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Abstract

Candida albicans is an opportunistic pathogen that causes acute disseminated infections in immunocompromised hosts,
representing an important cause of morbidity and mortality in these patients. To study the genetic control of susceptibility
to disseminated C. albicans in mice, we phenotyped a group of 23 phylogenetically distant inbred strains for susceptibility
to infection as measured by extent of fungal replication in the kidney 48 hours following infection. Susceptibility was
strongly associated with the loss-of-function mutant complement component 5 (C5/Hc) allele, which is known to be
inherited by approximately 40% of inbred strains. Our survey identified 2 discordant strains, AKR/J (C5-deficient, resistant)
and SM/J (C5-sufficient, susceptible), suggesting that additional genetic effects may control response to systemic
candidiasis in these strains. Haplotype association mapping in the 23 strains using high density SNP maps revealed several
putative loci regulating the extent of C. albicans replication, amongst which the most significant were C5
(P value = 2.43610211) and a novel effect on distal chromosome 11 (P value = 7.6361029). Compared to other C5-deficient
strains, infected AKR/J strain displays a reduced fungal burden in the brain, heart and kidney, and increased survival,
concomitant with uniquely high levels of serum IFNc. C5-independent genetic effects were further investigated by linkage
analysis in an [A/JxAKR/J]F2 cross (n = 158) where the mutant Hc allele is fixed. These studies identified a chromosome 11
locus (Carg4, Candida albicans resistance gene 4; LOD = 4.59), and a chromosome 8 locus (Carg3; LOD = 3.95), both initially
detected by haplotype association mapping. Alleles at both loci were inherited in a co-dominant manner. Our results verify
the important effect of C5-deficiency in inbred mouse strains, and further identify two novel loci, Carg3 and Carg4, which
regulate resistance to C. albicans infection in a C5-independent manner.
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Introduction

Candida albicans is an opportunistic fungal pathogen that exists

commensally in the gastrointestinal and genitourinary tracts of

healthy individuals[1], but that causes severe disseminated and

often lethal infections in immunocompromised patients, such as

those suffering from HIV infection or undergoing cancer

chemotherapy[2]. In the United States alone, Candida species

constitute the fourth most common causative agent of nosocomial

bloodstream infections, and are associated with significant

attributable mortality in both adults and children (47% vs.

29%)[3–5]. Despite the rising trend of infections with non-albicans

Candida species, Candida albicans remains the most common isolate

recovered from bloodstream infections worldwide, with the

frequency of occurrence ranging from 37% to 70%[6]. Genetic

effects have long been suspected to play a role in the initial

susceptibility and subsequent development of severe C. albicans

infection in humans[7] and in animal models of experimental

infections[8,9]. Genetic predisposition to disseminated candidiasis

in non-immunocompromised humans has not yet been associated

to any particular gene, although individuals presenting impaired

phagocyte function are more susceptible to Candida infections[10],

as observed in myeloperoxidase (MPO) deficiency. In addition,

deleterious mutations in multiple direct or downstream immune

effectors, notably CLEC7A[11], STAT3[12], and CARD9[13],

have been found in human cohorts with high prevalence of

chronic mucocutaneous candidiasis (CMC) and have been

recapitulated and studied in mice.

In mouse models of infection, response to C. albicans is under a

complex genetic control that affects onset of infection, type and

severity of disease developed and associated pathologies (oropha-

ryngeal, mucosal, or systemic forms), and extent of immune

response elicited[14]. Inbred mouse strains vary widely in their

degree of innate susceptibility to systemic candidiasis, being either

highly susceptible (A/J, DBA/2) or highly resistant (BALB/c,

C57BL/6J). Studies in inbred strains[15,16], together with genetic

linkage and association studies in informative backcross and F2

mice, and experiments in AcB/BcA recombinant congenic

strains[17] derived from susceptible A/J and resistant C57BL/6J

progenitors, have identified a critical role for the complement

component 5 (C5) in differential susceptibility of these two inbred

mouse strains. A/J and other susceptible strains carry a defective

C5 allele, which causes susceptibility to infection with C. albicans, as

well as Cryptococcus neoformans[18,19]. Phenotypically, resistant C5-

sufficient C57BL/6J mice die late in infection due to high kidney

fungal loads, and associated strong neutrophil-driven inflamma-

tory response at that site, while C5-deficient A/J mice succumb

within 24 hrs of infection with little kidney damage, but displaying
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an allergic-like response associated with high levels of circulating

TNFa, IL-6, MCP-1, MCP-5 and eotaxin[20,21], resulting in

multiple organ failure including cardiomyopathy[21]. The com-

plement pathway represents the first line of defense of the innate

immune system and plays a major role in eliciting an inflammatory

response to the site of infection[22–24]. The complement system

can be activated by several pathways triggered by microbial

products, which ultimately result in the activation of C3

convertase, cleavage of C5, release of chemotactic factors (C3a

and C5a), and generation of the membrane attack complex

(MAC)[23]. The importance of complement cascade is further

demonstrated in C32/2 animals which show impaired fungal

clearance and higher mortality than wild type controls when

infected with C. albicans or C. glabrata[25].

