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Abstract

Purpose

To accurately map the retinal area covered by tumor in a prospectively enrolled cohort of
children diagnosed with retinoblastoma.

Methods

Orbital MRI in 106 consecutive retinoblastoma patients (44 bilateral) was analyzed. For
MRI-visible tumors, the polar angle and angle of eccentricity of points defining tumor perim-
eter on the retina were determined by triangulation from images in three orthogonal planes.
The centroid of the mapped area was calculated to approximate tumor origin, and the loca-
tion and cumulative tumor burden were analyzed in relation to mutation type (germline vs.
somatic), tumor area, and patient age at diagnosis. Location of small tumors undetected by
MRI was approximated with fundoscopic images.

Results

Mapping was successful for 129 tumors in 91 eyes from 67 patients (39 bilateral, 43 germ-
line mutation). Cumulative tumor burden was highest within the macula and posterior pole
and was asymmetrically higher within the inferonasal periphery. Tumor incidence was low-
est in the superotemporal periphery. Tumor location varied with age at diagnosis in a com-
plex pattern. Tumor location was concentrated in the macula and superonasal periphery in
patients <5.6 months, in the inferotemporal quadrant of the posterior pole in patients 5.6-8.8
months, in the inferonasal quadrant in patients 8.8-13.2 months, and in the nasal and super-
otemporal periphery in patients >13.2 months. The distribution of MRI-invisible tumors was
consistent with the asymmetry of mapped tumors.
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Conclusions

MRI-based mapping revealed a previously unrecognized pattern of retinoblastoma localiza-
tion that evolves with age at diagnosis. The structured spatiotemporal distribution of tumors
may provide valuable clues about cellular or molecular events associated with tumorigene-

sis in the developing retina.

Introduction

Retinoblastoma is a rare cancer of the retina which presents in early childhood, typically caused
by a mutation in the RB1 tumor suppressor gene. Although new treatment protocols have
increased five year survival rates to over 90% [1], patients often suffer long-term visual defects
secondary to irreversible retinal tissue damage [2,3] and the resulting impairment of brain
structures responsible for perceiving and processing visual stimuli. Preserving vision in survi-
vors is a central objective in medical management of retinoblastoma and clinicians often face
difficult treatment decisions to balance disease control with visual outcome. A more compre-
hensive understanding of how retinoblastoma affects visual system function and development
in the first years of life is needed to predict long term visual outcomes for retinoblastoma survi-
vors and guide improvements in therapy.

Retinoblastoma develops and is treated during a critical period of postnatal maturation of
the visual system. The tumors arise from neural retinal precursor cells that have sustained inac-
tivating mutations in both alleles of the RB1 gene [4,5]. Most, if not all retinal neurogenesis is
complete before birth [6] and tumorigenesis likely occurs during postmitotic neural differentia-
tion and organization [7]. Tumor survival and proliferation depends on complex interactions
among genetic, epigenetic and developmental factors [8,9]. The mean age of retinoblastoma
diagnosis is 9 to 15 months for children with germline RB1 mutations and 23 to 36 months for
children with somatic gene mutations [4,10]. Tumor may affect vision by directly disrupting
the retina, however initial presentation of the tumor—its size, location and distance from the
macula—appears to have only limited correlation with long term visual outcomes [11,12]. This
suggests that central nervous system structures downstream of the sensory transduction appa-
ratus in the eye are also likely involved.

We recently used functional magnetic resonance imaging (fMRI) to investigate the effects of
disease and treatment on the visual system in children being treated for retinoblastoma [13].
The imaging examinations were performed during routine clinical surveillance under propofol
anesthesia with photic stimulation through closed eyelids. Despite the challenging experimen-
tal conditions, functional MRI (fMRI) responses in the primary visual cortex (V1) were modu-
lated by important clinical features, including bilateral versus unilateral tumor, macular
involvement, and retinal detachment. Furthermore, the interhemispheric ratio of the volume
of cortex activated in patients who had undergone unilateral enucleation reflected the expected
cortical dominance in the hemisphere receiving the nasal hemiretina projection from the
remaining eye. The patterns of activity within the primary visual cortex in some patients
showed focal areas with no activity that appeared by visual inspection to roughly correspond to
the expected location of the retinal tumor in the V1 retinotopic map. However, we were unable
to systematically evaluate the precision with which the fMRI responses reflected retinotopic
mapping of tumors in V1 because we did not know the precise location of tumors on the
retina.
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Previous studies concerning tumor location typically mapped the spatiotemporal patterns
of tumor appearance to investigate clinically relevant patterns as well as topographic similarity
with other retinal cell types. The studies were primarily limited to small tumors and retinal
locations were approximated to sectors of the retinal surface using indirect ophthalmoscopy
[14,15,16,17]. We used diagnostic magnetic resonance imaging (MRI) and imaging software to
manually map the location of points on the perimeter of each tumor in retinal polar coordi-
nates. The tumor maps were digitized and analyzed to define statistical models for the distribu-
tion of tumors over the retinal surface.

