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Abstract: Genome-scale metabolic models are frequently used in computational biology. They
offer an integrative view on the metabolic network of an organism without the need to know
kinetic information in detail. However, the huge solution space which comes with the analysis of
genome-scale models by using, e.g., Flux Balance Analysis (FBA) poses a problem, since it is hard to
thoroughly investigate and often only an arbitrarily selected individual flux distribution is discussed
as an outcome of FBA. Here, we introduce a new approach to inspect the solution space and we
compare it with other approaches, namely Flux Variability Analysis (FVA) and CoPE-FBA, using
several different genome-scale models of lactic acid bacteria. We examine the extent to which different
types of experimental data limit the solution space and how the robustness of the system increases
as a result. We find that our new approach to inspect the solution space is a good complementary
method that offers additional insights into the variance of biological phenotypes and can help to
prevent wrong conclusions in the analysis of FBA results.

Keywords: solution space; perturbation; sensitivity; robustness; constraints; FBA; FVA

1. Introduction

Computational modelling has become a standard approach to achieve a comprehen-
sive understanding of metabolic networks. In the absence of detailed kinetic data and in
order to represent metabolism as a whole, genome-scale models based on the stoichiometric
wiring of the system are a suitable way to, e.g., determine permissible and optimal flux
distributions [1]. For this purpose, an optimality criterion, usually biomass production has
to be defined [2] and optimal flux distributions are calculated. This process which uses
linear programming is called flux balance analysis (FBA) [3]. The result is usually one
specific flux distribution which, however, is by no means unique [3]. The presence of ample
alternative solutions, however, limits the predictability of genome-scale metabolic models.
To increase the predictability, different types of constraints can be applied [4]. Among the
most commonly used constraints are consumption and production rates of metabolites in
the medium [4]. Furthermore, transcriptome and proteome data have recently been used to
reduce the solution space of the optimization. This data can be used to reduce the topology
of the system by eliminating reactions for which no gene expression for the responsible
enzyme can be found [5]. In addition, the abundancies of transcripts or proteins can be
used to constrain the respective flux bounds [6–8].

However, even with all of the above described types of constraints, the solution space
of an FBA problem remains large and FBA solutions are still not unique. There are various
attempts to study properties of this solution space. In general, the solution space of a
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constraint-based model is convex [9], consisting of all the steady-state flux distributions
under a given set of constraints and an optimality criterium. The most common approach
to study the solution space in more detail is named flux variability analysis (FVA) [10].
Here, the range of flux is determined for each individual reaction for which an optimal
(with respect to the optimality criterion) flux distribution of the network is found. However,
this does not sufficiently provide information on the feasible combinations of individual
fluxes resulting in specific biological responses.

In the past, different methods have been developed to go beyond FVA when inspecting
the solution space. Kelk and colleagues developed a method named CoPE-FBA, which de-
composes the alternative flux distributions into three topological features, namely vertices,
rays and linealities (corresponding to paths, irreversible and reversible cycles in a metabolic
network, respectively) [11]. They showed that the optimal space is often determined by a
few subnetworks/modules consisting of numerous reactions with multiple internal routes
in each. Having analysed the solution space via this method, the entire space can be
characterised by a few subnetworks/modules. Consequently, two reactions would occur in
the same module if their flux value across all vertices is correlated. These reactions might
appear either in the same flux route or in exclusive ones.

Other common methods rely on sampling the solution space for the investigation
of its properties. Monte-Carlo sampling of the steady-state flux distribution has been
used to calculate the probability distribution of the flux values as well as the correlated
reactions, revealing those sets of reactions which display a highly correlated flux [12]. It
has also been reported that correlated reaction/gene sets can be considered as modules
to characterize regulatory networks [13]. In another attempt, using random sampling,
average values and standard deviation of all the reaction rates were used to describe the
changes in flux values between different conditions and compare these to gene transcription
profiles [1]. Sampling the solution space has also been used to find the steady-state flux
distribution consistent with experimental data under various physiological conditions in
human mitochondrion [14]. One drawback of these methods (specifically Monte-Carlo
sampling) that they are computationally quite expensive, although recent development has
made the process more efficient and cheaper [15]. To name one, coordinated hit-and-run
with rounding (CHRR) is reportedly a very efficient method and has been used to study the
properties of genome-scale models of bacterial systems [15,16]. Sampling methods have also
been used to study the effect of a change in biomass precursors, ATP maintenance (ATPm)
and the uptake/production rates of metabolites in response to temporal fluctuations in
environments, leading to the conclusion that incorporation of such constraints considerably
increases the accuracy of flux distribution [17].

An inevitable consequence of having a large solution space is that many solutions
denote biologically unrealistic phenotypes. For instance, the generation of internal loops
in the network might result in the interconnectivity of two electron pools, or the produc-
tion of energy resources such as ATP [18]. As a result, the internal flux distribution of
constraint-based models is not reliable and is considered to be one of the shortcomings of
this modelling approach.

In this study, we investigated the solution space of different genome-scale models
particularly focusing on inconsistencies between simulation and experimental results
using a new strategy. With this strategy, we fix individual fluxes randomly to different
values within the permissible interval given by FVA and recalculate FBA. In this way,
we get a multitude of different optimal flux distributions in a computationally relatively
cheap, but not exhaustive way. We used this approach to examine the effect of different
experimental constraints on the solution space, to study the capabilities of the models
to fit the experimental data. While Monte-Carlo methods have majorly focused on the
analysis of individual/subsets of reactions (finding probability distributions of flux values
or finding correlated fluxes), our method is designed to obtain a whole-system overview
by showing the degree of sensitivity of reactions, the extent of the sensitivity/variability of
such reactions, and the model behaviour at phenotype decisive branching points, by using
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a relatively small sample size. We also compared our findings to the results obtained using
the CoPE-FBA method. The comparison was aimed at finding to what extent the results of
our method are mirrored by the modules generated by CoPE-FBA. For this purpose, we
used models of Enterococcus faecalis [19] and a knock-out mutant of glutamine synthase
(∆glnA) of Enterococcus faecalis applying different constrains, e.g., metabolic and proteomic
data [7] to trace their effect on the solution space. Moreover, we employed genome-scale
models of Streptococcus pyogenes [20] and Lactococcus lactis [21] in order to reproduce parts
of our findings, to ensure that the results are not restricted to one specific model and to
show that our findings can be considered characteristic of genome-scale models and/or the
numerical routines that are employed for calculating FBAs in general.