Studies in inbred strains and in AcB/BcA recombinant congenic

strains have suggested that the deleterious effect of the C5 allele on

fungal load and survival time of C. albicans infected mice may be

further modulated by genetic background effects[9,15,17]. In

addition, the genetic analysis of histopathological responses in

target organs following systemic C. albicans infection has pointed to

C5-unrelated genetic loci, temporarily given the appellation Carg1

and Carg2 [26,27]. Although the genes underlying these effects

remain unknown, these studies have clearly pointed at additional

complexity in the genetic control of host response to C. albicans

infection. With the aim of identifying such additional gene effects,

we have herein phenotyped a total of 23 phylogenetically distant

inbred strains of mice for susceptibility to C. albicans. These studies

have identified two strains (AKR/J and SM/J) that show discordant

genotype/phenotype relationships with respect to C5 status and

susceptibility to infection. Haplotype association mapping in the 23

inbred strains using high density SNP maps, together with genetic

linkage analyses in informative crosses derived from discordant

strains, have uncovered two C5-independent genetic effects and loci

controlling fungal replication in the host, and mapping to

chromosomes 8 (Carg3), and 11 (Carg4).

Results

Response to C. albicans infection in inbred mouse strains
To identify novel C5-independent genetic effects regulating the

proliferation of C. albicans organisms in target organs during

disseminated infection, we surveyed 23 strains from the panel of 36

commonly used inbred mouse strains represented in the Jackson

Mouse Phenome Database. These strains have been selected to be

genetically diverse, on the basis of their phylogenetically distinct

breeding background, and thus likely to be representative of the

natural allelic pool. The mice were challenged intravenously with

a low dose of C. albicans SC5314 and the fungal replication was

assessed in the kidney 48 h following infection. We observed wide

differences in the extent of C. albicans colonization and replication

in kidneys of these inbred strains (Figure 1), ranging from very low

levels (log10CFU = 2.360.5) such as in the BPL/1J strain, to

approximately 10 000-fold greater number of fungi in the highly

susceptible A/J (log10CFU = 6.060.1), along with a number of

strains showing a wide range of intermediate phenotypes. To

determine the impact of the C5 locus and its mutant Hc allele on

the response to C. albicans infection in these strains, we established

the C5 genotype of the 23 strains (Table 1). We also segregated

strains into a susceptible group (log10CFU.5.1) consisting of 7

strains and a resistant group (log10CFU,4.2) consisting of 16

strains. Using this arbitrary segregation, we noted a very strong

effect and near perfect correlation of C5 allelic status and extent of

replication of C. albicans in kidney with two notable exceptions

(Table 1). Despite being C5-sufficient and producing serum C5a

during infection (data not shown), SM/J mice display a

significantly higher mean fungal load (log10CFU = 5.260.4) when

compared to the reference B6 strain (log10CFU = 4.160.5) or

other C5-sufficient strains. AKR/J mice are C5-deficient [28], yet

they showed mean log10CFU counts at 3.960.4 similar to that

seen in the resistant B6 strain, and clearly distinct from that seen in

the C5-deficient strains group (log10CFU.5.1).

Figure 1. Kidney fungal burden, a measure of susceptibility to C. albicans infection, in 23 inbred mouse strains. 23 out of 36 commonly
used inbred strains from the Jackson Mouse Phenome Database were phenotyped for susceptibility to C. albicans. 7–10 female mice per strain were
infected intravenously with 56104 C. albicans blastospores and the kidney fungal load was measured 48 h post-infection. Bars represent strain
mean6SD. Horizontal lines represent mean (solid line) across all 23 strains6SD (dashed lines).
doi:10.1371/journal.pone.0018957.g001
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Although these results confirm the critical impact of the C5

mutant allele on the response of inbred strains to disseminated C.

albicans infection, the wide variation of CFU counts observed

within mouse strains bearing wild type C5 alleles and the presence

of two clearly discordant strains (AKR/J, SM/J), together strongly

suggested the presence of C5-independent genetic effects in the

cohort of 23 strains tested.

Chromosomes 2 and 11 are highly associated with
response to C. albicans infection in inbred mouse strains

To explore the genetic basis for inter-strain differences in

response to C. albicans, we used the strain distribution pattern

(kidney CFU counts), and high density SNP datasets available for

the 23 strains (Mouse HapMap SNP data) to perform whole

genome association mapping. We utilized a statistical method

EMMA [29] that corrects for population structure and genetic

relatedness between inbred strains by estimating a kinship matrix.

EMMA analysis identified multiple significant loci (Figure 2A,

P value , 161025) on chromosomes 1, 2, 4, 6, 7, 8, 11, 12, and

15 (Table S1). The Bonferroni correction [30] was used to

provide a very conservative threshold (a= 0.01, P val-

ue = 7.9961028) which identified SNPs on chromosomes 2 and

11 as the most highly associated with CFU counts. As expected,

the top 3 significant SNPs (P value = 2.43610211, 3.04610210,

4.6561029) are situated between 33.74 and 33.96 Mb on

chromosome 2, and correspond to the C5 gene located less than

1 Mb away. Repeating the EMMA analysis after removing

phenotypically discordant AKR/J and SM/J strains, increases

the significance of the Chr. 2 (C5) locus dramatically

(P value = 6.60610219, Figure S1). Examination of the haplotype

structure of chromosome 2 near the peaks of highest association

(Figure 2B) shows segregation of the A/J-type allele (30.26–34.88

Mb) in all susceptible strains, except for SM/J. Conversely, the

AKR/J strain carries the A/J haplotype block, but is resistant.

The structure of the Chr. 2 haplotype block is more difficult to

follow in wild-derived strains MSM/Ms (M. m. molossinus), PWD/

PhJ (M. m. musculus), and the CAST/EiJ (Mus castaneus). The next

most significant association (P value = 7.6361029) was detected

on the distal portion of chromosome 11 (98.87 Mb). Haplotype

analysis of the corresponding Chr. 11 shows a haplotype block

less conserved in inbred strains than the Chr. 2 haplotype,

including multiple possible recombination events within the

haplotype map (Figure 2C). Nevertheless, a small haplotype block

(97.84-99.44 Mb) is preserved where most of the resistant strains,

including the AKR/J strain, carry B6 alleles. These results imply

that although C5 plays a crucial role in response to C. albicans

infection, several additional loci, including the locus on

chromosome 11, can modulate response to infection in inbred

strains.

