
fgene-11-00481 May 14, 2020 Time: 19:58 # 1

ORIGINAL RESEARCH
published: 15 May 2020

doi: 10.3389/fgene.2020.00481

Edited by:
Guilherme J. M. Rosa,

University of Wisconsin–Madison,
United States

Reviewed by:
Matthew L. Spangler,

University of Nebraska–Lincoln,
United States

Fernando Baldi,
São Paulo State University, Brazil

*Correspondence:
Bo Zhu

zhubo@caas.cn
Junya Li

lijunya@caas.cn

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal

Frontiers in Genetics

Received: 12 December 2019
Accepted: 17 April 2020
Published: 15 May 2020

Citation:
Xu L, Gao N, Wang Z, Xu L, Liu Y,

Chen Y, Xu L, Gao X, Zhang L, Gao H,
Zhu B and Li J (2020) Incorporating

Genome Annotation Into Genomic
Prediction for Carcass Traits

in Chinese Simmental Beef Cattle.
Front. Genet. 11:481.

doi: 10.3389/fgene.2020.00481

Incorporating Genome Annotation
Into Genomic Prediction for Carcass
Traits in Chinese Simmental Beef
Cattle
Ling Xu1, Ning Gao2, Zezhao Wang1, Lei Xu1, Ying Liu1, Yan Chen1, Lingyang Xu1,
Xue Gao1, Lupei Zhang1, Huijiang Gao1,3, Bo Zhu1,3* and Junya Li1,3*

1 Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural
Sciences, Beijing, China, 2 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou,
China, 3 National Centre of Beef Cattle Genetic Evaluation, Beijing, China

Various methods have been proposed for genomic prediction (GP) in livestock. These
methods have mainly focused on statistical considerations and did not include genome
annotation information. In this study, to improve the predictive performance of carcass
traits in Chinese Simmental beef cattle, we incorporated the genome annotation
information into GP. Single nucleotide polymorphisms (SNPs) were annotated to
five genomic classes: intergenic, gene, exon, protein coding sequences, and 3′/5′

untranslated region. Haploblocks were constructed for all markers and these five
genomic classes by defining a biologically functional unit, and haplotype effects were
modeled in both numerical dosage and categorical coding strategies. The first-order
epistatic effects among SNPs and haplotypes were modeled using a categorical
epistasis model. For all makers, the extension from the SNP-based model to a
haplotype-based model improved the accuracy by 5.4–9.8% for carcass weight (CW),
live weight (LW), and striploin (SI). For the five genomic classes using the haplotype-
based prediction model, the incorporation of gene class information into the model
improved the accuracies by an average of 1.4, 2.1, and 1.3% for CW, LW, and
SI, respectively, compared with their corresponding results for all markers. Including
the first-order epistatic effects into the prediction models improved the accuracies in
some traits and genomic classes. Therefore, for traits with moderate-to-high heritability,
incorporating genome annotation information of gene class into haplotype-based
prediction models could be considered as a promising tool for GP in Chinese Simmental
beef cattle, and modeling epistasis in prediction can further increase the accuracy to
some degree.

Keywords: genomic prediction, genome annotation, haplotype, Chinese Simmental beef cattle, prediction
accuracy

