriched natures
of cfDNA 5hmC in NSCLC patients and healthy controls.

Heterogeneity and hyper-hydroxymethylation in NSCLC

cfDNA

To further compare the difference in 5hmC features between
the two groups, we calculated the density of peak number
and found that the overall number of hMRs in the tumor
group was higher than that of the control group with median
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Figure 2 Genome-wide distribution of 5hmC in blood samples from healthy controls and NSCLC patients

A. The pie chart shows the overall genomic distribution of hMRs in cfDNA. B. Normalized enrichment score of hMRs across distinct

genomic regions relative to that expected in control and tumor samples, with positive values indicating enriched more than expected. C.

Density distribution of peak number in blood samples from 67 healthy controls and 66 patients with NSCLC. D.Metagene profiles of cell-

free 5hmC in healthy and lung cancer samples. Shaded area indicates the upper and lower quartile. hMR, 5hmC-enriched regions; TSS,
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number of 213,432 and 188,972, respectively (Figure 2C).
Moreover, the tumor group exhibited broad distribution
compared to the control group whose hMR distribution

exhibited a narrow and sharp curve, which could be explained
by the higher degree of heterogeneity in tumor tissues. In
addition, we found that the overall normalized read density

of cfDNA 5hmC was slightly higher in the tumor group when
compared to the control samples (Figure 2D). These results
illustrate a higher 5hmC enrichment in both the peak number

and metagene profiles in cfDNA of NSCLC patients than that
of controls (Figures 2C and S1B).

Moreover, we downloaded the public cfDNA 5hmC data

retrieved from Song et al. containing 8 healthy controls, 1 cor-
responding input (Stanford blood center), 9 non-metastatic
lung cancer and 6 metastatic lung cancer samples (West China
Hospital) [25]. The average age of lung cancer patients and

healthy controls for their samples were 59.5 and 61.5 years
old with gender ratio of about 8:7 and 1:4 (male:female),
respectively. To compare the profiles of different sample
sources, we calculated normalized read density (Figure S1C)
and fragments per kilobase of transcript per million fragments
mapped (FPKM) of 5hmC across the whole genomic regions

of all the samples. The metagene profiles of tumor groups from
different sources all displayed a lower 5hmC enrichment than
that of public control data, but slightly higher than our con-

trols (Figure S1C). Hierarchical clustering analysis of all com-
mon genes present in each sample didn’t show any obviously
preferred clustering for tumor groups (Figure S1D). Principle

component analysis (PCA) demonstrated that the control sam-
ples from different labs are separated but well-clustered for
each individual group. In contrast, all tumor groups exhibited

a higher degree of heterogeneity (Figure S1E). These findings
indicate a consistent 5hmC enrichment in different data
sources, whereas the differences in control groups may be
attributed to geographic disparity since all public controls were

from Stanford blood center.
Besides, we calculated the 5hmC level of clinically known

but nonspecific markers for lung cancer in control and tumor
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groups, including CEA, CA125 (MUC16), NSE (ENO2), and
CYFRA21-1 (KRT19). As shown in Figure S1F, in all genes
except ENO2 (P = 8.473E�4), significantly higher 5hmC

levels were observed in tumor samples.
To further explore the differences between control and

tumor samples, we identified 7736 differentially hydroxy-

methylated regions (DhMRs) including 6591 5hmC gain
regions and 1145 5hmC loss regions in the tumor group com-
pared to the controls. Most of DhMRs (85%) in tumor

samples belong to 5hmC gain regions. A large fraction of
DhMRs was located in intron regions (50.43%) (Figure 3A).
Among all regions examined, the most significant enrichment
was found in exons (Figure 3B). Moreover, 5hmC gain regions

were particularly enriched in UTRs with log2 enrichment score
of 0.459/�0.016 in the peaks of 50UTR (gain/loss),
0.674/�1.105 in the 30UTR (gain/loss) but lost in intergenic

regions (�0.53) compared to 5hmC lost regions (0.02)
(Figure 3B). Meanwhile, we found that 5hmC gain regions
showed significant enrichment on short interspersed nuclear

elements (SINE) compared to all hMRs (Figure 3C). All these
results indicated that there is a marked difference in 5hmC
profiles of cfDNA between healthy and lung cancer individu-

als. To better understand the correlation of 5hmC changes
with potential interactions of binding proteins, we performed
motif enrichment analysis in DhMRs. The 5hmC gain regions
were enriched with CCAAT/enhancer binding protein epsilon

(Cebp) motifs (P = 1E�504), which was highly correlated
with transcriptional mis-regulation in cancer pathways
[30,31]. Conversely, the motif of the aryl hydrocarbon receptor

nuclear translocator (Arnt), a co-factor that participates in
transcriptional regulation by hypoxia-inducible factor 1 and
promotes the gene expression during xenobiotic metabolism,

was significantly enriched in 5hmC loss regions (P = 1E�52)
(Figure 3D). Thus, NSCLC patients and healthy controls
showed differences in both 5hmC enrichment and potentially

interacting binding proteins. Based on the DhMRs of cfDNA,
these two groups could be readily separated.