Table 1. Phenotypic response of inbred mouse strains to C. albicans infection, with respect to the C5 status.

Inbred strain Hc allelea Number of mice (females) Log kidney CFU (mean ± s. d.) Phenotypeb

A/J 0 9 6.060.1 S

KK/HlJ 0 10 5.960.2 S

BTBR T+ tf/J 0 10 5.760.3 S

FVB/NJ 0 10 5.560.8 S

DBA/2J 0 10 5.360.5 S

SM/J* 1 7 5.260.4 S

NOD/ShiLtJ 0 10 5.160.7 S

C3H/HeJ 1 10 4.260.5 R

C57BL/6J 1 8 4.160.5 R

AKR/J* 0 10 3.960.4 R

CBA/J 1 8 3.860.3 R

BALB/cByJ 1 7 3.560.6 R

SJL/J 1 8 3.560.3 R

NZW/LacJ 1 10 3.460.6 R

DDY/JclSidSeyFrkJ 1 8 3.460.8 R

C57BLKS/J 1 8 3.460.3 R

BUB/BnJ 1 8 3.361.0 R

MRL/MpJ 1 8 3.060.8 R

129S1/SvImJ 1 10 2.960.5 R

PWD/PhJ 1 9 2.960.6 R

MSM/Ms 1 8 2.960.6 R

CAST/EiJ 1 10 2.660.6 R

BPL/1J 1 8 2.360.5 R

Inbred mouse strains are classified by the extent of the kidney fungal burden and susceptibility (S) or resistance (R). AKR/J and SM/J mouse strains, denoted by *, were
found to be discordant. All strains were genotyped to confirm their C5 allele.
a0-C5 deficient; 1-C5 sufficient.
bR-resistant; S-susceptible.
*Discordant strains.
doi:10.1371/journal.pone.0018957.t001
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Figure 2. Genome-wide association mapping using EMMA. Using the R package implementation of EMMA, genome-wide association
mapping was conducted across 23 inbred mouse strains. We obtained genotype data consisting of 132 000 SNPs from the Mouse HapMap project
and rejected SNPs with MAF ,0.05, which yielded a final set of 125 113 SNPs. These were then correlated with the kidney fungal burden as the
phenotypic data and consequently, the analysis yielded 2log10 transformed P values indicating association significance for each SNP genome-wide
(A). Standardized threshold was set at P value 1.061025 (solid line) and the Bonferroni multiple testing correction threshold was calculated to be
7.9961028 (dashed line). The most significant hits on chromosomes 2 and 11 are depicted (B and C) along with respective haplotype maps of
susceptible (S) and resistant (R) strains at those locations. The conserved haplotype blocks are indicated with brackets, along with the Hc position (B)
and the arrow showing the most conserved area (C). Asterisk denotes discordant strains with respect to the C5 genotype. Haplotype map colour
coding: light gray (NA), gray (A/J like), and white (B6 like).
doi:10.1371/journal.pone.0018957.g002
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Phenotypic expression of resistance to C. albicans
infection in AKR/J mice

The differential susceptibility of A/J and AKR/J mouse strains

to C. albicans infection occurs despite relatively close phylogeny

and genetic relatedness of the two strains as assessed by the

fraction of concordant alleles based on 8.27 million SNPs

distributed across the genome [31]. Frazer et al. [31] have

reported this fraction to be 0.899 between A/J and AKR/J

strains. To explore further the phenotypic expression of AKR/J-

associated resistance, C57BL/6J, A/J and AKR/J mice were

challenged intravenously with 56104 C. albicans blastospores, and

fungal replication was assessed 48 h post-infection in brain, heart

and kidney. Compared to A/J susceptible controls, AKR/J mice

showed a significantly lower fungal load in brain (log10CFU:

4.160.3 vs. 2.260.4; Figure 3B) and kidney (log10CFU: 6.360.3

vs. 4.460.4; Figure 3C). Histological analysis of kidney sections

(Figure 3D) showed massive proliferation of the C. albicans hyphae

and moderate recruitment of cellular infiltrates in A/J mice.

Kidney sections from B6 and AKR/J mice also showed cellular

infiltrates and presence of pseudohyphal fungal elements, but to a

much lesser extent than observed in A/J. Although the heart

fungal burden was significantly reduced in AKR/J mice

compared to A/J mice (log10CFU: 3.260.4 vs. 4.360.7;

Figure 3A), it was nevertheless significantly higher than that of

B6 (log10CFU: 2.160.1). We have previously established that C5-

deficiency is associated in A/J mice with a striking cardiac

phenotype, prior to and during C. albicans infection [21].

Therefore, it is possible that the intermediate level of C. albicans

replication may be linked to such a heart-specific effect of C5-

deficiency present in AKR/J. Together, these results strongly

suggest that AKR/J mice are able to contain C. albicans

replication in all organs, despite C5-deficiency.