Methods

This study included 106 consecutive retinoblastoma patients (44 bilateral) who were enrolled
between 2005 and 2010 in St. Jude Children’s Research Hospital’s RET-5 protocol for the study
and treatment of intra-ocular retinoblastoma (ClinicalTrials.govNCT00186888). The study
was approved by the St. Jude Children’s Research Hospital Institutional Review Board (IRB),
and written informed consent was obtained from each participant's parent or legal guardian
according to the IRB-approved informed consent process.

Imaging was performed at the time of diagnosis of each patient with a 1.5 Tesla Siemens
Symphony MRI scanner (Siemens AG, Germany) using the standard receive-only head coil.
All patients were sedated during imaging with propofol (250 ug/kg/minute) under monitored
anesthesia care. Our diagnostic imaging protocol comprised high resolution scans of the eye
and orbit cavity including sagittal 3D T1 (TR 1920 ms, TE 2.74 ms, BW 200 Hz per pixel, FA
15 degrees, FOV 205x205 pixels, slice width 1.25 mm), axial and coronal 3D constructive—
interference-in-steady-state (CISS) sequences (TR 12.72 ms, TE 6.36 ms, BW 130 Hz, FA 70
degrees, FOV 512x512 pixels). Slice width in each CISS acquisition sequence was 2.0 mm for
all patients imaged prior to April 2008; slice width was 1.5 mm for all imaging sequences
obtained afterward.

Image analysis was performed with Syngo Viewer software (Siemens AG, Germany) to map
the tumor perimeter with respect to the two retinal coordinates: i) angle of eccentricity, ii)
polar angle. The angle of eccentricity was defined as the angle between the fovea and a point on
the tumor margin, measured relative to the central visual axis at the center of the lens. The
polar angle was defined as the angle between the perpendicular line from the central visual axis
to a point on the tumor margin, measured relative to the superior vertical meridian (defined as
0 degrees) at the fovea. All mapping was performed by the first author who was blinded to
patient age.

First the axial slice closest to the center of the optic disc was identified in the T2-weighted
CISS sequence (Fig 1A). The fovea was approximated on this slice as being 16 degrees temporal
to the optic nerve (Fig 1A). If the fovea and optic disc were visible on fundus photography at
diagnosis, this approximation was refined by measuring the distance between these two land-
marks in disc diameters (Fig 1B) and then superimposing the same distance on the mid-
transverse MRI slice (Fig 1A). After the fovea was located, the central visual axis was defined on
this slice as a line extending from the fovea through the center of the lens (Fig 1A). If the tumor
was visible on the mid-transverse slice, the angle of eccentricity between the central visual axis
and the margins of the tumor on the retinal horizontal meridian were measured (Fig 2A and 2B).

We cross referenced from the transverse slice to identify the sagittal slice that included the
fovea and central visual axis; the eccentricity of tumor margins on the retinal vertical meridian
were measured in this plane in similar fashion as before (Fig 2C). Last, a series of other points
along the tumor margins were selected in cross-referenced coronal image planes and assessed
for polar angle and eccentricity relative to the central visual axis. Polar angle was measured
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Fig1. A) The fovea and central visual axis (orange arrow) were approximated on the mid-transverse axial
slice by measuring exactly 2.5 disc diameters (DD) temporal to the optic nerve. B) This approximation was
verified by superimposing the same measurements on RetCam fundus photography where anatomic
landmarks (fovea, optic disc) can be directly visualized.

doi:10.1371/journal.pone.0132932.g001

Fig 2. Points along the tumor margin were selected in axial (A), sagittal (C) and coronal (E) planes, and point locations were measured as angle of
eccentricity relative to the central visual axis (orange arrow) or polar angle relative to the vertical meridian. Each point was then plotted on a polar coordinate
graph of the retinal surface based on its measured retinal location (B, D, H). The final tumor margin was interpolated along the measured points (1, J).
Funduscopic images were used to verify that the tumor graph was consistent with the actual lesion (K).

doi:10.1371/journal.pone.0132932.9002
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relative to the vertical meridian (Fig 2E). To measure the angle of eccentricity, the distance
between the central visual axis and the selected point was measured on a coronal slice (Fig 2F).
The same distance was then superimposed on the mid-transverse slice along the line of inter-
section with the coronal slice and the resulting angle with the central visual axis was measured
(Fig 2G). No eye motion artifact was detected on any imaging obtained under sedation, and
anatomic registration between cross reference planes was inspected to confirm the eye did not
shift gaze position between different imaging sequences.

The measured coordinates of points along the tumor perimeter were represented on a polar
coordinate graph of the retinal surface which was geometrically rendered as an azimuthal equi-
distant projection [18] with the origin at the fovea. The final tumor perimeter was defined by
smooth interpolation between the measured points (Fig 2I). Fundus photography at diagnosis
was used to verify that the tumor graph was consistent with the actual lesion (Fig 2] and 2K).