INTRODUCTION

Genomic prediction (GP), which uses whole-genome markers to predict genomic breeding value,
has been widely used in breeding programs of plants (Heffner et al., 2009; Riedelsheimer et al., 2012;
de los Campos et al., 2013; Hayes et al., 2013) and domestic animals (Sonesson and Meuwissen,
2009; Hayes et al., 2010; Erbe et al., 2012; de los Campos et al., 2013), disease risk prediction for
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humans (Vazquez et al., 2012; Akey et al., 2014; Abraham
et al., 2016), and phenotype prediction of model organisms
(Ober et al., 2012; Kooke et al., 2016). Accompanied by the
fast development of genotyping and sequencing technologies,
various methods with different underlying statistical assumptions
have been proposed for GP, including penalized and Bayesian
regression methods (Whittaker et al., 2000; Meuwissen et al.,
2001; Gianola et al., 2006; VanRaden, 2008; Bennewitz et al.,
2009; Habier et al., 2011; Gianola, 2013; Morota and Gianola,
2014). These methods have been applied in cattle populations
to improve the prediction accuracy of direct genomic estimated
breeding values (DGVs) to some degree (Luan et al., 2009; Hayes
et al., 2010; Bolormaa et al., 2013; Fernandes Júnior et al., 2016;
Mehrban et al., 2017; Toghiani et al., 2017). However, these
established prediction methods have mainly focused on statistical
considerations and did not consider the abundantly available
biological information. Incorporating biological knowledge, like
annotation information (Gao et al., 2017) and gene expression
(Li et al., 2019), into GP using an appropriate method may
bridge the gap between mathematical models and the underlying
biological processes; thus, this information has the potential to
improve the prediction accuracy under certain circumstances
(Edwards et al., 2016).

Given the availability of genome annotation information,
some studies have tried to integrate this information into
prediction models to improve the predictive accuracies (Morota
et al., 2014; Do et al., 2015; Abdollahi-Arpanahi et al., 2016; Gao
et al., 2017; Nani et al., 2019). Single nucleotide polymorphisms
(SNPs) were divided into different genomic classes based on
the genome annotation information, and GP was conducted
for genomic classes using two strategies. The first strategy was
to assess the prediction accuracy for each genomic class, and
then the genomic class that give the best prediction accuracy
was further used for GP (Morota et al., 2014; Do et al.,
2015; Abdollahi-Arpanahi et al., 2016). Another strategy was
to assign different prior distributions for the different genomic
classes, and then all genomic classes were used for prediction
(MacLeod et al., 2016). These approaches for incorporating
annotation information into GP slightly improved the prediction
accuracy in some cases. For instance, Erbe et al. (2012) found
that SNPs in the transcribed class produce better predictive
performance than other classes in dairy cattle, with a slight
increase in prediction accuracy of 0.03 for milk yield, fat
yield, and protein yield traits on average. However, others
discovered that the prediction accuracy of genomic classes
was trait-dependent in the commercial chicken population,
and the predictive performance of the whole-genome region
remained more accurate (Morota et al., 2014). Generally,
these studies have not achieved significant improvements over
their corresponding predictions without annotation information.
Most studies simply applied standard prediction models for
genomic classes based on individual SNPs, with the basic
underlying assumption is that at least one marker is in linkage
disequilibrium (LD) with each quantitative trait locus (QTL)
under high-density markers. The marker density of genomic
classes declined after the partitioning, which caused fewer bi-
allelic SNPs in LD with a QTL.

An alternative is treating haplotypes that are on tuples of SNPs
as predictor variables in GP to compensate for the imperfect LD
between SNPs and QTLs (Cuyabano et al., 2015; Da, 2015). The
main benefit of using haplotypes for GP is that a haplotype is
expected to have a higher LD with a QTL than an individual
marker (Calus et al., 2008), and has better ability to identify
mutations than a single SNP (Cuyabano et al., 2014). For a trait
controlled by rare QTLs, the fitting haplotype could yield a higher
accuracy, regardless of the minor allele frequency (MAF) of the
QTL (de los Campos et al., 2013). When a high-density SNPs
chip was annotated into different genomic classes, at least two
SNPs may be included in a genome feature; thus, multi-allelic
haplotype-based prediction models are expected to capture the
state of a QTL better than single-SNP-based prediction models
for genomic classes (Calus et al., 2008; Meuwissen et al., 2014).