2. Results

To investigate the solution space, as well as the robustness of the solutions produced
by FBA, a published genome-scale metabolic model of E. faecalis (a wildtype [19] and a
∆glnA mutant variant [19]), as well as models of S. pyogenes [20] and L. lactis [21] were
used. The respective analyses were aimed at revealing the dependency of the size and
properties of the solution space on different constraints and parameters. The robustness of
the steady-state flux distribution as calculated by FBA was examined by extensive analysis
of the solution space. The complete results can be found in Supplementary file 1.

2.1. Effect of Constraints on the Solution Space in the Network

Initially, we used a published genome-scale metabolic model of E. faecalis [19] in its
wildtype form, as well as a variant of this model, namely a ∆glnA mutant, in which the
flux of glutamine synthetase (R_GLNA) was set to zero. For both models, experimental
data on the medium composition, as well as on uptake and release of different metabolites,
namely carbohydrates, organic acids (fermentation products) and amino acids, as well
as dry mass measurements were available and integrated into the models step-wise. The
feasible flux interval of each reaction was determined by FVA [10]. Thus, when analysing
the E. faecalis wildtype and mutant models, we first counted how many reactions—with
and without the given constraints—have a variable flux according to FVA (Table 1). As can
be seen, for these two models (wildtype and the mutant), starting with an entirely non-
constrained model, the addition of constraints at each step (constraining with the medium
composition, the uptake and production rates of metabolites and finally with proteome
data)—not surprisingly—results in a reduction of the number of variable reactions.

Table 1. Number of variable reactions in differently constrained genome-scale models of E. faecalis
wildtype (wt) and ∆glnA mutant (mt). Here, “nc” indicates model version without any constraints,
“med” indicates integration of medium composition, “met” the additional integration of data on
metabolite uptake and release and “pro” the additional integration of proteome data.

Model Name
Number of Variable

Reactions
Variability > 10−6

Number of Variable
Reactions

Variability > 10−3

No of
Reactions

mt + nc 397 397 708
mt + med 362 340 708

mt + med + met 347 315 708
mt + med + met + pro 298 289 708

wt + nc 398 398 709
wt + med 363 341 709

wt + med + met 362 340 709
wt + med + met + pro 307 85 709

2.2. Inspecting the Solution Space Using Random Perturbations

Knowing the number of variable reactions and the extent of this variability is certainly
important information. However, it does not easily allow insight into how variable bio-
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logical phenotypes in the solution space are. To gain a comprehensive picture, we wanted
to investigate how robust the steady-state flux distribution and especially the resulting
conclusions are with respect to different alternate optimal flux distributions. Thus, we de-
veloped a new approach based on the FVA results: Here, fluxes which according to default
parameters in FVA display a variability of flux beyond a change of 10−6 are considered to
be “variable”. All other reaction fluxes are seen as “stable”. It is also interesting to note that
the majority of reactions in all models, except for wt + med + met + pro, had an interval
size larger than 10−3. For each reaction showing a flux interval determined by FVA, the
respective flux value was fixed to 10 different randomly selected values within the given
FVA interval. We will refer to this as a “perturbation”. Then, for each of the 10 randomly
fixed flux values, FVA and FBA were recalculated and the effect on the flux distribution in
terms of taking an alternative optimal distribution was investigated. In addition, we were
interested in the extent to which reactions show a variable flux and therefore, we will refer
to reactions that change their flux value in response to a perturbation by at least 5 percent
as “sensitive”, and reactions that change their flux by less than that and therefore always
carry approximately the same flux value irrespective of any perturbation as “robust”. It
has to be pointed out that the value of ±5% resulted in an acceptable distinction between
different characteristics among models within our set-up, but this can be adjusted to a
higher/lower value if necessary. Please note that the concept of “stable” and “robust” are
not the same, as “stable” refers to reactions for which FVA denotes no flux variability, while
“robust” refers to variable reactions with a very small flux interval. We found the width of
the permissible flux to be an important indicator of the size of the solution space.

The above strategy was applied to the models of E. faecalis, with and without the given
experimental constraints. Accordingly, we first counted how many reactions in the models
(wildtype and mutant) were sensitive (exhibited flux changes of more than 5 percent) after
a perturbation in comparison to the original flux distribution (Figure 1). As can be seen
in Figure 1, the addition of constraints results in a reduction in the number of sensitive
reactions, which in turn raises the number of robust reactions. Moreover, the integration of
constraints showed a quite different effect on the number of “sensitive” reactions when
comparing the wildtype and mutant models (Figure 1). Interestingly, although there are
more variable fluxes in the model of the wildtype according to FVA, more reactions actually
changed their flux values significantly in response to perturbations (sensitive reactions)
in the model of the mutant, especially after the constraints have been applied. Moreover,
following the integration of constraints and consequently limiting the solution space, the
number of sensitive reactions that changed their directionality in response to perturbation
decreased dramatically. In the model of the mutant, the percentage of reactions showing
a reversed flux dropped from 33% (mt + nc) to 13%, 7% and 3% (mt + med, mt + med +
met and mt + med + met + pro, respectively). In the case of the wildtype, a similar trend
was observed, with the percentage decreasing from 35% (wt + nc) to 14%, 4% and 4% (wt +
med, wt + med + met and wt + med + met + pro, respectively).

In order to grasp the essence of sensitivity in constraint-based models, a more elaborate
analysis of the sensitivity seems to be necessary. One of the interesting aspects of our
findings was that the overall sensitivity in the network, namely the number of sensitive
reactions seems to have a direct correlation with the size of the solution space. Besides that,
the number of variable reactions with a variability of larger than 10−3 showed a similar
correlation.