Image Processing

Retinal tumor delineations were originally recorded on paper, using separate polar grids for left
and right eyes; each polar grid is centered in the page and is enclosed by a rectangular margin.
The original maps were scanned (300 pixel/inch) and coregistered for subsequent analysis.
Scripts and functions for analysis of the digitized maps were written in MATLAB (The Math-
works Inc. Natick, MA) including functions in the Image Processing Toolbox. The lesion con-
tours were marked in the digitzed maps by tracing with the Intuos4 digitizing tablet (Waco Co.
Ltd., Saitama, Japan).

Tumor Mapping

The final digitized maps of each tumor included approximately 6500 pixels in the mapped reti-
nal area. The minimum density of pixels was 9 per degree for eccentricity and varied with polar
angle from 1 pixel per degree at 5 degrees eccentricity to 12 pixels per degree at the peripheral
edge of the equidistant azimuthal projection map. Pixels on or within the tumor contour were
labeled as tumor. Cumulative tumor burden at each location on the retina was calculated as the
number of eyes with tumor pixels at the location. Tumor area and centroid were calculated on
the surface of the sphere to avoid distortions caused by the flat projection. Area was expressed
as the fraction of the total mapped retinal area (i.e, to 60 degrees of visual angle). The centroid
of each tumor was calculated as the center of mass of the tumor contour on the retina, without
consideration of the extent of the tumor perpendicular to the retinal surface.

Spatial Point Process Modeling

Univariate analysis of tumor centroid locations was performed with appropriate generalized
linear mixed-effect models (eccentricity > 0, polar angle cyclic on the interval 0°-360°). The
tumor centroid distribution over the retina was also modeled as a spatial point process
[19,20,21]. Based on established spatial and temporal features of retinoblastoma
[14,15,16,17,22], we used a marked inhomogeneous Poisson process model (S1 Table), with
marks for mutation type, tumor area quartile, and age at diagnosis quartile for each tumor. For
point process modeling, the mapped polar coordinates were converted to Cartesian coordinates
and the sample space was limited by a circular window with 60° radius [23]. Spatial trends in
tumor density were modeled with polynomials in the retinal Cartesian coordinates. Statistical
analysis and visualization was performed with R [18] including the beeswarm, Cairo, circular,
extracat, Imer, plotrix, and spatstat packages [23-31]. Unless otherwise noted, descriptive sta-
tistics are shown in text and tables as median[minimum-maximum]
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Table 1. Descriptive characteristics of the mapped patients and eyes in relation to those eligible and those unmapped.

Eligible' p-value® Mapped’ p-value® Unmapped'
Patients
Laterality 0.04 <0.001
Unilateral 62 (58) 28 (42) 34 (87)
Bilateral 44 (42) 39 (58) 5(13)
Mutation 0.11 <0.001
Somatic 52 (49) 24 (36) 28 (72)
Germline 54 (51) 43 (64) 11 (28)
Age
Quartiles—Mapped patients 0.02 <0.001
(0.7)-5.6 months 19 (18) 17 (25) 2(5)
5.6—-8.8 months 18 (17) 17 (25) 1(3)
8.8—13.2 months 19 (18) 16 (25) 2 (5)
13.2 —(65.5) months 50 (47) 17 (25) 34 (87)
Median [range] (months) ¢ 10.5 [0.4-108] 0.06 8.8 [0.7-65.5] <0.001 26.3 [0.4-108]
Eyes
Side 0.79 0.51
Left 76 (50) 48 (53) 28 (47)
Right 75 (50) 43 (47) 32 (53)
International Classification 0.007 <0.001
Group A 12 (8) 33 9 (15)
Group B 35 (23) 29 (32) 6 (10)
Group C 18 (12) 18 (20) 0 (0)
Group D 47 (31) 32 (35) 15 (25)
Group E 39 (26) 9 (10) 30 (50)

Values indicate number of items in a category, with the number as a percentage of the group in parentheses, except under Age as per note *.
2 Fisher’s Exact test to compare the proportions in a category between eligible and mapped groups, except under Age as per note *.

8 Fisher's Exact test to compare the proportions in a category between mapped and unmapped groups, except under Age as per note *.

“ Values indicate the median and range of age at diagnosis, and p-value is for the Kolomogorov-Smirnov test to compare the age at diagnosis
distributions between the groups.

doi:10.1371/journal.pone.0132932.1001

Results
Patient Summary

There were 151 affected eyes (75 right eyes, 76 left eyes) within 106 patients enrolled (Table 1).
All patients with bilateral disease at diagnosis (n = 44) had germline RB1 mutations and 52 of
62 patients with unilateral disease at diagnosis had somatic RB1 mutations. The age at diagnosis
(months) was significantly lower (Wilcox test, p <0.001) for patients with germline mutations
(7.9 [0.4-108.3]) than with somatic mutations (21.6 [1.4-77.5]). The proportion of patients with
germline mutations and unilateral disease at diagnosis was 9% of all cases and 19% of cases with
germline mutation. International Classification of Retinoblastoma Groupings [32] for the sam-
ple yielded 12 eyes (7.9%) from Group A, 35 eyes (23.2%) from Group B, 18 eyes (11.9%) from
Group C, 47 eyes (31.1%) from Group D and 39 eyes (25.8%) from Group E.