In this study, we used annotation information of the cattle
genome to divide Illumina BovineHD BeadChip into five
genomic classes, including intergenic regions (IGR), gene, exon,
protein coding sequences (CDS), and 3′/5′ untranslated regions
(UTR) classes. Then, haploblocks were created (Meuwissen
et al., 2014) and haplotype effects were modeled using both
numerical dosage and categorical coding strategies (Martini
et al., 2017) for each genomic class. Although an additive
model may explain a major part of the genetic variance in
different datasets (Hill et al., 2008), this model does not
explicitly capture any kind of interaction that may be present
in biochemical pathways that connect gene expression with
the ultimate target phenotype. Therefore, statistical models
that incorporate interactions between loci are considered as
potentially beneficial for GP (Palucci et al., 2007; Pettersson et al.,
2011; Su et al., 2012; Mackay, 2014). Epistasis resulting from
interactions between genes at different loci was recognized as
an important component in dissecting genetic pathways and
understanding the evolution of complex genetic systems (Phillips,
2008; Jiang and Reif, 2015). Overall, the objectives of this study
were (1) to compare the predictive accuracies of haplotype-
based prediction models with SNP-based prediction models,
(2) to characterize the predictive performance when genome
annotation information was incorporated into haplotype-based
prediction model, and (3) to investigate the contribution of
epistasis for the accuracy of GP for carcass traits in Chinese
Simmental beef cattle.

MATERIALS AND METHODS

Data
Our dataset includes 1346 Simmental cattle born between 2008
and 2015 from Ulgai, Xilingol League, and Inner Mongolia,
China. After weaning, cattle were moved to Jinweifuren Co.,
Ltd. (Beijing, China) for fattening under the same feeding and
management conditions. A more detailed description of the
management processes was reported in previous studies (Zhu
et al., 2016, 2017). All individuals were slaughtered at an average
age of 20 months, and carcass and meat quality traits were
measured in accordance with the guidelines proposed by the
Institutional of Meat Purchase Specifications. All animals used in
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the study were treated following the guidelines established by the
Council of China Animal Welfare. Protocols of the experiments
were approved by the Science Research Department of the
Institute of Animal Sciences, Chinese Academy of Agricultural
Sciences (CAAS) (Beijing, China). The approval ID/permit
numbers are SYXK (Beijing) 2008-007 and SYXK (Beijing) 2008-
008. In our study, carcass weight (CW), live weight (LW), and
striploin (SI) were analyzed, and their statistical description was
summarized in Table 1.

Genotyping and Quality Control
The DNA for each animal was obtained from blood using
routine procedures. Samples were genotyped with Illumina
BovineHD BeadChip. This array contains 777,962 SNPs with
an average probe spacing of 3.43 kb and a median spacing
of 2.68 kb. Before statistical analysis, the original SNP dataset
was filtered using PLINK (v1.90) (Purcell et al., 2007; Chang
et al., 2015). Individuals and autosomal SNPs that failed in
any of the following criteria were removed, SNPs call rate
(>0.90) (MAF > 0.01), Hardy–Weinberg Equilibrium (p > 10−6)
and individual call rate (>0.90). Missing genotypes were
imputed using BEAGLE (v4.1) (Browning and Browning, 2016).
Consequently, 1331 individuals and 671,204 SNPs remained.
SNPs were coded as the number of copies of the minor allele,
i.e., 0, 1, and 2 for the first homozygote, the heterozygote,
and the second homozygote, respectively. About population
structure, like principal component analysis (PCA) and linkage
disequilibrium (LD) were performed in previous studies, which
have shown that this population could be separated into five
clusters, and the LD (r2) dropped below 0.2 at distances of 34 kb,
indicating that the implementation of GS in this population
requires at least 77,941 markers (Niu et al., 2016; Xia et al., 2016).

Heritability Estimation
Phenotypes were adjusted for the environmental fixed effects,
including sex, year, and the covariates of body weight upon
entering the fattening farm, and the number of fattening
days. Subsequently, the adjusted phenotypes were used for
further analysis. Variance components were estimated using
the following univariate animal model in ASREML (v4.1)
(Gilmour et al., 2015):

y = 1nµ+ Za+ e (1)

where y is the vector of the adjusted phenotypes, 1nis an n×
1 vector with entries equal to 1; µ is the overall mean; a ∼
N(0, σ2

aG) is a vector of random additive genetic effect, where G
is the additive genetic relationship matrix constructed using all
SNPs and σ2

a is the additive genetic variance, Z is incidence matrix
associating a; and e ∼ N(0, σ2

eI) is a vector of random residuals,
where I is the identity matrix and σ2

e is the residual variance. The
heritability of each trait was estimated using h2

= σ2
a/(σ

2
a + σ 2

e).