Here, we should also point out that it is difficult to differentiate between FBA prop-
erties in general and the employed numerical routines. In order to make sure that our
results are not purely mirroring numerical behaviour of the used optimisation algorithms,
we repeated the above calculations using the solvers CPLEX and GLPK as implemented
in the COBRA toolbox (when flux distribution was obtained by FBA function). For FVA,
we also used PySCeS-CBMPy [22] (obtaining flux distribution by FVA function, similar to
the original procedure with COBRA). The result showed that despite some small differ-
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ences, the trend of the decreasing number of sensitive reactions following the integration of
constraints was captured by all the above-mentioned software and solvers.

Figure 1 shows the fraction of variable reactions that are sensitive or robust in each
model, respectively. The integration of constraints results in an increase in the robust
fraction, pointing on a significantly decreasing sensitivity interval. While the extent of this
effect is very different between the wildtype and the mutant, the overall pattern seems to
be conserved.

Figure 1. The fraction of variable reactions in each model, separated into sensitive and robust
reactions. The term “robust” in this figure refers only to the fraction of variable reactions with a
variability interval of less than ±5%.

However, the extent to which sensitive reactions change their fluxes as well as the
frequency of the changes seem to vary independently of the trend in which the number
of sensitive reactions changes. When analysing the frequency, which is the number of
times a reaction significantly changed its flux after perturbations, it was revealed that the
sensitive reactions in the model of the mutant constrained with the medium composition
data responded to perturbations less frequently, compared to the models with metabolic
and proteome data, although the number of sensitive reactions in those models is lower
(Figure 1). However, these findings show poor agreement among the results obtained by
different software and the results seem to be non-conclusive and significantly affected by
numerical libraries and software implementations.

When performing the perturbation, the new flux value for one reaction can be very
different from the original flux value in the reference flux distribution profile. To find
out about the distribution of the alternative flux values taken by the sensitive reactions
across the flux intervals following the perturbations, the flux ranges of sensitive reactions
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(in the mt + med, mt + med + met and mt + med + met + pro models) as determined
by FVA were divided into 20 bins and the frequency of fluxes occurring in each bin
was calculated (Figure 2A–C). Moreover, the interval in which each sensitive reaction
responded to perturbations was determined and compared to intervals given by FVA
(Figure 2D–F). The result showed that the responses of sensitive reactions (to perturbations)
generally happen in larger intervals in the model with integrated medium composition
data compared to the two models with more constraints. This is no surprise. However,
it is interesting to see that the distribution of the flux values showed that with increasing
constraints more and more flux values were taken that sit at or are close to the boundaries
of the permissible intervals. Furthermore, the comparison of the FVA interval sizes (when
larger than ±5% of the original value) with the frequency of response (the number of
times that a reaction responded to perturbations) revealed no connection between the two
(Supplementary Figure S1). Thus, a large permissible interval as calculated by FVA does
not imply that the corresponding flux is often changing its value as a result of perturbation.
Finally, the results revealed that although the frequency of response cannot be conclusively
discussed (due to the significant impact of software and libraries on the exact quantity); the
interval in which sensitive reactions change their flux decreased overall. This suggests that
the latter, the flux interval, is a more indicative index of the size of the solution space.

The result suggests that although FVA is fundamental in the analysis of the solution
space, it only captures one aspect of the solution space, which is the mere existence of
alternative optimal flux values. However, it is also important to analyse the width of the
permissible interval in a direct way, e.g., by the definition of sensitive reactions, which
seems to be one crucial aspect when analysing the solution space.

2.3. Investigating Biological Phenotypes in FBA Results

In order to study biologically relevant phenotypes and their appearance in the so-
lution space of FBA, three different metabolic branching points were analysed using the
perturbation approach. Branching points are interesting in this respect, since they represent
points where alternative biological phenotypes can differ significantly. Looking only at
FVA results it is possible to analyse feasible flux ranges for single reactions, but impossible
to extract permissible ratios between several fluxes.

First, we investigated the branching of fluxes at the level of pyruvate. In lactic acid
bacteria, pyruvate can be converted to either lactate which corresponds to homolactic fer-
mentation or to mixed acids, comprising ethanol, formate and acetate, referred to as mixed
acid fermentation. This particular branching point is highly relevant for biotechnological
applications (Figure 3).

The branching point also plays an important role in determining the state of energy
production in anaerobic organisms in general. Figure 4 shows, for the different models and
combinations of constraints, which fraction of the flux goes towards the homolactic or the
mixed acid fermentation pathway in the different sampled FBA runs.

As can be seen, the step-wise addition of constraints results in narrowing down the
range of flux distributions. The non-constrained model (both for the wildtype and the
mutant) predicts a highly variable flux distribution, ranging from absolutely homolactic to
lactate-free fermentation. This finding is not surprising, since both types of fermentation
can exist in lactic acid bacteria. Defining the medium helped to rule out a lactate-free fer-
mentation from the solution space for both models. However, fully homolactic fermentation
is still very frequently predicted, whereas a mix of homolactic and mixed-acid fermentation
is observed experimentally. This is noteworthy, since FBA is frequently performed based
on only data of the medium composition, which in this case, is clearly not sufficient for a
reasonable model prediction. Only the integration of metabolic flux data, e.g., in form of
uptake and production rates, as expected, fixes the amount of fermentation products so
that the flux distribution profile can more accurately reflect the experimental data.

However, in the model of the mutant, even the integration of the metabolic flux data
still allows qualitative differences in the flux distributions (Figure 4). In this case, in the
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original FBA of the mutant model, slightly more than 50% of the carbon flux goes towards
lactate production, consistent with the experimental observations. However, a highly
variable fermentation pattern was observed in the solution space of the FBA results using
the perturbation approach, ranging from almost homolactic fermentation to mixed acid
fermentation with less than 50 percent lactate formation. The integration of proteome data
lessens this variability, but does not completely eliminate it.