Tumors were successfully mapped in 91 eyes (43 right eyes, 48 left eyes) from 67 patients
(43 germline). These included 3 eyes (3.2%) from Group A, 29 eyes (31.9%) from Group B, 18
eyes (19.8%) from Group C, 32 eyes (35.1%) from Group D and 9 eyes (9.8%) from Group E.
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I I Characteristics of Excluded Eyes
g Unmapped Extensive detachment and/or seeding
- 21 eyes, 17 patients, 40.6 [10.1-108.3] months
Patients || 16 somatic, 1 germline (17 unilateral)
= o2 Globe-filling disease
Biee 19 eyes, 14 patients, 22.1 [1.4 —67.2] months
é - Eligible 20 10 somatic, 4 germline (14 unilateral)
5 31 Small tumor (<1 mm)
° Patients 9 eyes, 2 patients, 0.4 and 10.7 months
b 106 0 somatic, 2 germline
< 9 Eyes Mapped MRI not available at diagnosis
151 . 7 eyes, 4 patients, 5.1 [2.7-7.9] months
— Patients 4 germline, 0 somatic
&1 67 :
Eres Tumor anterior to ora serrata
? J_ ol 3 eyes, 2 patients, 32.5and 47.5.months
o 2 somatic, 0 germline
T T T Enucleated prior to enrollment
Eligible ~ Mapped ~ Unmapped — 1 eye, O patients, 8.1 months

Fig 3. Overview of eligible, mapped, and unmapped patients and eyes. A) The distribution of age at diagnosis. Heavy bar indicates the median, vertical
extent of the box indicates the interquartile range, and the whiskers indicate the full range. B) The wide bars indicate the relative proportions of the eyes in
each group. The diagram at right summarizes study exclusion criteria and the number of patients and eyes excluded for each one.

doi:10.1371/journal.pone.0132932.g003

The characteristics of excluded eyes are summarized in Table 1 and Fig 3. Most exclusions
were for extensive disease that rendered the mapping unfeasible or uninformative, therefore
the excluded group was biased toward larger tumor area (Wilcox test, W = 656, p <0.001) in
older patients (Wilcox test, W = 598, p <0.001) with somatic mutations (Fisher test, OR = 4.5,
p <0.001). For the mapped group, age at diagnosis and tumor size were analyzed as factors
after quartile split and Fig 4C illustrates the multivariate relationships among age at diagnosis,
mutation type, and tumor area.

Mapping Tumor Burden

We calculated the cumulative incidence of tumor at each location on the mapped retinal sur-
face to summarize the spatial distribution of tumors across the group. The distribution of
tumors was similar in right and left eyes (Fisher test, OR = 1.3, p = 0.51), so we inverted the
nasal-temporal axis of tumor maps for the left eyes and rendered the overall density on the
right eye polar plot (Fig 4D). Consistent with previous studies of the distribution of retinoblas-
toma on the retina, tumor count was highest over the macula and posterior pole, and decreased
progressively with increasing eccentricity. Unexpectedly, tumor distribution was asymmetric
in the peripheral retina, with apparently higher cumulative burden in the nasal and inferonasal
retina than in the temporal retina at equal eccentricity.

The general features of tumor distribution were apparent in patients with both germline
and somatic RB1 mutations when analyzed in separate subsets (Fig 4D). Compared to the
somatic mutation group, tumor incidence in patients with germline mutations was more
heavily concentrated within the temporal-posterior pole. The cumulative tumor burden out-
side the posterior pole was lower in patients with germline mutations than in patients with
somatic mutations. The density of tumors at a retinal location reflects the distribution of both
the point origin and the size of tumors across the cohort. As will be detailed below, we subse-
quently mapped the cumulative tumor burden separately within each age quartile to character-
ize the pattern of disease with increasing age at diagnosis (Fig 7C). The distribution of tumor
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Fig 4. The distribution of age at diagnosis and tumor size varied between patients with germline or
somatic mutations. A) Age at diagnosis and B) tumor area (expressed as % of the mapped retinal area) as a
function of mutation type. C) Parallel coordinate plot illustrating the relationship among age at diagnosis,
mutation type, and tumor area for all mapped tumors. Color indicates the age quartile. Tumor area quartiles: p
=smallest, S = small, M = medium, L = large. D) The cumulative tumor burden was mapped over the retina by
superimposing the mapped areas of all tumors enrolled in this study. Tumors in the left eye were inverted
around the nasal-temporal axis to preserve spatial symmetry with right eye tumors. The color legend
indicates the number of tumors which were mapped over a specific point.

doi:10.1371/journal.pone.0132932.g004

burden varied strongly by age quartile and reflected a previously unrecognized regularity in the
distribution of retinoblastoma over the retina.