Figure 3. Phenotypic responses of discordant AKR/J mouse strain upon C. albicans infection. In 6 mice per strain, the heart (A), brain (B),
and kidney (C) fungal load was measured 48 h after a low dose (56104, i.v.) infection with C. albicans. In all organs, fungal load was significantly lower
in AKR/J mice compared to A/J (**P,0.01, ***P,0.0001). Periodic acid-Schiff staining was performed on kidney sections (D) showing the extent of
fungal burden and granulocyte infiltration. Magnification 100X and 400X (insert).
doi:10.1371/journal.pone.0018957.g003
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We further challenged AKR/J and A/J mice with several

infectious doses of C. albicans, (56104, 16105, 36105, and 66105

blastospores) and monitored in these animals: a) organ CFUs, b)

kidney function as measured by BUN (blood urea nitrogen), and c)

survival (Figure 4). With respect to fungal load, the inter-strain

difference between AKR/J (resistant) and A/J (susceptible) is

clearly visible and is dose-dependent; it is most visible at lower

doses and fades at the highly infectious dose. Moreover, these

observations are paralleled by measurements of kidney function:

BUN levels were always lower in the AKR/J strain (retained

kidney function), and this for all infectious doses tested. Finally, we

challenged A/J, AKR/J, and B6 mice with a high dose of C.

albicans (36105, i.v.) as done previously and monitored survival

daily. All A/J mice succumbed after 24 hours (highly susceptible),

whereas the median survival time (MST) for AKR/J mice was 3

days (significant by a Log-rank test; p,0.0001), while MST for

resistant B6 mice was 4 days.

Pro-inflammatory cytokines IL-6, TNF-a, and MCP-1 are

found at high concentrations in circulating blood and kidney of

C5-deficient mice (exemplified by A/J) at 24 and 48 h following C.

albicans infection [20,32], and elevated KC levels in kidney

correlate with subsequent damage to this organ [32]. We

compared serum cytokine profiles of A/J, AKR/J and C57BL/

6J prior to and 48 h following C. albicans infection using the BDTM

CBA Flex system (Figure 5). As expected, we observed high serum

levels of pro-inflammatory cytokines IL-6, TNF- a, MCP-1, and

KC as well as the Th2-specific cytokine IL-10 in infected A/J mice

[33,34]. On the other hand, and similar to B6 animals, AKR/J

mice had undetectable levels of IL-10 even 48 h post-infection and

no statistically significant increase in concentrations of IL-6, TNF-

a, MCP-1 or KC. Interestingly, we observed a strong induction

and elevated serum levels of IFNc in infected AKR/J mice, which

were significantly higher than those measured in infected C57BL/

6J (resistant) and A/J (susceptible) controls. Studies in IFNc
mutant mice have previously demonstrated a protective effect of

this Th1 cytokine against disseminated candidiasis [35], suggesting

that the elevated levels of this cytokine during infection may have a

protective effect in C5-deficient AKR/J mice.

Genetic analysis of the C. albicans resistance trait of
AKR/J mice

The inheritance and complexity of the C5-independent genetic

control to C. albicans resistance of AKR/J mice was investigated

by phenotyping mice from an informative F2 cross generated

between resistant AKR/J and susceptible A/J progenitors, and in

which all mice are fixed for C5 deficiency. [A/JxAKR/J]F1

hybrids showed an intermediate level of susceptibility with respect

to kidney fungal load (Figure 6A) compared to the parental

controls, suggesting that resistance to C. albicans in AKR/J mice is

inherited in a co-dominant fashion. A total of 158 [A/JxAKR/

J]F2 animals were infected intravenously with 56104 C. albicans

blastospores in four separate infections (Figure 6A). The kidney

fungal burden was determined and used as a quantitative

phenotypic measure of susceptibility in linkage analyses. The

results of four infections were combined and regressed in an

e6periment- and sex-dependent manner, where the mean was set

at 0. The distribution frequency (Figure 6B) and the log10CFU

counts of [A/JxAKR/J]F2 mice (Figure 6A) show a normal

distribution, with an approximate 1:1 ratio of resistant to

susceptible mice confirming a co-dominant pattern of inheri-

tance. Informative F2 mice were genotyped with a custom panel

of 257 polymorphic informative markers (SNPs and microsatel-

lites) distributed across the genome. Whole-genome multiple

regression linkage analysis in R/qtl was performed for males

(N = 96) and females (N = 72), or both genders together

(Figure 6C). This analysis identified a highly significant linkage

associated with fungal burden in the kidney on chromosome 11

(LOD = 4.59, P,0.01) and chromosome 8 (LOD = 3.95, P,0.05)

(Figure 7A and 7B). These loci contributing resistance to C.

Figure 4. Differential susceptibility of A/J and AKR/J mice to C.
albicans infection. 6 mice per strain were challenged with the
indicated dose of C. albicans and sacrificed at either 24 h or 48 h time
point to determine the kidney fungal burden (A) and serum BUN levels
(B). The fungal load was significantly lower in AKR/J mice compared to
A/J, and was associated with lower BUN levels (*P,0.05, ***P#0.0001,
n.d. not done due to premature death of A/J mice). Bars represent
group mean 6 SD. For the survival study, 8 mice per strain were
infected intravenously with a high dose (36105) of C. albicans and
monitored daily for clinical signs of morbidity (C). Survival curves were
compared by a Log-rank test and the median survival of AKR/J (3 d) was
found to be significantly different from A/J (1 d) (P,0.0001).
doi:10.1371/journal.pone.0018957.g004
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albicans in the AKR/J strain were given a temporary identifica-

tion Carg3 (Candida albicans resistance gene 3) for chromosome 8

QTL and Carg4, for chromosome 11 QTL. The Bayesian 95%

credible intervals were determined to be 53.6–96.9 Mb for Carg3

and 70.7–103.8 Mb for Carg4, whereas the peak LOD scores were

identified at 75 Mb (peak SNP: rs3722665) and 98.8 Mb (peak

SNP: rs3661058), respectively. Both Carg3 and Carg4 loci were

present amongst the initial SNP associations uncovered by

EMMA analysis (Figure 2A and Table S1) and were found to

be significant (P value,161025), however, only Carg4 passed the

stringent Bonferroni correction. These results confirm results of

the haplotype mapping studied in the 23 inbred strains, with

respect to the effect of the Carg4 locus on response to

disseminated C. albicans infection. They also suggest that the

Carg4 locus strongly contributes to the noted resistance of AKR/J

mice, acting independently of the C5 locus, for which

susceptibility alleles are fixed in the analyzed AKR/JxA/J cross.