SNP Annotation
The latest bovine genome annotation (Bos_taurus.ARS-UCD1.2)
was downloaded from Ensemble1. According to genome

1http://asia.ensembl.org/index.html

annotation information, the bovine genome was partitioned into
five genomic classes: (1) intergenic regions (IGR), (2) gene,
(3) exon, (4) protein coding sequences (CDS), and (5) 3′/5′
untranslated regions (UTR) classes. Gene class contained the
exon class, and exon class represented a combination of CDS
and UTR classes. Thus, overlapping existed among different
genomic classes. Then, the SNPs of BovineHD Beadchip were
annotated into the corresponding genomic class based on their
physical position.

Haplotype Derivation and Encoding
For the gene, exon, CDS, and UTR classes, a genome feature
refers to a single gene, exon, CDS, and UTR, respectively; for
the IGR class, a genome feature refers to an interval between
two adjacent genes. A group of SNPs that were annotated in a
certain genome feature of the five genomic classes was called an
SNP set. The phased consecutive SNPs were used for haploblock
construction via the approach described by Meuwissen et al.
(2014) for each SNP set. The number of SNPs contained in
each haploblock depends on the predefined number of types
for haplotype allele configurations; here, we used 10 as the
maximum number of types (Meuwissen et al., 2014). For SNP sets
containing only one SNP, the 0-, 1-, or 2-encoded genotypes were
retained for further analysis. Subsequently, haploblocks with at
least two haplotype alleles were generated for each SNP set of
different genomic classes.

Haplotype effects were then modeled using both numerical
dosage (Calus et al., 2008; Cuyabano et al., 2014; Meuwissen et al.,
2014) and categorical (Martini et al., 2017) coding strategies. In
the numerical dosage model, pseudo-markers were generated for
haploblocks by counting the number of copies of the respective
allele carried by a certain individual, where the intra-locus
additive effects were assumed. The additivity assumption was
not necessary in the categorical coding, where the pseudo-
markers of haploblocks were coded according to the haplotype
allele configurations (genotypes), and each haplotype allele had
its own independent effect. Table 2 shows the coding of a
haplotype formed by two consecutive SNPs. Thus, for the five
genomic classes, the pseudo-marker matrixes with entries 0,
1, and 2 were reconstructed in both numerical dosage and
categorical models (CMs). For all markers, haploblocks were
constructed for each chromosome separately using the same
approach described above, and the process started from the first
marker and followed by their physical order, whereas the genome
annotation information was not used to define a biologically
functional unit.

Prediction Models
The prediction model used in this study was basically the same as
in Eq. (1), except for the different genomic relatedness matrices
G, which were constructed based on respective prediction
approaches (Table 3). In our study, the predictive accuracies of
using all markers were considered as a benchmark.

In numerical dosage models, GBLUP (VanRaden, 2008) was
performed for all markers, and the genomic relatedness matrix

was calculated as G = (M−P)(M−P)
′

2
∑m

i−1 pi(1−pi)
, where M denotes the (0,
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TABLE 1 | Statistical description and heritability estimation of three traits in Chinese Simmental beef cattle.

Traits1 The number of phenotype Mean (SD) Maximum Minimum h2(SE)

CW 1346 270.67 ± 45.20 486.00 162.60 0.42 ± 0.05

LW 1342 504.95 ± 70.22 776.00 318.00 0.38 ± 0.07

SI 1342 8.55 ± 1.99 15.90 3.21 0.40 ± 0.05

1Carcass weight (CW), live weight (LW), and striploin (SI).

TABLE 2 | Numerical and categorical coding of a haploblock formed by two consecutive single nucleotide polymorphisms (SNPs).