Spatial and temporal patterns of tumor occurrence on the retina

To further characterize the unexpected asymmetry of the cumulative tumor incidence, we ana-
lyzed the distribution of tumor centroids over the retina. Consistent with the overall tumor
density, tumor centroids were inhomogeneously distributed across the retinal surface (Fig 5).
Centroid eccentricity was associated with tumor area (F(3,60) = 11.8, p<<0.0001) and age at
diagnosis(F(3,60) = 6.4, p<0.0007), with no significant interaction between these factors, and
the within-subject variance of tumor area was significant (F(3,59) = 13.2, p<0.0001). Eccentric-
ity did not vary significantly with mutation type. Post-hoc comparison showed that eccentricity
differed between all levels of tumor area (Tukey honest significant differences, p-
adjusted < 0.002), except for the two largest (L-M) and the two smallest (S-). For age at diag-
nosis, eccentricity differed between the oldest and youngest quartiles and between the oldest
and second youngest quartiles ((Tukey honest significant differences, p-adjusted < 0.007) (Fig
5C). The centroid polar angle varied with age (F(3,63) = 4.0, p = 0.01), but not with mutation
type or tumor area (Fig 5B). Polar angle of the second age quartile differed from all other age
quartiles in post-hoc comparison (Tukey honest significant differences, p-adjusted = 0.04).
The distribution of tumor centroids varied with tumor area (Figs 5 and 6). Tumor foci in
the smallest size quartile were the most uniformly distributed and showed the most uniform
distribution of tumor incidence between the central and peripheral retina. In each subsequently
larger quartile, the distribution of tumors was increasingly concentrated in different parts of
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Fig 5. A) Spatial distribution of tumor centroids rendered in the azimuthal-equidistant projection. Plotting
symbol color indicates age at diagnosis quartile, and symbol size indicates tumor area quartile, and symbol
shape indicates mutation type and disease laterality. B) Distribution of all tumor centroids with respect to
polar angle. The optic disk was located at 88 degrees. C) Box-and-whisker plots for tumor centroid
eccentricity as a function of mutation type (germline vs. somatic) by age at diagnosis (quartiles, as indicated
by color) and by tumor area (quartiles with y = smallest, S = small, M = medium, L = large).

doi:10.1371/journal.pone.0132932.9005

the retina. We note that the distribution of tumors with respect to tumor area (Fig 6A) and also
with respect to mutation type (Fig 6B) show some evidence of symmetry around the optic disk.
The concentration of larger tumors near the posterior pole may be biased in our analysis
because we estimated tumor origin from the centroid. To estimate the potential bias, we calcu-
lated the approximate maximum eccentricity of the tumor center as a function of tumor area,
assuming a circular shape (~(1-area'’?)) just touching the limit of the mapped retina. The anal-
ysis showed that only 25% of all tumors were located near the physical limit such that the
tumor eccentricity was constrained by the tumor size, and only 30% of tumors even in the larg-
est size quartile were near the limit (Fig 6C). This suggests that the inhomogeneous distribution
of tumor locations with respect to size reflects features of tumorigenesis and eye development,
rather than an artifact of estimating tumor origin from tumor centroid (i.e., tumors are large
because they are central, not central because they are large). We note that there were no
remarkable differences in patterns of tumor occurrence between eyes assigned to different
International Classification groups beyond the Classification-related effects of age at diagnosis
and tumor area already described.

Tumor centroids were clustered in different retinal areas depending on the age at diagnosis
(Fig 7). Retinoblastoma diagnosed at ages less than 5.6 months occurred most frequently in the
macula and superonasal periphery. Tumors diagnosed between 5.6 and 8.8 months of age were
most likely to occur within the inferotemporal quadrant of the posterior pole, immediately
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el e
@ ' PLOS ‘ ONE Evolution of Tumor Topography in Retinoblastoma

A
v ocC
13 S M L
B C 60+
45
<
2
.
e
€ 30
O
A Q
. 3]
o
15
0-

germline somatic Hj T T T 1
0 20 40 60 80

tumor area (% retina)
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maximum eccentricity for a tumor of a given size (see text). Plotting symbol color indicates age at diagnosis quartile (magenta, yellow, blue, green) and shape
indicates mutation type and disease laterality.

doi:10.1371/journal.pone.0132932.9006

adjacent to the macula. Between 8.8 and 13.2 months, most tumors were concentrated within
the inferonasal quadrant of the posterior pole. After 13.2 months tumor incidence continued
to advance nasally and anteriorly but was more diffusely scattered over the retina compared to
the more clustered pattern in younger patients. It is noteworthy that age-related clustering was
similar in patients with germline or somatic mutations.