To examine whether these loci acted in an additive or epistatic

manner, we performed a two-dimensional Haley-Knott multiple

regression analysis using R/qtl. This analysis revealed that the

joint effect of Carg3 and Carg4 increased the LOD score to 11.5,

suggesting an additive effect which explains 28% of phenotypic

variance observed. This additive effect is clearly illustrated when

the extremities of the F2 distribution are segregated according to

the more significant Carg4 locus (Figure 7C) and exhibit a

predominance of the AKR/J and A/J alleles in the resistant and

susceptible F2 mice, respectively. Indeed, mice carrying the A/J

allele at both Carg3 and Carg4 loci display a significantly higher

kidney fungal load than mice carrying AKR/J alleles at both loci

(P,0.0008, t-test). Although a few select resistant F2 animals carry

the A/J allele at one locus, they consistently bear a non-A/J allele

(AKR/J or heterozygous) at the other locus. The opposite is also

true for susceptible F2 mice which inherited the AKR/J allele at

either Carg3 or Carg4. Finally, to illustrate the overlap achieved by

EMMA and linkage analysis, association scores for chromosome

11 and 8 are depicted along with respective LOD score traces

(Figure 7D and 7E). These results point to Carg3 and Carg4 as a

novel two-locus system regulating C5-independent resistance to C.

albicans infection in AKR/J mice.

Discussion

We have used a representative panel of 23 phylogenetically

distant inbred mouse strains to study the genetic control of

susceptibility to acute and disseminated C. albicans infection. At the

time of starting this survey, the critical impact of the mutant C5

deficiency allele, fixed in certain inbred strains, on susceptibility to

infection has been firmly established [17]. Additional genetic

effects, in the form of the unmapped Carg1 and Carg2 loci, had

suggested that additional genetic effects may further modulate

response of inbred strains to this infection [26,27,36]. Our inbred

strains survey produce two key findings. Firstly, it readily identified

two strains that show discordant genotype/phenotype relation-

ships with respect to C5 status and susceptibility to infection

(Figure 1 and Table 1), namely AKR/J which carries the mutant

C5 allele but is resistant to infection, and SM/J which is susceptible

despite a wild type allele at C5. Secondly, haplotype association

mapping in the 23 inbred strains using kidney fungal load as a

quantitative measure of susceptibility uncovered several candidate

loci (in addition to C5 on Chr. 2) controlling fungal replication in

the host. Subsequent genome scan in informative F2 mice

generated between susceptible A/J and resistant AKR/J (fixed

for mutant C5 alleles) progenitors identified two highly significant

linkages on chromosomes 8 (Carg3, LOD score = 3.95,

P value,0.05) and 11 (Carg4, LOD score = 4.59, P value,0.01),

as regulating permissiveness to C. albicans in these mice. Carg3 and

Carg4 are novel loci that regulate susceptibility to C. albicans in a

C5-independent fashion.

Figure 5. Inflammatory cytokine levels in the AKR/J mouse strain. Serum cytokine levels in 3–6 mice of each strain were measured prior to
infection and at the 48 h time point, as described in Materials and methods. Cytokine response of AKR/J mice resembled closely that of B6 strain and
was significantly different from A/J mice. The standard deviation is indicated for each group. For all cytokines, infected AKR/J shows a statistically
significant difference from infected A/J mice.
doi:10.1371/journal.pone.0018957.g005
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Genome-wide haplotype association in inbred strains of mice

has proven to be a useful experimental strategy to detect loci that

regulate complex traits [37,38]. The limitations of this type of

analysis reside in the relatively small number of inbred strains that

were surveyed[29,39], which limits the power of association study

using single marker mapping (SMM) strategy [40]. SMM assigns a

bi-allelic genotype to individual SNPs, and can therefore

incorrectly model SNPs that possess three or even four

predominant genotypes in inbred strains. This limits both the

power of detecting relevant genetic effects, and the accuracy with

which the corresponding loci and associated haplotype can be

delineated. Also, loci that do not explain a substantial percentage

of phenotypic variance[29] may go unnoticed. Therefore, the

results of our analysis probably represent an underestimate of the

number of genetic effects regulating susceptibility to C. albicans in

inbred strains. A noteworthy advantage of the EMMA algorithm is

the avoidance of inflation of false positives due to a kinship matrix

that corrects for genetic relatedness amongst inbred strains[29]. Su

et al.[39] and other groups[41] have acclaimed the strength of

combining genome-wide association mapping and linkage analysis

in an F2 cross to identify QTLs underlying complex traits and

avoid false-positive loci. We created an informative [A/JxAKR/

Figure 6. Linkage analysis in the informative [A/JxAKR/J]F2 population. [A/JxAKR/J]F2 mice (n = 158) were infected with C. albicans (56104,
i.v.) and kidneys were harvested 48 h post infection. CFU were determined as previously mentioned and results from four separate infections are
plotted along with A/J, AKR/J, and [A/JxAKR/J]F1 controls (A). Each dot represents a single mouse. Distribution of kidney fungal load is shown in the
entire [A/JxAKR/J]F2 population (B), after regression of log10CFU to an experiment and gender-specific mean (set at 0). Mice were genotyped at 257
SNPs and markers across the entire genome and interval mapping was carried out using the R/qtl software package. Whole genome LOD score traces
are shown for genetic effects controlling kidney fungal burden in [A/JxAKR/J]F2 mice (C), identifying linkage to chromosome 8 (LOD = 3.95) and
chromosome 11(LOD = 4.59), designated Carg3 and Carg4, respectively. Results for males and females are shown separately (dashed and dotted lines)
and together (solid line), with marker positions on the x-axis. Permutation testing (1000 tests) identified genome-wide thresholds at P = 0.01 and 0.05.
doi:10.1371/journal.pone.0018957.g006