Gene bodies and promoter regions are hyper-hydroxymethylation

in tumor groups

To further search for the candidate genes with differential
5hmC modification between these two groups, we detected dif-

ferentially regulated 5hmC genes by DESeq2 package (|FC| >
1.5 and adjusted P < 1E�5) and identified 2459 differential
5hmC genes (1396 up-regulated and 1063 down-regulated

genes) based on the FPKM of each gene in the tumor group
compared to the control group. To illustrate the DhMRs
between two groups, we took LDB2 for example (Figure 4A).
The metagene profiles also showed a global hyper-

hydroxymethylation among the differential genes (DhMGs)
in tumor samples (Figure 4B). Furthermore, unsupervised
hierarchical clustering analysis revealed apparent separation

between lung cancer and healthy control samples (Figure 4C).
Similarly, the unbiased PCA also demonstrated distinct signa-
tures that could separate these two groups (Figure 4D).

KEGG functional enrichment analysis showed that up-
regulated DhMGs in the lung cancer group are mainly
enriched in nicotine addition, calcium signaling pathway, and

circadian entrainment pathways, which are closely associated
with cancer development [32,33] (Figure 4E). Genes with
decreased 5hmC signal were enriched in several cancer- and
metastasis-related pathways including platelet activation path-
way, cGMP-PKG signaling pathway, Rap signaling pathway,

and PI3K-Akt signaling pathway [34,35] (Figure 4F).
Besides DhMGs, aberrant 5hmC enrichment in promoter

proximal regions could also be relevant to the carcinogenic

process [36,37]. After calculating the normalized read density
around transcription start site (TSS), we found that the aver-
age profile of the 5hmC level showed obvious 5hmC gain in

the tumor group (Figure S2A). By comparing the differentially
hydroxymethylated promoters (DhMPs) between tumor and
control samples using the same approach in DhMG identifica-
tion, we identified 1344 DhMPs, including 857 5hmC gain and

487 5hmC loss genes. Similar to the gene bodies, higher abun-
dance of 5hmC was also observed in gene promoter regions,
such as FBXL7 (Figure S2B). The hierarchical clustering anal-

ysis and unbiased PCA indicated that DhMPs could also
separate these two groups well (Figure S2C and S2D). Interest-
ingly, KEGG functional enrichment analysis for genes with

DhMPs revealed different functions related to cancer develop-
ment from that of DhMGs (Figure S2E and S2F) [38,39],
which may result from the differential mechanisms of gene

expression regulation during cancer development [20]. In light
of the results above, we infer that DhMGs and DhMPs of
cfDNA could be highly associated with carcinogenic process
and may serve as potential candidates for further biomarker

validation.

Six aberrant hydroxymethylated genes are highly conserved in

controls compared with tumor samples

Considering the distinct 5hmC signals in DhMGs, we then per-
formed the Random-Forest analysis as a machine classifier to

differentiate tumor and control groups based on the detected
DhMGs. With the increase in tree numbers the model built,
error rates decreased accordingly and tended to be stable at

�700 (Figure S3A). Using the optimum parameters with 700
trees (see details in the methods), we built the model that
was able to differentiate lung cancer patients from healthy con-
trols in the training (AUC = 0.9272, CI: 0.8746–0.9797) and

validation dataset (AUC = 0.9600, CI: 0.8582–0.9723) (Fig-
ure S3B and Figure 5A). Hierarchical clustering analysis using
the top 30 mean decrease accuracy (MDA) differentially mod-

ified 5hmC genes could well separate lung cancer patients from
healthy controls (Figure 5B).