Figure 2. The distribution of alternative flux values across the flux intervals. Panel (A–C) show the
frequency of flux values of sensitive reactions divided into 20 bins in the mt + med, mt + med + met
and mt + med + met + pro models, respectively. Panel (D–F) show the intervasl in the respective
models in which sensitive reactions responded to perturbations (red and blue lines, indicating lowest
and highest flux values, respectively), and the interval given by FVA, indicated by red dots (lower
bounds) and blue dots (upper bounds). For the sake of clarity, a few extreme points in panel (D–F)
are excluded.
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Figure 3. The pyruvate branching point. The distribution of flux at this point determines the
fermentation profile of the cell.

Figure 4. The relative flux distribution in the branching point of carbohydrate fermentation (y-axis) in
response to one perturbation in each of the variable reactions (x-axis) in the two studied genome-scale
models of E. faecalis, resulting in homolactic or mixed acid fermentation in the two genome-scale
models of E. faecalis.

The fact that the addition of the constraints in the wildtype model resulted in the elim-
ination of non-physiological behaviour suggested that the solution space of the constrained
wildtype model is more highly limited than the one of the mutant. This is consistent with
the result of the above perturbation/sensitivity analysis, revealing that less reactions in
the wildtype model are sensitive to perturbations in the network (Figure 1), suggesting a
smaller solution space compared to the mutant model (as discussed in more detail before).
It needs to be stressed again that all these flux distributions show the same value for the
biomass production rate as the optimality criterium, while also fulfilling the constraints.

In a second example, the flux distribution at a branching point in serine metabolism is
evaluated (Figure 5). This branching point can lead both to amino acid metabolism, tRNA
loading, as well as central metabolism. After integrating the medium composition, in both
models, a very large fraction of the flux is predicted to be channelled towards the serine
O-acetyltransferase reaction (Figure 6). However, the addition of experimental metabolic
flux data results in a redirection of the flux towards the other two reactions, namely serine
dehydrogenase and seryl-tRNA synthetase. Although we did not explicitly include tRNA
loading in our models, it should be mentioned that there have been recent efforts to include
this process into genome-scale models, which further improves the inclusion of expression
data [23–27]. In the original FBA of the fully constrained mutant model, around 95% of the
flux is channelled through serine dehydrogenase. This value can slightly vary (less than
1%) in solution space (Figure 6), however, to a much smaller degree compared to the above
described flux distribution at the pyruvate branching point. It is important to note that this
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small variation does not exist in the wildtype model, supporting once again the suggestion
of a smaller solution space in the wildtype model.

Figure 5. The serine branching point by which serine is distributed. Pyr: pyruvate; sertrna: L-seryl-
tRNA; acetyl-ser: Acetyl-serine.

Figure 6. The relative flux distribution in the branching point of serine metabolism (y-axis) in
response to one perturbation in each of the variable reactions (x-axis) in the two studied genome-scale
models of E. faecalis, resulting in the production of acetyl serine, or seryl-tRNA or serine secretion.

Finally, we investigated a branching point in glutamine metabolism, where nitrogen
groups are distributed throughout metabolism via the amino acid L-glutamine. Thus, the
distribution of glutamine among different pathways was studied (Figure 7). Here again,
the result revealed that despite a huge variability in the non-constrained models, and the
ones constrained by medium composition only (Figure 8), the integration of metabolic flux
data and proteome data resulted in a more determined distribution pattern and a strong
re-direction of the flux towards pyrimidine and purine metabolism (by means of the PRFGS
and GLUPRT reactions) in both models. In the case of the wildtype model, the integration
of metabolic flux data without proteome data resulted in a very diverse flux distribution,
once more signifying the importance of proteome data (Figure 8).
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Figure 7. The glutamine branching point distributing amino-groups via the amino acid L-glutamine.
Gln_L: glutamine, pram: 5-Phospho-beta-D-ribosylamine, fpram: 2-(Formamido)-N1-(5-phospho-D-
ribosyl) acetamidine, gmp: guanosine monophosphate, gam6p: glucoseamine 6 phosphate.

Figure 8. The relative flux distribution in the glutamine branching point(y-axis) in response to one
perturbation in each of the variable reactions (x-axis)) in the two studied genome-scale models of
E. faecalis, resulting in the distribution of glutamine in different pathways, namely amino acid, purine
and pyrimidine metabolism.

2.4. The Influence of Specific Quantitative Constraints on the Solution Space

The results of our perturbation approach suggest that the solution space of the wild-
type model is indeed considerably smaller than that of the mutant. Thus, the wildtype
model was more robust with respect to perturbations. The number of sensitive reactions in
the wildtype model was less than half of that of the mutant model in the most constrained
cases. This finding can be considered to be an informative indicator of the solution space.
Moreover, analysing the flux distribution profiles at metabolic branching points revealed
that there is no variation in response to perturbation among different FBA runs (in the three
examples shown here) in the wildtype model, whereas in the mutant model, especially in
the case of the pyruvate branching point, the variation resulted in qualitatively incorrect
predictions, contradictory to experimental data.

To validate that the wildtype model better fits the data (due to the proclaimed smaller
solution space), the production rate of the fermentation products, ethanol, formate and
acetate, resulting from the perturbation analysis were compared to the experimental data
for the two different models. The result showed that in the mutant model, only 2.8% of
the ethanol production values, 50% of the acetate and 7.9% of the formate production
values were within a ±10% interval of the measured experimental data. In the case of the
wildtype, no flux distribution profile was beyond the ±10% interval of the experimental
data. This was expected, as it was described above that there was no observed variation at
the pyruvate branching point in the wildtype model.

To find out whether the constraints on the fermentation products are the main con-
tributor to the smaller solution space in the wildtype, the exchange reaction constraints
of the four fermentation products of the mutant, namely lactate, formate, ethanol and
acetate were integrated into the wildtype model. The model was then again subjected to the
perturbation approach, and the result revealed that the sensitivity of the model increased
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to a level comparable to that of the mutant model. This suggests that the smaller solution
space in the wildtype is mainly a result of the specific constraints of these four reactions.
Not surprisingly, the four reactions are involved in energy metabolism and the flux ratio of
these reactions determines the amount of energy that the system produces.

The result indicates that the functional analysis of the solution space can be very infor-
mative when studying biologically relevant phenotypes, as the functional consequences of
having large or small solution spaces can be determined.