Genetic Control of Resistance to Candida albicans

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e18957



Genetic Control of Resistance to Candida albicans

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e18957



J]F2 cross in order to corroborate the loci identified by EMMA

analysis, but in the context of C5 deficiency. Linkage mapping in

the [A/JxAKR/J]F2 progeny identified a novel gene effect located

on chromosome 8 and termed Carg3 (LOD = 3.95) and confirmed

the chromosome 11 locus (Carg4, LOD = 4.59) (Figure 6). In fact,

the peak associated SNPs on chromosomes 8 and 11 are located

directly below the significant LOD score traces and overlap with

Carg3 and Carg4, respectively (Figure 7C, 7D) strongly suggesting

that the same loci were detected by both approaches.

Recently, it was demonstrated that elevated levels of IL-6, MIP-

1b, and mostly KC in kidney extracts of C. albicans infected mice

correlate with kidney damage [32]. This is exemplified by the

susceptible A/J strain (Figure 5), which displays an acute and

possibly pathological inflammatory response upon systemic C.

albicans. The phenotypic response to infection in C5-deficient

AKR/J mice with respect to serum cytokine profiles is clearly

distinct from that of C5-deficient A/J mice, but rather resembles

that of resistant and C5-sufficient C57BL/6J strain, with one

notable exception. Indeed, infected AKR/J mice show strikingly

elevated levels of serum IFNc compared to either resistant

C57BL/6J or susceptible A/J. Although we cannot yet establish

that elevated serum IFNc seen in AKR/J are solely or partly

responsible for resistance in this strain, a protective role for this

cytokine in C. albicans infection has been established. Indeed, mice

deficient for IFNc[35] or IFNc receptor[42] show increased

susceptibility to C. albicans, and passive administration of IFNc[43]

causes a reduction in tissue fungal burden in normal mice. In

addition, in vitro studies have also shown that IFNc potentiates

phagocytosis and killing of C. albicans by neutrophils[44] and

macrophages[45]. Moreover, IFNc is used as a prophylactic

treatment of infection in patients with chronic granulomatous

disease (CGD), a genetically inherited disease characterized by an

increased susceptibility to fungal infections[46]. Therefore, we

hypothesized that elevated levels of this cytokine during infection

may have a protective effect in C5-deficient AKR/J mice by

directly potentiating the fungicidal effect of immune cells and/or

stimulating host genes implicated in antifungal defense and which

underlie Carg3 and Carg4 loci.

Signaling by IFNc activates the JAK-STAT pathway, which

leads to the binding of phosphorylated STAT1 to IFNc activation

site (GAS) elements and also interferon-stimulated response

elements (ISREs)[47,48]. Robertson et al. recently used chromatin

immunoprecipitation and DNA sequencing to map all functional

STAT1 binding sites (and associated genes) which are induced by

IFNc treatment of human HeLa S3 cells [49]. We therefore

investigated the Carg3 and Carg4 for the presence of positional

candidates that may be bound by STAT1 in response to IFNc.

The minimal genetic interval inferred by linkage analysis at Carg3

extends over 40 Mb, while that at Carg4 is 30 Mb. As both regions

are extremely gene rich, we restricted the size of the genomic

candidate regions by combining linkage analysis and the haplotype

association mapping results. Therefore, we prioritized for analysis

blocks of 10Mb centered around the SNPs showing the highest

scores in the haplotype association studies for both loci (Figure 7D).

This analysis identified a total of 59 (Carg3) and 147 such genes

(Carg4) (Tables S2 and S3). We also superimposed on this dataset,

those genes whose mRNA expression has been shown by

transcript profiling to be modulated at 2h, 4h, or 6h following

exposure to IFNc [50]. An intersection of genes containing high

STAT1 binding ChIP-Seq peaks (identified by combination of

chromatin immunoprecipitation and DNA sequencing; ChIP/seq)

and genes whose mRNAs were significantly modulated by IFNc,

yielded a list of 4 and 11 genes. We consider these genes as priority

candidate genes for the Carg3 and Carg4 effects.

Four genes in the Carg3 interval fulfill both criteria: Adcy7,

Dnaja2, Gab1 and Inpp4b. Adcy7 is of particular interest for the

following reasons. Adcy7 codes for an isoform of adenylate cyclase

that is expressed at high levels and regulates the intracellular levels

of cyclic adenosine monophosphate (cAMP) in macrophages, T

cells and B cells [51,52]. cAMP is as a potent immunosuppressor

in antigen-presenting cells and T lymphocytes acting as an

intracellular signal to dampen synthesis of pro-inflammatory

cytokines in these cells [53-55]. For example, cAMP acts as a

second messenger for the anti-inflammatory action of prostaglan-

din E2 (PGE2) in macrophages, which ultimately leads to reduced

phagocytosis, decreased production of reactive oxygen species,

attenuation of TNFa, MIP-1a, LTB4 secretion, and increased IL-

10 production by these cells. Adcy7 expression is abundant in

macrophages, stimulated by IFNc, and associated with STAT-1

binding to the Adcy7 gene promoter (Table S2). Tissue-specific

ablation of Adcy7 in the hematopoietic system causes a defect in

cAMP production, and is associated with increased production of

TNFa by macrophages following exposure to LPS ex vivo, and

hyper-sensitivity to LPS-induced endotoxin shock in vivo [51].