Haplotype allele 1 Haplotype allele 2 Categorical coding of haploblock1 Numerical coding of haploblock

AB Ab aB ab

AB AB AB|AB 2 0 0 0

AB Ab AB|Ab 1 1 0 0

AB aB AB|aB 1 0 1 0

AB ab AB|ab 1 0 0 1

Ab Ab Ab|Ab 0 2 0 0

Ab aB Ab|aB 0 1 1 0

Ab ab Ab|ab 0 1 0 1

aB aB aB|aB 0 0 2 0

aB ab aB|ab 0 0 1 1

ab ab ab|ab 0 0 0 2

1separates the strands of DNA. Considering this haploblock (let {A, a} and {B, b} denote alleles harbored by the two SNPs, respectively), four possible types of gametes—
AB, Ab, aB, and ab—could be generated and 10 types of genotypes are possibly formed in a large population (imprinting is not considered).

TABLE 3 | Genomic relatedness matrices for different genomic prediction models for all markers or haplotypes.

Models Description Relatedness matrices Use1

GBLUP Genomic best linear unbiased prediction G =
(M− P)(M− P)

′

2
∑m

i−1 pi(1− pi)
All markers

GHBLUP Haplotype based GBLUP GH =
MHM

′

H

QH
All markers

GHBLUP|GA Haplotype based GBLUP given genome annotation GHGA =
MHGA

M
′

HGA
QHGA

Genomic classes

CM Categorical marker effect model S = (

∑Q
q−1 ϕjik

m
)ij All markers

CE Categorical epistasis model E = 0.5×mS#(mS+ 1n×n)/m2 All markers

CHM Haplotype based CM SH = (

∑Q
q−1 ϕjiq

QH
)ij All markers

CHE Haplotype based CE EH =
0.5×QHSH#(QHSH + 1n×n)

Q2
H

All markers

CHM|GA CHM given genome annotation S̃ = (

∑Q
q−1 ϕjiq

QHGA

)ij Genomic classes

CHE|GA CHE given genome annotation Ẽ = 0.5×QS̃#(QS̃+ 1n×n)/Q2
HGA

Genomic classes

1Refers to the whole genome-wide SNP; genomic classes refer to IGR, gene, exon, CDS, and UTR class.

1, and 2) encoded genotype matrix, pi is the MAF of marker i,
m is the number of markers, and P is a matrix with columns
equal to 2pi. The haplotype-based genomic best linear unbiased
prediction (GHBLUP) was performed for all markers. The
haplotype-based genomic relatedness matrix in GHBLUP was
constructed as the dot product of the haplotype allele matrix

(MH) and expressed as GH =
MHM

′

H
QH

, where MH is the pseudo-
markers matrix with entries 0, 1, and 2 representing the number
of copies of each haplotype allele in a haploblock, and QH is the
total number of haploblocks of whole genome.

For the five genomic classes, haplotype-based genomic
best linear unbiased prediction given genome annotation
(GHBLUP|GA) was implemented. Similarly, the haplotype-based
genomic relatedness matrix in GHBLUP|GA was constructed

as GHGA =
MHGA M

′

HGA
QHGA

, where MHGA is the haplotype allele
matrix with pseudo-markers encoded with (0, 1, and 2), and
QHGA is the total number of haploblocks in the corresponding
genomic class.

In CMs, the SNP-based CM (Martini et al., 2017) was applied
for all markers, and the genomic relatedness matrix in CM is
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expressed as S with entries Sij =

∑Q
q−1 ϕjik

m , in which ϕjik was
scored 1 if individual j and i shared the same genotype on marker
k; otherwise, ϕjikwas scored 0, and m was the number of markers.
The haplotype-based CM (CHM) was applied for all markers as
well, in which the number of haploblocks that were in the same
state between pairs of individuals were counted. The genomic
relatedness matrix in CHM is expressed as SHwith entries SHji =