2.5. Analysing the Solution Space Using CoPE-FBA

Using the above described perturbation approach seems to offer a relatively cheap
(in computational power) and fast way to investigate the solution space of whole-genome
scale models. In the following, we compare its results to another widely used approach—
CoPE-FBA. This method is a freely available open source software that guarantees access
to the sources. We want to see whether the modules generated by CoPE-FBA can reflect the
extent to which each model is constrained and whether they can relate to the ability of the
models to reproduce biologically meaningful results.

For this purpose, we analysed the quantitative impact that the constraints have on
the size of the solution space by using CoPE-FBA developed by Kelk et al. This software
analyses the solution space by defining modules consisting of sets of reactions with variable
flux that are linearly independent. The combination of variable fluxes within these modules
results in the expansion of the solution space.

We again used the wildtype and mutant model of E. faecalis, for which we have the
above described range of experimental data (medium composition, metabolite uptake
and production fluxes, as well as proteome data). We calculated the solution space of
the non-constrained models and compared these to the models constrained with medium
composition, metabolite flux data and/or proteome data. Here, a higher number of modules
with a lower number of reactions in each would imply a smaller solution space. As can
be seen in Table 2, the effect of applying metabolite flux data is surprisingly low, whereas
the application of the constraints arising from the proteome data eliminating some of the
reactions in the network is—not surprisingly—profound.

Table 2. The number of reactions in the existing modules in each model when their solution space
was analysed with CoPE-FBA.

Model Name Number of Reactions in Each Module

mt + nc 399
mt + med 360, 4

mt + med + met 345, 4
mt + med + met + pro 286, 5, 4, 4

wt + nc 400
wt + med 361, 4

wt + med + met 360, 4
wt + med + met + pro 295, 5, 4, 4

Comparing the result of the solution space analysis from CoPE-FBA to the perturba-
tion procedure, it is apparent that although CoPE-FBA successfully captures the quality of
reducing the solution space by applying more constraints to the system, it comes short in
reflecting the extent of reduction. The perturbation analysis, as discussed above, showed
that the integration of metabolic flux data results in a considerable reduction in the sensitiv-
ity both in the general term and the functional aspects of the solution space (analysis of the
branches). It also revealed that the fully constrained wildtype model has a considerably
more limited solution space compared to the fully constrained mutant model. Neither of
the two qualities were detected by the CoPE-FBA method. It has to be mentioned that
the CoPE-FBA could not be performed fully, as enumerating the number of solutions was
computationally infeasible due to the large solution space of the models. We suggest
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that in addition to being faster, even for large models, the perturbation procedure reflects
more aspects of the solution space that can be helpful to also functionally analyse the
solution space.

2.6. The Influence of ATP Maintenance on the Solution Space

Traditionally, maximal growth is the objective function of choice when comput-
ing FBA on microbial genome-scale metabolic models. Under conditions of limiting
resources/balanced growth, commonly applied for such studies, maximizing growth
intrinsically implies the maximization of growth associated ATP production, and conse-
quently, minimizing non-growth associated ATP consumption. The latter processes are
included in genome-scale models in the form of a generic ATPm reaction which refers
to all processes that require ATP, but do not yield biomass. Consequently, the reaction
boundaries of both reactions can directly contribute to shape the solution space, as the main
criteria in FBA is maximizing the growth-associated ATP production (assuming that the
objective function is the biomass reaction). As a parameter, ATPm has been shown to be
important for the result of FBA and has a pronounced impact on the consistency of biomass
production [17].

Due to its central importance, in several studies the ATPm has been experimentally
assessed with the aim to constrain the model in a biologically relevant way [19,28]. The
inclusion of an experimentally measured ATPm value assures that the minimum required
amount of non-growth associated ATP is produced, while growth-associated ATP is max-
imized. To investigate whether the ATPm value has any direct impact on the solution
space, a flux scan was performed on the wildtype model (integrated with metabolic and
proteome data) over the whole feasible interval of the ATPm value and the solution space
was calculated accordingly using CoPE-FBA (Figure 9).

Figure 9. Flux scan of the ATPm value over the feasible region of the wildtype model. The blue line
shows the ratio between the number of variable reactions and the number of modules generated by
CoPE-FBA.

The result of the scan revealed no significant change in the size of the solution space
until the ATPm value was right on the edge of the feasible state. While CoPE-FBA reported
a significantly smaller solution space at this point, a closer look at the optimization process
revealed that FVA failed to determine the flux interval for several reactions at this point.
To make sure this is not a model-specific problem, the same procedure was performed on
the mutant model, which resulted in the same kind of artefact. This suggests that when a
parameter is tied to the edge of the feasible state (by, e.g., its value being adjusted up to
several digits after the decimal during FBA), the optimisation process might fail to calculate
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the entire feasible interval, resulting in an artefact, which in this case appeared as a smaller
solution space.

To test whether this problem relates exclusively to ATP/energetically-involved reac-
tions or not, the procedure was performed on lactate dehydrogenase (as an example of
an energetically important reaction which does not contain ATP in its stoichiometry), as
well as on ribulose 5-phosphate 3-epimerase (as an example of an energetically nonrelated
reaction). The result revealed that the same artefact appeared in the case of both examples,
although to different extents (data not shown). Consequently, we suggest that this is a
universal characteristic of reactions in a constraint-based model and has to be considered
when integrating experimental data into models. This is particularly important for the
constraints whose values are obtained from an optimisation process such as ATPm.

The problem of creating a numerical artefact by working at the edge of feasible
solutions was discovered in the originally published version of the data integrated E. faecalis
wt model [7] when using 100% optimality tolerance during FVA. Here, the ATPm value
was optimised to be exactly at the edge of feasibility. Subsequently, two ways to avoid the
aforementioned problem were investigated. One is to decrease the optimality tolerance of
FVA from 100% to a lower value (e.g., 99.9%). This was done in the original publication and
results in a higher number of variable reactions and potentially a larger feasible interval
for some reactions. Another way to overcome the instabilities on the edge of the feasible
state is to change the value of one or a few flux boundaries to a very small extent. So, e.g.,
when the lower bound of the formate exchange reaction was decreased by 0.05 unit, which
also allowed to set back the ATPm value to the originally optimized one, the model was no
longer at the edge of feasibility. This strategy is currently used for all of the above described
analyses in this study.