Therefore, it is tempting to speculate that high levels of circulating

IFNc in AKR/J mice may stimulate expression of Adcy7 in

immune cells, with concomitant effects on intracellular cAMP

levels and intensity of inflammatory response in these mice. The

noted absence of infiltrating inflammatory cells in the kidneys of C.

albicans infected AKR/J mice (Figure 3D) is consistent with a

dampened inflammatory response associated with elevated

adenylate cyclase activity and cAMP levels [56]. Additional

experimentation will be required to formally test this proposal.

Amongst the list of 11 Carg4 positional candidates whose

expression is regulated by IFNc and which display IFNc regulated

STAT1 recruitment to their promoters (Table S3), we note the

presence of Ifi35. Ifi35 belongs to the family of interferon-inducible

proteins, a group of proteins whose expression is rapidly induced

by both type I and type II interferons, and that have been

associated with different pathologies including systemic lupus

erythematosus [57], cancer [58], and antiviral host defense [59].

IFI35 is a leucine zipper-containing transcriptional regulator

which is normally found in the cytoplasm of cells, and is

translocated to the nucleus following exposure to IFNc[60]. In

the nucleus, IFI35 heterodimerizes with other proteins (Nmi,

CKIP-1)[61], including the transcription factor B-ATF[62]. The

physical interaction between B-ATF (basic leucine zipper

transcription factor, ATF-like) and IFI35 suggests a role for

IFI35 in cytokine signaling, and early polarization of the T helper

response[62]. B-ATF is a member of the AP-1 family of

transcription factors expressed primarily in hematopoietic

cells[62,63]. B-ATF binds to the promoter of the Il17 gene and

Figure 7. Additive effect of the Carg3 and Carg4 loci on kidney fungal burden in [A/JxAKR/J]F2 mice. Detailed LOD score traces are
shown for chromosome 11 (Carg4) (A) and chromosome 8 (Carg4) (B) loci for males, females, and both sexes combined. The shaded area designates
the Bayesian 95% confidence interval for each locus and the genome-wide thresholds are indicated at P = 0.01 and P = 0.05. The additive effect of
Carg3 and Carg4 loci is demonstrated by segregating the alleles of susceptible and resistant mice found at extremities (61 standard deviation from
the mean) of the distribution (C). Haplotype map colour coding: light gray (AKR/J), gray (A/J), and white (heterozygous). Each line represents a single
mouse. Genome-wide association mapping results are depicted along with LOD score traces for chromosomes 11 (D) and 8 (E). The 10 Mb blocks
examined for candidate genes are indicated for both loci.
doi:10.1371/journal.pone.0018957.g007
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plays a critical role in Th17 differentiation of helper T cells[63].

Indeed, Batf -/- deficient mice display normal Th1, and Th2

response but are deficient in Th17 differentiation, and are resistant

to experimental autoimmune encephalitis[63]. Il17 and Th17

differentiation of T cells is essential for protection against fungal

pathogens, and Il17-/- mice are hyper-susceptible to infection with

C. albicans[64]. In addition, alterations in Th17 response have been

associated with susceptibility to candidiasis in human clinical

cases[13,65,66]. Therefore, Ifi35 may play a role in anti-fungal

defenses by modulating Th17 response, a hypothesis that can be

tested experimentally.

In conclusion, we have combined genome-wide association

mapping and linkage analysis to identify and validate two novel

loci that modulate response to systemic C. albicans infection in

mice. These two loci exert their effect in a complement C5-

independent fashion. The identification of the genes involved

should provide valuable insight into host defenses against acute

candidiasis.

Materials and Methods

Mice
Inbred strains 129S1/SvlmJ, A/J, AKR/J, BALB/cByJ, BPL/

1J, BTBRT+tf/J, BUB/BnJ, C3H/HeJ, C57BL/6J, C57BLKS/J,

CAST/EiJ, CBA/J, DBA/2J, DDY/JclSidSeyFrkJ, FVB/J, KK/

HlJ, MRL/MpJ, MSM/Ms, NOD/ShiLtJ, NZW/LacJ, PWD/

PhJ, SM/J, and SJL/J were obtained as pathogen-free mice at 8–

12 weeks of age from the Jackson Laboratory (Bar Harbor, ME) as

part of a collaboration with the Mouse Phenome Database project.

Survey data will be deposited in MPD (www.phenome.jax.org)

and made publically available. [A/JxAKR/J] F2 progeny were

bred by systematic brother-sister mating of [A/JxAKR/J] F1

mice. All housing and experimental procedures were conducted

under the guidelines of the Canadian Council of Animal Care and

were approved by the Biotechnology Research Institute (BRI)

Animal Care Committee (Protocol number: 08-SEP-I-017) and

the Animal Care Committee of McGill University (Protocol

number: 5618).

Infection with Candida albicans
C. albicans strain SC5314 was grown overnight in YPD medium

(1% yeast extract, 2% Bacto Peptone and 2% dextrose) at 30uC.

Blastospores were harvested by centrifugation, washed twice in

phosphate-buffered saline (PBS), counted using a hemacytometer

and resuspended in PBS at the required density. For experimen-

tal infections, mice were inoculated via the tail vain with 200 ml of

a suspension containing 56104 C. albicans blastospores in PBS. In

dose-response experiments, additional doses were tested: 56104,

16105, 36105, and 66105 C. albicans. Forty-eight hours following

infection (unless otherwise indicated), target organs were removed

aseptically and homogenized in 5 ml of PBS. The homogenate

was then serially diluted and plated on YPD-agar plates

containing 34 mg/ml of chloramphenicol. The plates were

incubated at 30uC for 24–48 hours and the colony-forming units

(CFU) counted and expressed as log10CFU per organ. The

maximum sensitivity for this assay was 100 CFU, and the animals

displaying titers below the detection limit were assigned an

arbitrary value of 100 CFU.