To further select the most reliable hydroxymethylation

marker genes, we used both MDA and the significance
(P value) of two-tailed t-tests to filter 30 candidate genes
(Figure SC3, S3D and 5C). The top six potential genes were
SIPA1L2 (MDA= 3.61, P = 9.82615E�23), RSPO3

(MDA = 3.45, P = 4.72349E�24), LDB2 (MDA = 3.68,
P= 7.66646E�22),ZNF679 (MDA= 3.26,P= 5.1857E�23),
AP001604.3 (MDA= 3.82, P= 3.68029E�19), and RP1-

137K24.1 (MDA= 3.35, P= 3.48252E�22) (Figure 5D). All
these six selected markers had obvious differences in 5hmC
enrichment in most of the cancer patients compared to the

normal controls. These results suggest that the aberrant hydrox-
ymethylation levels of these six genes could be the potential diag-
nostic biomarkers for lung cancer.

Next, we sought to investigate whether the candidate mar-
ker genes are associated with carcinogenesis. We performed
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protein–protein interaction (PPI) and functional enrichment
analyses using the top 100 candidate genes from our classifier
(Table S2). We found that the selected candidates were mainly

enriched in the signaling pathways related to cancer, including
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To further verify the sensitivity of the 5hmC biomarkers
selected, we compared the 5hmC candidate biomarkers filtered
in the current study and the known clinical biomarkers. We

found that 43.48% (10/23) individuals showed negative results
using any of the traditional markers (misjudgment), whereas
exhibited positive results using all of the six candidate genes

selected (well-judged). Meanwhile, 86.96% (20/23) individuals
showed at least 2 positive results based on the test of six can-
didate genes (Figure 6B and Table S3). These results suggest

that cfDNA 5hmC of these six candidate genes are more sen-
sitive for predicting lung cancer than the traditional ones and
may potentially serve as sensitive and specific diagnostic
biomarkers for NSCLC.

Discussion

Recent studies demonstrate that 5hmC, a relative stable inter-
mediate product of active DNA demethylation, plays a critical
role in gene expression regulation and is also regarded as a

novel epigenetic biomarker for cancer diagnosis and prognosis
[20–22]. In this study, we utilized a sensitive 5hmC-Seal method
[27] to generate the genome-wide profiles of cell-free 5hmC in
NSCLC patients and healthy controls. We have identified the

robust NSCLC-associated 5hmC signatures with significant
5hmC gain in gene bodies and promoter regions in NSCLC
patients. Moreover, we also find that genes with 5hmC gain

are highly associated with cancer occurrence and progression.
Meanwhile, we further discover potential 5hmC-based
biomarkers in circulating cfDNA of NSCLC via machine-

learning-based tumor classifiers. Overall, our findings illustrate
that 5hmC signatures of cfDNA have the potential to serve as
biomarkers for NSCLC, the performance of which could be lar-

gely improved by recruiting more patients in the future studies.
Alterations in the cancer-associated 5hmC signature change

in plasma cfDNA are highly predictive for several types of
human cancers [24–26]. By sequencing the genome-wide

5hmC in the cfDNA from 49 cancer patients, including 15 lung
cancer, 10 hepatocellular carcinoma, 7 pancreatic cancer, 4
glioblastoma, 5 gastric cancer, 4 colorectal cancer and 4 breast

cancer patients, Song et al. have reported a progressive global
loss of cell-free 5hmC in lung cancer [25]. However, hepatocel-
lular carcinoma and pancreatic cancer show both enriched and

depleted 5hmC genes compared to healthy controls. Li et al.
have detected the genome-wide distribution of 5hmC in cfDNA
from 90 healthy individuals and 260 patients with colorectal,

gastric, liver, pancreatic, or thyroid cancer [26]. They further
identify 5hmC-based biomarkers derived from circulating
cfDNA with high sensitivity and specificity for colorectal and
gastric cancers. Our previous study has revealed the esophageal

cancer-associated 5hmC changes in plasma cfDNA, and dis-
covered that 5hmC biomarkers could be used for early detec-
tion of esophageal cancer [24]. Taken together, these findings

indicate that cell-free 5hmC sequencing may provide a promis-
ing noninvasive approach for cancer diagnosis and prognosis.

Our findings that global cell-free 5hmC gains in both gene

body and promoter regions in NSCLC patients compared to
healthy controls (Figures 2D, 4B, 4C, S2A, and S2C) are
inconsistent with the previous study reported by Song and
his colleagues [25]. This may be due to the geographic disparity

for the normal controls. As for public data [25], the 15 lung
cancer patients were recruited in a West China Hospital but
8 healthy controls (1 corresponding input) were obtained from
Stanford blood center. It has been shown that ethnic differ-
ences in both genomic and epigenetic polymorphisms exist,

which presumably contribute to the markedly distinctive fea-
tures of cancer profiles in different populations, resulting in
varied modalities for diagnosis, prognosis, and treatment guid-