Of course, the question is how such an adjustment that avoids the problem of working
at the edge of feasibility or having an artificially small solution space influences biologically
relevant results in this study or in any other computational study. Therefore, we compared
the results of the originally published parametrisation of the model with an optimality
tolerance of FVA set to 100% (leading to numerical artefacts as discussed above) with the
one where the tolerance is set to 99.9%, as well as with the results of the slightly adjusted
model version, also analysed with a tolerance of 100%, as well as 99.9%. Table 3 summarizes
the results of FVA of these four settings, revealing a higher number of variable reactions
when the tolerance is less strict which is not surprising. In the original model setting, this
difference is dramatic. However, as discussed above, this is clearly a numerical artefact
due to the inability of FVA to run optimisations in several cases.

Table 3. Number of variable reactions according to FVA (with the interval size larger than 10−6),
number of sensitive reactions according to the solution space inspection procedure (perturbation
analysis), and the number of reactions in existing modules in each model (CoPE-FBA). All three
methods were used with two optimality tolerance values (100% and 99.9%) and the respective results
were compared.

Wt + Med + Met + Pro-Edge Wt + Med + Met + Pro

optimality tolerance 100 99.9 100 99.9

FVA 209 387 307 387

#reactions, sensitive to
perturbation 94 137 137 151

#modules according to
CoPE-FBA 4, 13, 7, 5, 4, 4, 12, 3 295, 5, 4, 4 295, 5, 4, 4 295, 5, 4, 4

We repeated this analysis with our new perturbation approach. The number of
sensitive reactions showed a similar, but less dramatic trend (Table 3) (Supplementary
Figure S2). Finally, we also analysed the impact of the decreased optimality tolerance of
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FVA on flux distributions in the biologically relevant cases as described above. Here, no
significant difference was observed (Supplementary Figures S3–S5).

2.7. Validating the Results Using Models of Other Species

To find out whether the results from the functional analysis of the solution space,
as well as the resulting conclusions are specific to the genome-scale metabolic model of
E. faecalis or rather general to genome-scale metabolic models, the genome-scale models
of S. pyogenes [20] and L. lactis [21] were subjected to some of the analyses performed
on E. faecalis. For the model of S. pyogenes, a previously published genome-scale model
together with experimental data [20] was used. Similar to E. faecalis, constraints were step-
wise integrated into the model, comprising medium composition and metabolite uptake
and production rates. Due to the absence of proteome data, two artificial sets of proteome
data were generated for S. pyogenes (as described in Materials and Methods) to observe the
effect of the deactivation of model reactions on the solution space. The two artificial sets of
proteome data contain 11 “absent” reactions and are integrated into the model separately.
Between the two sets, one set contained the absence of 5 variable reaction and 6 stable
reactions (according to the above definition), while the other contained the absence of 10
stable and only 1 variable reaction (based on the FVA of the original model). Here again,
the integration of experimental data at each step (medium composition and metabolite
uptake and production rates) resulted not only in a lower number of variable but also
sensitive reactions (Supplementary Figures S6–S9). The integration of proteome data, i.e.,
the deactivation of the respective reaction, in both cases resulted again in a decrease in
the number of variable (according to FVA) as well as sensitive reactions. However, the
integration of the second artificial proteome data set with a higher number of variable
reactions had a more pronounced effect compared to the first proteome data set showing a
low number of variable reactions.

To further test whether the inactivation of variable reactions (which increases the
proportion of stable reactions in the model) has a reproducible effect (decrease) on the
number of sensitive reactions, again, artificial proteome data sets, now for the L. lactis
model were produced so that one set contained 15 stable reactions and the other contained
15 variable ones. While the integration of the first set (stable reactions) decreased the
number of sensitive reactions only by 3, the integration of the second set resulted in a
decrease of 44 reactions (Supplementary Figure S10). Hence, it can be suggested that while
deactivating reactions in a model, such that the proportion of variable reactions decreases
(deactivating more variable reactions than stable reactions), the model behaves more robust
(an indication of a smaller solution space). Deactivating stable reactions does not essentially
have the same effect.

3. Discussion

Genome-scale metabolic models are mathematically underdetermined systems with
large solution spaces. The solution space comprises all the possible flux distributions that
result in the optimum value of the objective function. Flux distribution profiles in any
given model are highly variable, mainly due to branches and nonlinearities of the metabolic
networks on the one hand, and the lack of sufficient constraints on the other hand. Thus,
while satisfying the optimum value of the objective function, two possible flux distributions
might be enormously different. To find out about the extent of variation at different levels,
genome-scale metabolic models were subjected to perturbations, and the response of the
FBA was observed accordingly. In that way, different specific optimal flux distributions
became visible and were sampled. It became apparent that there are not only quantitative
differences in the respective flux distributions, but also qualitative ones that impact the
biological interpretation of the results.

During the analysis, we were, however, also interested in the quantitative differences
of sensitivity. We therefore defined a significantly changed flux value to vary more than
±5% compared to the original values. We defined fluxes that only changed to a smaller
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degree as “robust”. This allowed us in a straightforward manner to analyse the influence
of constraints and differences in models w.r.t. the size of the permissive flux intervals.
We found that the number of “sensitive” reactions—those that display values beyond
±5% deviation of their original value—is a good indicator of the size of the solution
space in genome-scale models. We show that the models with lower numbers of sensitive
reactions are able to fit the experimental data better and have (potentially) better predictive
characteristics.

The substantial variation in flux distributions obtained by FBA underlines the fact that
a reported optimal flux distribution is just one out of many other optimal distributions and
therefore the distribution profile that is a result of one run of FBA is arbitrary. It is therefore
important that the result of a FBA flux distribution is referred to as ‘an optimal’ instead of
‘the optimal’ flux distribution.