To elaborate our analysis of tumor location, we used spatial point process models to charac-
terize the apparent age-related inhomogeneity of tumorigenesis over the retinal surface
[19,20,21]. The second order moments (i.e., pairwise relationships) [24] of the overall tumor
distribution showed that there was significant clustering compared to so-called complete spa-
tial randomness, even after allowing for non-stationary probability density over the retina (S1
Fig). Note that the sophisticated tools for spatial statistical analysis in ‘spatstat’ package are
based on Euclidean distances, rather than on great circle distances most appropriate for the ret-
inal surface. We compared the pairwise nearest neighbor great circle and Euclidean distances
for all tumors to estimate the potential impact of this distance error on the modeling results. Of
course, the actual nearest neighbor distances (great circle) were always less than or equal to the
Euclidean distances (S2 Fig), but the differences were not significant (Wilcox test, W = 10857,
p = 0.27). Furthermore, any systematic effect of the distance error would tend to diminish the
clustering pattern that we observed. Consistent with our univariate analysis of eccentricity and
polar angle (Fig 5B and 5C), spatial point process models based on the Euclidean distance
showed that the inhomogeneous Poisson density varied with mutation type, tumor area, and
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Fig 7. Tumor centroid distribution in each age quartile. A) Spatial point process model with significant clustering of tumor centroids in different parts of the
retina as a function of age at diagnosis. The color code indicates the density of tumor centroids relative to the density expected for a completely random
spatial distribution of the same number of tumors on the mapped retinal surface. B) Polar plot of tumor centroids in each age quartile with lines connecting
multiple tumors within an eye. C) Mapped tumors within each age quartile are superimposed over one another to map the cumulative tumor burden for each
quartile. The color code indicates the fraction of the tumors in each age quartile that overlap at a given location.

doi:10.1371/journal.pone.0132932.9007

age at diagnosis (Fig 7A). These factors are not independent (Fig 4D) and the variations in
tumor density are consistent with the reported central-to-peripheral pattern of retinoblastoma
incidence [14, 15, 17] and concentration of tumors along the horizontal meridian [16]. How-
ever, the complex variation in tumor location with age at diagnosis has not been reported.
Subsequent analysis of the pattern of localization of multiple tumors within an eye revealed
additional evidence of age-related clustering in the spatial distribution of tumors over the ret-
ina. The age-related variation in tumor density (Fig 7A) reflects clustering of both posterior
and anterior tumors. The pattern of lines connecting multiple tumors within an eye (Fig 7B)
shows that the age-related clustering was driven in part by the concentration of larger central
tumors and in part by the concentration of smaller peripheral tumors in different locations.
There was a surprising regularity of the spatial relationship between central and peripheral
tumors within an eye that was consistent with the overall localization within each age group
(see also individual patient maps in S4 Fig). It appeared that the distance between tumors
within an eye was greater than the typical distance between tumors, even within an age quartile.
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Fig 8. Distribution of approximated locations for all 50 unmapped tumors with respect to each patient
age quartile. With increasing age at diagnosis, there was a significant increase in tumor frequency in the
inferior quadrants while the number of tumors noted in superior quadrants decreased. No significant effect
was noted in variation of tumor occurrence between nasal and temporal quadrants with respect to age.

doi:10.1371/journal.pone.0132932.g008

Permutation testing with random sampling from the full data set to match the observed subset
of multiple tumors confirmed that nearest neighbor distances among multiple tumors within
in an eye was significantly greater than the nearest neighbor distances for comparable samples
from the overall spatial pattern across patients (S2B Fig). However, the marginal separation
between tumors within an eye increased with the distance between tumor centroids, demon-
strating that the nearest neighbor distances among multiple tumors within an eye were not
driven by contact or crowding between the tumors (S2C and S2D Fig).

Distribution of Unmapped Small Tumors within Mapped Eyes

Of the 147 tumors identified clinically in mapped patients with bilateral disease, 50 were too
small (<1-2 mm) for detection with diagnostic MRI and were not included in the above analy-
sis. The locations of the small tumors reported from fundoscopy were as follows: 42 anterior to
the equator with 13 infranasal, 9 supranasal, 6 anterior nasal meridian, 7 supratemporal, 4 infra-
temporal and 3 anterior temporal meridian; and 8 tumors were posterior to the equator with 3
infranasal, 1 supranasal, 1 supratemporal, 1 infratemporal, and 2 in the macula. The distribution
of the unmapped tumors varied over the age quartiles (Fig 8), and the effect was significant for
the superior/inferior proportions (Fisher exact test, p = 0.008). Plots of the small tumors by
quadrant along with the mapped tumors (S3 Fig) show additional evidence that the distribution
of the unmapped was generally consistent with the pattern apparent in the mapped tumors.

Discussion

We used diagnostic MRI to map the perimeter of primary tumors on the surface of the retina
in retinoblastoma patients at the time of diagnosis. MRI is not conventionally used to charac-
terize intraocular disease because clinical fundoscopy is effective, and more sensitive for detect-
ing small lesions (e.g., Group A). However, spatial metrics can only be roughly quantified with
standard clinical fundoscopy, and in eyes with more extensive disease, anatomic points of ref-
erence such as the fovea and optic nerve are obscured by tumor growth making it impossible to
quantify tumor margin location using fundus photography alone. With MRI, retinal coordi-
nates can be objectively measured in a consistent retinal coordinate space, and the full extent of
ocular anatomy can be evaluated regardless of tumor size. The MRI-based tumor maps we pro-
duced provide information about the tumor burden in each patient that is essential for evalua-
tion and interpretation of fMRI findings that we have reported in this patient population [13].
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In addition, the systematic mapping in this cohort revealed previously unrecognized patterns
of age-related tumor localization over the surface of the retina.