ance [40–42]. Thus, whether different ethnic groups display dis-
tinct cfDNA 5hmC features and thereby lead to distinguished
approaches for cancer diagnosis in clinical setting remain

unclear and need further examination.
Previous studies indicate that aberrant 5hmC enrichment in

the promoter regions is also associated with the carcinogenic
process [36,37]. Uribe-Lewis et al. reported that 5hmC in pro-

moter regions could be used as colon cancer markers [36]. Addi-
tionally, DhMPs identified from their studies could well
separate cancer patients and controls. Moreover, distinct differ-

ences in DhMPs of cfDNA between tumor and control groups
were also demonstrated in our study (Figure S2A–D). In addi-
tion, the gene sets affected by the differential 5hmC modifica-

tion in the promoters were strongly associated with cancer
development (Figure S2E and S2F). Further studies should be
performed to evaluate the potential value and accuracy of

DhMPs in tumor classification and detection using large-scale
tumor samples with multiple histological tissue types.

Considering the highly heterogeneous nature of lung cancer,
large-scale clinical studies are required to identify disease-

specific cell-free 5hmC signatures and further validate their sen-
sitivity, specificity, and accuracy in the early diagnosis of lung
cancer. It has been reported that about 25% of patients with

stage I lung cancer will have recurrent disease due to occult
metastasis [9]. Thus, 5hmC-based biomarkers may also have
the potential value to classify early-stage (IA and IB) lung can-

cers into subtypeswith low risk and high risk recurrence pending
with appropriate treatment, such that the post-surgery adjuvant
therapy should mandatorily be given to the patients with higher

risk of metastasis. Collectively, the detection of 5hmC-based
biomarkers in the cfDNA may offer a non-invasive and easily
accessible method for early diagnosis and treatment of human
cancers, and also potentially for other diseases such as neurode-

generative, cardiovascular, and metabolic diseases.

Conclusion

In this study, we have generated the 5hmC profiles of cfDNA
from Chinese NSCLC patients and detected the large-scale

5hmC gains in both gene bodies and promoter regions in the
tumor group compared with healthy controls. Six potential
biomarkers are further identified to be highly conserved in con-
trols compared with heterogeneous tumor samples, and more-

over, have a higher sensitivity in disease diagnosis than
classical biomarkers. Our findings are potentially valuable in
the development of new strategies for diagnosis and therapeu-

tic treatment of NSCLC.
Materials and methods

Patient characteristics

In total, 74 patients with NSCLC were enrolled from the First
Affiliated Hospital of Zhengzhou University, Zhengzhou,
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China, from September 2016 to July 2017. Peripheral blood
samples from NSCLC patients were obtained preoperatively
from the Department of Thoracic Surgery. We excluded

patients that received surgery, chemoradiotherapy or
immunotherapy within the past six months when sample were
collected. After a strict pathological diagnosis and exclusion

process, 66 patients with NSCLC were included and subjected
to 5hmC sequencing. Cancer stages were classified according
to the Eighth Edition Lung Cancer Stage Classification in

AJCC/UICC cancer staging manuals [43]. The information
of classification of TNM stages and lymphatic metastasis is
not available for 4 NSCLC patients. A total of 67 healthy con-
trol samples were retrieved from the study by Tian and his col-

leagues [24], which were also collected from the First Affiliated
Hospital of Zhengzhou University between September 2016
and July 2017. To minimize the age and gender impacts, we

have selected the controls that are comparable with tumor
group. This study was approved by the Institutional Review
Board of the First Affiliated Hospital of Zhengzhou Univer-

sity. All subjects provided written informed consent according
to the institutional guidelines.

Blood sample processing

Plasma samples were obtained from peripheral blood (about
4 ml per sample) by taking the supernatant after centrifugation
twice at 1350g for 12 min and once at 13,500g for 12 min at

4 �C. The QIAamp Circulating Nucleic Acid Kit (55114,
Qiagen, Valencia, CA, USA) was used for cfDNA extraction
by following the manufacturer’s manual.