Three further aspects result from our analysis:

1. To decrease the number of biologically inconsistent results, it is vital to integrate
biological constraints. In our analysis, generally the integration of proteome data
was the most effective in reducing the solution space. However, metabolic flux data
on exchange reactions (metabolic uptake and production rates) can also already
significantly reduce the solution space (decrease in sensitivity), e.g., at branching
points. The fact that the degree of reduction is really case-specific underlines the
second point [29].

2. The analysis of the solution space should be taken into account in any study using FBA.
As the above cases demonstrate, constraints like metabolite exchange rates, which
are arguably one of the more commonly used constraints, can effectively reduce the
solution space such that biologically relevant results for certain questions (e.g., specific
kind of fermentation) are achieved, but this is not the case for every model/data-set.
There are different ways to investigate the solution space. In our study, sampling by
perturbation was an easy and informative way to investigate the different optimal flux
distributions. We suggest that the functional analysis of the solution space using our
perturbation method gives an explicit account for the robustness as well as reliability
of genome-scale models. This also enables us to understand which data sets and
which biological phenotypes can effectively shrink the solution space and increase
the predictability of models.
However, there are alternative methods for the analysis of the solution space not in-
vestigated here, e.g., Monte-Carlo sampling. This approach is mostly used to calculate
the probability distribution of individual fluxes as well as to determine correlated
reaction sets which can be further used for experimental design [12,14]. While this
aims at the probability distribution of individual fluxes, our method is focused on
uncovering the uncertainty in the interplay between different metabolic fluxes. As
mentioned above, Monte-Carlo sampling enables the calculation of correlated reaction
sets, which can be used to select candidate reactions for flux measurements, helping to
estimate the flux value of its correlated ones. Nevertheless, our method showed, while
correlated, the integration of metabolic fluxes of fermentation products for which
the internal reactions were reported to be correlated (e.g., LDH, PFK [12]), does not
necessarily result in eliminating the physiologically inconsistent result (see analysis
of the pyruvate branching point in the case of the E. faecalis mutant). Therefore, the
analysis of the solution space using the perturbation procedure helped to yield more
information regarding the behaviour of the network as a whole. Another difference be-
tween the method presented in this article and Monte-Carlo sampling is a far smaller
sample size needed to capture the network response to different metabolic states.
While Monte-Carlo sampling needs a large sample size to reveal a comprehensive
overview (250,000 data points in [12]), our method uncovers different aspects of the
solution space using a far smaller sample size (~10 times the number of variable
reactions). However, this also implies that our method does a less complete sampling
of the solution space and certain alternative solutions might be overlooked. Moreover,
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although it is hard to compare the computational performance since our method has
a different purpose, we would like to state that our method is fast compared to the
Monte-Carlo sampling methods with respect to computational time. The comparison
of different Monte-Carlo sampling methods reported that the sampling time spans
from 7.64 to 10.67 min, for models of comparable size to our models (especifically
the model of E. faecalis) using the CHRR method (the most efficient Monte-Carlo
method available right now ) on an intel Core i7 at 2.5 GHz as reported by Fallahi and
colleagues [15]. In this study, a reduced version of the metabolic models was used,
meaning that the reactions carrying no flux were discarded. Therefore, the number
of reactions in the case of the four models, iLJ478, iSB619, iHN637 and iJN746 were
reduced from 652, 743, 785 and 1054 to 380, 450, 522 and 652, respectively [15]. The
perturbation process of our method took between 122 to 175 seconds depending on
the model (wildtype or mutant) and how constrained a model was, in the case of the E.
faecalis model on an Intel Core i5 2.3 GHz, 16 MB memory and HDD hard drive, when
the flux distribution profiles were obtained using FBA (on MATLAB). Our method
also allows the acquisition of flux distributions using FVA, which takes more time—in
this case between 31 to 51 min for the same models on the same hardware setup.
Comprehensive information regarding the run time of different models used in the
above-mentioned study using CHRR and the perturbation process in this study, as
well as the number of metabolites and reactions of each model used can be found
in the Supplementary Tables S2a and S2b (Supplementary file 2, sheet: run time
comparison). Of course; any additional statistical analysis takes further time.

3. Caution has to be taken if outcomes of FBA are close to the edge of the feasible
solution space w.r.t. some parameter, e.g., ATP maintenance. This is at least true
when applying methods that are based on FVA, as shown in Section 2.6, since FVA
often fails under these conditions and a solution space smaller than the actual space
is reported.

Finally, it is important to note that none of the employed methods allows to distinguish
very clearly between the absolute solution space of the FBA as such and the practically
determined solution space as reported by the numerical methods or software. In our study,
there was no qualitative difference between various optimization algorithms with respect
to major trends such as the decrease in the number of sensitive reactions following the
integration of constraints. However, different numerical solvers/algorithms and/or soft-
ware surprisingly resulted in minor quantitative differences, e.g., in the number of sensitive
reactions, or even major differences, e.g., the average number of reactions reacting to one
perturbation. Therefore, in addition to reliable qualitative outcome (the trend of change),
the best quantitative indicator for the size of the solution space is the number of sensitive
reactions, which only shows slight differences between different algorithms/software.

4. Materials and Methods
4.1. Models, Experimental Data and Constraints Integration

The genome-scale metabolic models of E. faecalis (wildtype) [19] and of a knock-out
mutant of glutamine synthase (∆glnA) of Enterococcus faecalis [19] were used for the initial
analysis. The experimental data was obtained from [7] for the wildtype and [30] for the
mutant. The findings reported here were validated using the genome-scale models of
S. pyogenes [20] and L. lactis [21] together with the respective published experimental data.
The models with no constraints (denoted by nc throughout the text) had all the upper
bounds set to +1000 (representing +infinity) and lower bounds to −1000 (representing
−infinity) except for the biomass reaction that was fixed at the intended objective function
value. Constraints were integrated at three different steps using the respective experimental
data, medium composition, metabolite uptake/secretion rates (organic acids and amino
acids) and proteome data. To integrate the medium composition data, the upper and lower
boundaries of the respective reactions were adjusted. To integrate the metabolite uptake
and secretion rates, the experimentally measured flux value of metabolites was used as
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the basis and a tolerance value of 40% was considered to account for measurement error.
Consequently, 20% were added to the measured value and used as the upper bound and
the subtraction of 20% was used as the lower bound [7]. To integrate proteome data, the
flux value of the reactions whose respective proteins were not detected by the proteomics
experiment were set to zero [7]. The complete list of constraints used for each model,
together with the list of metabolites and genes can be found in the supplementary file 2. In
summary, the E. faecalis model contains 709 reactions (in the case of the wildtype, 708 in the
case of the mutant), 644 metabolites and 688 genes. The model of S. pyogenes contains 576
reactions, 558 metabolites and 481 genes. The model of L. lactis contains 754 reactions, 650
metabolites and 516 genes.