The spatial and temporal patterns we report are consistent with well-established patterns
for intraocular retinoblastoma [14-17]. The previous studies were based on fundus drawings
and limited to small tumors to approximate the tumor point of origin. There is a central-to-
peripheral progression of retinoblastoma location with increasing age at diagnosis [14, 15, 17].
Abramson et al. categorized tumors in patients with bilateral disease into one of four concen-
tric zones around the fovea and noted that average age at diagnosis increased in each subse-
quently more peripheral zone. Posterior pole tumors were diagnosed at the youngest age and
subsequent tumors were never detected within the macula [14, 15]. Brinkert, et al. measured
the distance between the macula and the tumor center and detected a similar distribution [17].
This central-to-peripheral trend is apparent in our data (Figs 5C and 7A), with median eccen-
tricity increasing in the later age quartiles for tumors arising from both germline and somatic
mutations.

Earlier studies also demonstrated that retinoblastoma is more frequently located in the
nasal hemiretina. Brinkert, et al. did not address the azimuthal distribution of tumors [17].
Munier, et al. analyzed the distribution of tumors in 12 wedge-shaped sectors of the retinal sur-
face corresponding to the hours of a clock face [16]. Their analysis included patients with bilat-
eral and unilateral disease, and demonstrated an asymmetric distribution (nasal > temporal)
and a larger fraction of tumors near the horizontal meridian than the vertical meridian.
Abramson, et al. compared the number of tumors by hemisphere (superior vs. inferior, tempo-
ral vs nasal) and found no significant differences [14], but we note that the reported hemi-
spheric ratios of tumor counts were similar to the asymmetric ratios reported by Munier [16].
Consistent with these earlier studies, the overall distribution of cumulative tumor density
(Fig 4D) and tumor centroids (Fig 5A) within our cohort—regardless of mutation type, tumor
size or age at diagnosis—was concentrated within the inferior posterior pole. Peripherally,
tumor occurrence was asymmetrically higher in the nasal versus temporal hemiretina.

Several factors likely account for the relatively high fraction of central tumors in our study.
The earlier studies primarily comprised small tumors and had a lower threshold for exclusion
of larger lesions. Among bilateral patients, Abramson et al. excluded 80% of fellow eyes with
more advanced disease [14] whereas only 23% were excluded in our study. According to our
data, centroids of the largest tumors are localized mostly within the inferior half of the poste-
rior pole; only one tumor centroid was mapped above the horizontal meridian in the largest
tumor quartile. Tumors in the smallest quartile were most widely and homogeneously distrib-
uted over the retina—a pattern more consistent with previous studies that presumably
excluded many centrally occurring lesions as they tend to be too large once diagnosed to local-
ize with indirect ophthalmoscopy. In order to understand how tumor occurrence trends
change during the first years of life, it is necessary to account for these more advanced lesions
which arise earlier and more centrally according to our data.

We also note that an additional 18% of fellow eyes were excluded in our study with Group
A disease undetectable with MRI. Our analysis of similar small unmapped tumors detected
among the eyes with mapped tumors showed that 84% of these lesions were anterior to the
equator. Finally, unlike previous studies we did not map subsequent tumor occurrence after
the initial diagnosis. New tumors are more prone to occur peripherally [14, 15] and their exclu-
sion along with MRI-undetectable disease likely increases the observed difference between cen-
tral versus peripheral tumor occurrence.

Our MRI-based tumor mapping and analysis of digitized tumor maps revealed surprising
regularities in the location of tumors as a function of age at diagnosis. Tumors diagnosed
within each age quartile were concentrated in different retinal areas, and the age-related
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localization was much more complex than central-to-peripheral progression and nasal pre-
dominance previously reported [14-17]. The distribution within each quartile reflects concen-
tration of both central and peripheral tumors. The concentration of more central tumors
progressed by age quartiles in a roughly circumfoveal trajectory from superotemporal to infer-
otemporal to inferonasal to nasal meridian, with an increasing average eccentricity. The
peripheral tumors were essentially split at the median, with tumors from the youngest half of
patients in the nasal hemisphere and the oldest half of patients in the temporal hemisphere.
The most peripheral tumors in each quartile were in eyes that included more central tumors,
and the peripheral tumors had a remarkably regular relationship to the central tumors in the
same eye. The age-related localization was similar for tumors arising from germline and from
somatic mutations, and age-related separation of tumor locations is apparent within each
tumor area quartile.