5hmC library construction and sequencing

5hmC library construction was performed as described previ-

ously [24]. Briefly, the cfDNA was ligated with sequencing
compatible adaptors. Next, ligated DNA was incubated in a
25-ml reaction solution containing HEPES buffer (50 mM,

pH 8.0), MgCl2 (25 mM), N3-UDP-Glc (100 mM, Active
Motif, Carlsbad, CA, USA), and b-glucosyltransferase
(1 mM, Thermo, Waltham, MA, USA) for 1 h at 37 �C. Then,
1 ml DBCO-PEG4-DBCO (4.5 mM, Click Chemistry Tools,

Scottsdale, AZ, USA) was added and incubated for 2 h at
37 �C. Subsequently, the Micro Bio-Spin 30 Column
(Bio-Rad, Richmond, CA, USA) was used to purify the

DNA. Thereafter, C1 streptavidin beads (5 ml, Life Technolo-
gies, Gaithersburg, MD, USA) were added. After incubation
with DNA for 15 min at room temperature, the beads

underwent eight 5-min washes. The 5hmC-containing cfDNA
fragments were amplified with 14–16 cycles of PCR amplifica-
tion (initial denaturing at 98 �C for 45 s, followed by 14–16

cycles of denaturing at 98 �C for 15 s, annealing at 60 �C for
30 s, extension at 72 �C for 30 s, and a final extension at
72 �C for 60 s). The amplified product was purified using
AMPure XP beads and used as the library for high-

throughput sequencing analysis on the Illumina NextSeq 500
platform.

The 5hmC-seq data were deposited in the Genome

Sequence Archive [44] in BIG Data Center [45], Beijing Insti-
tute of Genomics (BIG), Chinese Academy of Sciences, under
accession number PRJCA000816 that are publicly accessible at

http://bigd.big.ac.cn/gsa.
Mapping and differentially modified regions detection

For the sequencing data, Trimmomatic (version 0.33) [46] was
used to trim off adaptor sequences, and reads <35 nt in length
were filtered out. The remaining reads were mapped to the

human genome (version hg19) using Bowtie 2 (version 2.2.9)
[47]. The mapped reads with quality score �20 were retained
for the subsequent analysis.

Identification of 5hmC-enriched regions (hMRs) was per-

formed using MACS2 (version 2.1.1) [48]. Genomic annota-
tions of hMRs were performed using the ‘‘intersect”
function of BEDTools (version 2.26.0) [49] and the genome-

wide distribution of 5hmC was visualized using Circos [50].
The metagene profile was generated using ngsplot [51]. Peaks
with high enrichment and significance (q < 1E�12; fold

enrichment >8) in all samples were considered as highly reli-
able peaks and were combined into one unified catalogue by
the ‘‘mergePeak’’ function from HOMER (version 4.9.1)

(merged peaks: 266,514) [52]. BEDTools [49] was then used
to calculate the tag counts of merged highly reliable peaks
in all samples.

Detection of differential genes and functional analysis

Paired-end reads were converted into BedGraph format nor-
malized by BEDTools and visualized using the Integrated

Genomics Viewer [53,54]. 5hmC FPKM were calculated using
the fragment counts in each of the Ensembl gene bodies
(parameters used: –F 0.3 –c) and promoter regions (defined

as 1 kb upstream of TSS for each Ensembl gene) obtained by
BEDTools. After filtering out genes in chromosomes X and
Y, differentially modified genes in the autosomes between sam-
ples from patients with NSCLC and healthy controls were

identified using DESeq2 package (|FC| > 1.5 and adjusted
P < 1E�5). De novo motif analysis around DhMRs was per-
formed using HOMER (version 4.4) [52]. Furthermore, signif-

icant differential genes were analyzed using the principle
component analysis (PCA). Hierarchical clustering and heat-
map analyses were performed using the R Statistical Package

(version 3.4.1). KEGG pathway analysis was performed using
DAVID Bioinformatics Resources 6.8 [55,56]. PCA and hier-
archical clustering analyses for DhMPs were also performed

in R. The PPI network and functional enrichment annotation
were generated with the top 100 genes identified with the clas-
sifier using the Search Tool for the Retrieval of Interacting
Genes (STRING) database [57].

Classifier construction

The Random-Forest model [58] was applied as a machine clas-

sifier to calculate the mean decrease accuracy (MDA) of differ-
ential genes in tumor and control groups, using the Random
Forest library in the R Statistical Package. We set up different

combinations of parameters for the number of trees and the
genes that the algorithm selected every time to find the opti-
mum combination (ntree = 700, mtry = 48). The training

and validation datasets of all differential genes were selected
randomly with the proportion of 7:3. To ensure the signifi-
cance of each potential marker, we used two-tailed t-tests to
obtain the P value for the top 30 genes, and defined genes with

an MDA >3.2 and �log10 (P value) >18 as significantly

http://bigd.big.ac.cn/gsa
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different. Prism (GraphPad, La Jolla, CA) was used to visual-
ize the different 5hmC levels between tumor and control
groups.
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