4.2. Perturbation Procedure

The perturbation procedure was used to determine the effect of alternative optimal
values taken by each reaction on the flux distribution profile of the network. Given the
fact that parameters within the permissible flux interval calculated by FVA can result in
the optimal value of the objective function, we wanted to find out how each point in the
permissible interval affects the quantitative and qualitative flux distribution in the network.
The steady-state flux distribution of a constraint-based model can be obtained by:

S · v = 0, (1)

where S represents the stoichiometric matrix and v is the vector of flux distribution.
Here, the maximum and minimum values of individual reactions can be obtained us-
ing FVA [10] by maximizing the objective function and using the respective value as an
additional constraint:

Max f Tv,
s.t.S · v = 0,

vmin ≤ v ≤ vmax

(2)

where f is the objective function vector and vmax and vmin are the vectors of maximum and
minimum allowable flux values, respectively, for each reaction. Using this characteristic of
constraint-based models, the perturbation procedure we proposed is based on the idea that
a change in the flux value of a reaction would result in a different combination of fluxes in
the network, as shown in the Figure 10, in the example of two flux combinations:

Consequently, the robustness of model predictions, whether they are qualitative
biological phenotypes, or flux values/range for a several reactions can be examined and
the overall predictability of the model can be determined.

All analyses were done using the FBA perturbation toolbox which is available on
Github [31], developed for this project. The toolbox was primarily developed for MATLAB,
but a Python version is available as well. All analyses in this paper were done using the
Cobra toolbox version 3.1 [32,33] as the platform for constraint-based modelling on MAT-
LAB R2018a [34] on MacOS Mojave version 10.14.6 (Apple.com (accessed on 14 February
2020)). To perform the perturbations, the biomass reaction was set as constraint and fixed
at the intended value (lower and upper bounds having the same value). Afterwards, the
flux boundaries of variable reactions were determined by FVA (using CPLEX 12.8.0 [35]
(ibm.com (accessed on 27 February 2020)) as the solver) with an optimality percentage
of 100% or 99% as indicated in the text. The permissible interval size for the flux of each
reaction as calculated by FVA was determined and a threshold of 10−6 was applied to con-
sider a reaction as variable. Next, for each variable reaction, 10 random values within the
determined permissible interval were selected using the ‘rand’ function in MATLAB. The
rand function yields a single uniformly distributed number within the given interval. The
respective reaction was fixed at the given random value (lower and upper bounds having
the same value) and the flux distribution profile was recalculated each time using FVA.
For validation purposes, the analysis was repeated and the flux distribution was obtained
with FBA (using CPLEX and GLPK 4.65 [36]) in COBRA. The analysis was also repeated

Apple.com
ibm.com
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using PySCeS-CBMPy 0.8.0 [22] on Python 2.7 [37] and the flux distribution profiles were
again obtained using FVA (using CPLEX as solver). The obtained flux distribution for
each reaction was then compared to the original flux distribution and a flux value was
considered to change significantly, if it was altered beyond ±5% of the original flux value.
In the cases where the original flux value was zero, the threshold was set to 10−6.

Figure 10. Perturbation procedure to determine the robustness of FBA/FVA outcome. The fig-
ure shows how fixing one reaction at various random values results in a different range for flux
combinations between two fluxes.

4.3. Analysing the Solution Space Using CoPE-FBA

A standard analysis of the solution space was performed using CoPE-FBA with CPLEX
as solver [11]. For this purpose, FVA was performed and variable reactions were determined
with the interval size of 10−6 as a threshold. Afterwards, flux modules, which are the sets
of variable reactions that are linearly independent, were determined. The modules were
then used to analyse the solution space.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12010043/s1, Figure S1: Comparison between the sensitivity
frequency and the FVA interval size, Figure S2: The proportion of sensitive reactions with respect to
perturbations in other reactions in the genome-scale models of E. faecalis wildtype (wt) and ∆glna
mutant (mt), when the perturbation procedure was performed with opt-percentage of 99.9 in FVA,
Figure S3: The relative flux distribution at the carbohydrate branching point in the two genome-scale
models of E. faecalis with an opt-percentage of 99.9 in FVA, Figure S4: The relative flux distribution
at the branching point in serine metabolism in the two studied genome-scale models of E. faecalis
with an opt-percentage of 99.9 in FVA, Figure S5: The relative flux distribution at the branching point
in glutamine metabolism in the two studied genome-scale models of E. faecalis with opt-percentage
of 99.9 in FVA, Figure S6: The proportion of sensitive reactions with respect to perturbations in
other reactions in the genome-scale models of S. pyogenes, Figure S7: The relative flux distribution
through the carbohydrate branchpoint in the genome-scale models of S. pyogenes, Figure S8: The
relative flux distribution through the serine metabolism in the genome-scale model of S. pyogenes,
Figure S9: The relative flux distribution through a branch point in glutamine metabolism in the
genome-scale model of S. pyogenes, Figure S10: The proportion of sensitive reactions with respect to
perturbations in other reactions in the genome-scale models of L. lactis wildtype, Supplementary file
1, Table S1: Statistical analysis of the results from the perturbation process, Supplementary file 2: The
complete list of reactions, metabolites, GPR of each model; plus the list of constraints used for each
model, Supplementary file 2, Table S2a: The run time of different models using CHRR algorithm,
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Supplementary file 2, Table S2a: The run time of different models using the perturbation process for
FBA and FVA.
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