The robust and regular age-related pattern of tumor localization that we identified may pro-
vide important clues to retinoblastoma genesis. The asymmetry of this pattern may arise from
the similarly asymmetric topographic distribution of the retinoblastoma cell of origin, if such a
cell exists. The topography of disease incidence that we observed was consistent with the topog-
raphy of multiple retinal cell populations. Some evidence suggests that the cone photoreceptor
precursor is a candidate cell of origin, based on tumor expression of cone-specific photopig-
ments and phototransduction proteins [33,34]. A prior study of disease topography supported
this hypothesis based on the similarity of the nasally-skewed, central-to-peripheral gradient
distribution of tumors to that of cone photoreceptors [16]. However, the topography of ama-
crine cells (and other retinal neural cells) is similar to that of cone cells [35] and a recent study
found tumor phenotypes more consistent with amacrine and horizontal cells [36]. This was
corroborated by an investigation with spectral domain optical coherence tomography
(SD-OCT) which found tumors were more likely to originate within the amacrine cell layer
than in the outer segment [37].

Many prenatal and postnatal events in the developing retina may render some areas more
susceptible to undergoing tumorigenesis. Early in development, patterning events direct the
differentiation and distribution of certain cell populations along the dorso-ventral or nasal-
temporal axis of the globe by inducing the expression of a specific combination of transcription
factors [38, 39, 40]. Some of these transcription factors are known to actively promote tumor
growth and inhibit apoptosis in cultured retinoblastoma cell lines [41, 42]. A similar mecha-
nism of action in vivo may contribute to the nasally skewed topography of retinoblastoma. The
asymmetric expansion of the retinal vascular system in utero may also affect the pattern of
tumorigenesis. The nasal periphery is perfused several weeks prior to the temporal periphery
[43] and the topographic progression of both vasculogenesis and angiogenesis differs signifi-
cantly between these areas [44]. Vascular supply is critical for retinoblastoma progression [45,
46] and its asymmetric development in the retina may also contribute to the variation in tumor
incidence and time of onset between the nasal and temporal periphery.

The evolution of tumor location with age that we observed is similar to patterns for neuro-
genesis and cell differentiation in the retina, with progression in a circumferential manner
around the posterior pole while expanding outward towards the periphery [47,48,49]. The sim-
ilarity of the spatial trends in tumor incidence and retinal development is consistent with
reported mechanistic correlation between tumorigenesis and developmental expression of sig-
nals required for tumor cell survival and proliferation [8,9,50,51]. These genetic and epigenetic
events occur within limited spatiotemporal intervals during retinal maturation [8], and there-
fore the complex spatiotemporal pattern of tumor occurrence may help to identify critical
events that cause malignant transformation of retinoblasts with inactivating RB1 mutations

[4].
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Conclusion

We demonstrated a distinctive pattern of topographic variation in retinoblastoma incidence
that varied with the age of tumor diagnosis. The spatiotemporal distribution of tumor locations
likely reflects regional developmental events in the young retina that facilitate cell survival and
proliferation after the requisite inactivating mutation in RB1 is acquired. Identification of bio-
logical correlates of the spatial and temporal patterns we observed may help to clarify the
mechanisms of retinoblastoma genesis. Understanding the spatiotemporal evolution of disease
incidence may also help clinicians anticipate new intraocular lesions in germline retinoblas-
toma and their resulting visual field defects. Ultimately we will use this detailed assessment of
retinal topography to characterize the relationship between tumor manifestation in the eye and
resulting functional deficits in the visual system as quantified by functional MRI (fMRI).

Supporting Information

S1 Fig. Spatial point process analysis of the distribution of tumor centroids on the retina.
Ripley’s K statistic for the nearest neighbor distance showed that the tumors centroids (black
curve) were more clustered than would be expected for a spatially random distribution (gray
curve).
(PDF)

$2 Fig. A) Euclidian nearest neighbor distance in the azmuthal equidistant projection was
greater than or equal to the actual great circle distance on the retinal surface, but the overall dif-
ference was not significant. B) The distribution of nearest neighbors distances for the subset of
tumors in eyes containing multiple tumors (histogram and density curve (thick line) was sig-
nificantly different from the distribution for similar samples from the full set of tumors esti-
mated by permutation testing (thin line), with larger distances among tumors within an eye. C)
The margin between tumors within an eye was estimated as the shortest distance between the
boundaries of the tumor for comparison with the distance between the centroids of the tumors.
D) The margin/distance ratio increased with distance, and the minimum ratio (~0.4) shows
that the observed distribution of multiple tumors within an eye was not driven by close contact
or crowding.

(PDF)

$3 Fig. Tumor centroid plots by individual patient, shown in azimuthal equidistant projec-
tion corresponding to a right eye. The plots include all mapped tumors and also the small
tumors that were unmapped, but were located by quadrant from clinical fundoscopy reports.
Tumors from right eyes are indicated with a + sign, tumors from left eyes are unmarked.
Patient age at diagnosis is indicated above each plot, and the plots are presented in order of
increasing age.

(PDF)

S1 Table. Poisson Point Process Models for distribution of tumor centroids marked by age

at diagnosis quartile with polynomial covariates.
(PDF)
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