For the survival study, mice were injected intravenously with

200 ml of a suspension containing 36105 C. albicans blastospores in

PBS. Mice were closely monitored for clinical signs such as

lethargy, hunched back, and ruffled fur. Mice exhibiting extreme

lethargy were deemed moribund and were euthanized.

Cytokine detection
Mice were anesthetized and exsanguinated by cardiac puncture.

Serum was isolated by collection of blood, followed by

centrifugation and storage at -80uC until used to measure cytokine

levels. To determine the levels of cytokines in the circulation,

12.5 ml of serum was analyzed using the BDTM CBA Flex sets

according to the manufacturer’s instructions. Fluorescence levels

were recorded using the BDTM LSRII flow cytometry system

(Becton-Dickinson Biosciences, CA, USA) using BD FACSDiva

acquisition software and the data analysis was carried out using the

FCAP Array software.

Evaluation of kidney function
At 24 h or 48 h, mice were exsanguinated by cardiac puncture

under anesthesia, and blood was collected in microtubes with

separation gel (Sarstedt, Montreal, Canada). Serum was isolated

by centrifugation and stored at 220uC until used for blood urea

nitrogen (BUN) determination. A commercially available kit that

allows quantitative urease/Berthelot determination was used to

measure BUN levels (Sigma).

Histology
Whole kidneys were fixed in 10% neutral buffered formalin,

dehydrated in ethanol/xylene and embedded in paraffin, as

described previously [67]. Histological sections were cut longitu-

dinally at 5 mm on a microtome and fixed onto glass slides.

Sections were deparaffinized, then stained with periodic acid

Schiff’s reagent (PAS) to detect C. albicans elements and

counterstained with hematoxylin to visualize immune cells

infiltration. Stained sections were examined under a light

microscope at 100X and 400X magnification and photographed.

Genotyping
As described previously[68], genomic DNA was isolated from

tail clips of individual F2 mice collected at the time of sacrifice. A

total of 158 [A/JxAKR/J]F2 mice were genotyped at the McGill

University and Genome Quebec Innovation Centre (Montreal,

QC, Canada) using Sequenome iPlex Gold technology and a

custom panel that contained 225 informative SNPs distributed

across the genome. Additional microsatellite markers were

obtained from the Mouse Genome Informatics Database (www.

informatics.jax.org) and used for gap filling and fine mapping by a

standard PCR-based method employing (a-32P) dATP labeling

and separation on denaturing 6% polyacrylamide gels.

Linkage analysis
QTL mapping was performed using Haley-Knott multiple

regression analysis[69] or EM maximum likelihood algorithm[70].

A two-dimensional scan was performed using the two-QTL model

and empirical genome-wide significance was calculated by

permutation testing (1000 tests). All linkage analysis was performed

using R/qtl[71].

EMMA scan
The detailed algorithm underlying the efficient mixed-model for

association mapping have been previously published[29]. The

EMMA algorithm is based on the mixed-model association where

a kinship matrix accounting for genetic relatedness between inbred

mouse strains is estimated and then fitted to the vector of the

phenotype, thereby reducing false positive rates. Prior to the

analysis, a minor allele frequency cutoff (MAF,0.05) was applied.

In order to identify the most highly associated loci, the Bonferroni
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multiple testing correction[30] was computed. EMMA is publi-

cally available as an R package implementation.

Statistical analysis
An unpaired, two-tailed Student’s t-test was used to establish

significance of differences in mean CFU per organ, BUN levels,

and cytokine concentrations between different mouse strains.

Survival of AKR/J mice was analyzed by a Log-rank test and

survival fractions were compared using the x2 statistic. These data

were analyzed using GraphPad Prism 4.0 statistical software.

P-values,0.05 were considered significant.

Supporting Information

Figure S1 Genome-wide association mapping without
discordant AKR/J and SM/J strains. EMMA analysis was

conducted as described earlier (see Materials and Methods, and

Figure 2) while omitting the AKR/J and SM/J discordant strains.

-Log10P values are depicted and represent genome wide significance

of association for each SNP. Standardized threshold was set at

P value 1.061025 (solid line) and the Bonferroni multiple testing

correction threshold was calculated to be 7.8761028 (dashed line).

(PDF)

Table S1 In silico identified loci controlling response to
C. albicans infection in inbred mouse strains. SNPs that

have passed the Bonferroni cutoff (a= 0.01, P value =

7.9961028) are shaded in gray.

(PDF)

Table S2 Candidate genes in the Carg3 region. A total of

59 genes containing IFNc-inducible STAT1 binding sites and

their overall mRNA expression (.2X) upon IFNc stimulation in

Hela cells are represented. Genes considered for further

prioritization had a high (.20) ChIP-Seq peak height and a

significant (.2X) gene expression. N/A designation in the gene

expression column was given for genes that were not represented

on the microarray.

(PDF)

Table S3 Candidate genes in the Carg4 region. A total of

147 genes containing IFNc-inducible STAT1 binding sites and

their overall mRNA expression (.2X) upon IFNc stimulation in

Hela cells are represented. Genes considered for further

prioritization had both high (.20) ChIP-Seq peak height and a

significant (.2X) gene expression. N/A designation in the gene

expression column was given for genes that were not represented

on the microarray.

(PDF)
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