(

∑Q
q−1 ϕjiq
QH

), where ϕjiq was scored 1 if individual i and j share the
same haplotype allele configuration on haploblock q; otherwise,
ϕjiq was scored 0; QH was the total number of haploblocks,
which is the same with that in GH. Therefore, the entries of SH
represented the proportion of haploblocks with an identical state
between pairs of individuals. For the five genomic classes, the
haplotype-based CM assigned the genome annotation CHM|GA
was applied. Similarly, the genomic relatedness matrix was built
by counting the number of haploblocks that were in an identical
state between pairs of individuals (Gao et al., 2017) and expressed

as S̃ with entries S̃ji = (

∑Q
q−1 ϕjiq

QHGA
), whereϕjiq is the same as in

CHM, but QHGA is the total number of haploblocks in certain
genomic class, which is the same with that in GHGA .

To capture the first-order epistasis among SNPs, the CM
model can be extended to categorical epistasis (CE) model
(Martini et al., 2017). In the CE model, the genotype
combinations of each pair of loci were treated as categorical
variables, and the relatedness of two individuals was measured
by counting the number of pairs of markers in the same
state. The genomic relatedness matrix in the CE model was be
deduced from S via the formulaE = 0.5×mS#(mS+ 1n×n)/m2,
where # denotes the Hadamard product. The first-order epistasis
between pairs of haploblocks was modeled by extending CHM
to the haplotype-based categorical epistasis model (CHE) (Gao
et al., 2017), where the genotype combinations of each pair
of haploblocks were treated as a new categorical variable, and
the genomic relatedness matrix was calculated as EH = 0.5×
QHSH#(QHSH + 1n×n)/Q2

H. The corresponding epistatic model
that included the first-order epistasis among haploblocks was
developed for the five genomic classes and was denoted as
CHE|GA (Gao et al., 2017), where the genomic relatedness matrix
was constructed as Ẽ = 0.5× QS̃#(QS̃+ 1n×n)/Q2

HGA
.

Assessment of Prediction Accuracy
The accuracy of GP was assessed using fivefold cross-validation
(CV), which assigns animals randomly into five separate
subsets with near-equal size. Each subset was used as the
validation set only once, with phenotype masked, and the
remaining four subsets were treated as a training set. In order
to reduce random sampling effects, the CV layout described
above was replicated twenty times, where a new randomization
was implemented for each replicate so that the each of the
subset contains different individuals. DGVs were calculated
for each validation subset based on the genomic relatedness
matrix. For each replicate, the prediction accuracies were
assessed by the correlation between the DGVs and the pre-
adjusted phenotypes in the validation set divided by square
root of heritability. In addition, in order to assess the extent

of bias on GP, linear regression coefficients [b (y, DGV)] of
the pre-adjusted phenotypes (y) on the DGVs was calculated
for individuals in the validation set. Unbiased models are
expected to do not significantly different from 1, whereas
values greater than 1 indicate a biased deflation prediction of
DGVs and values smaller than 1 indicate a biased inflation
prediction of DGVs.

RESULTS

SNP Annotation and Heritability
Estimation
We annotated 671,204 filtered SNPs into five genomic classes
based on their physical positions. The annotation results and
descriptive statistics of each genomic class are displayed in
Table 4. Overall, 67.03 and 32.97% of the total SNPs were
annotated into the IGR and gene classes, respectively. Only 1.46,
1.05, and 0.39% of the total SNPs were annotated into the exon,
CDS, and UTR class, respectively. The average MAF among
these five genomic classes was in the range of 0.25 to 0.26. The
number of haploblocks of gene, exon, CDS, and UTR classes were
87,407, 45,748, 9287, 6799, and 2409, respectively. We counted
the number of genome features that were annotated by SNPs for
each genomic class (Table 4). For instance, 16,286 genes were
annotated by SNPs in the gene class, representing 66.30% of the
total genes in the bovine genome. Based on the GREML method,
the heritability estimates of CW, LW, and SI, were 0.42, 0.38, and
0.40 respectively.

Prediction Accuracy of Haplotype-Based
Prediction Model
We first compared the prediction accuracies of all markers
between haplotype-based prediction models (GHBLUPand CHM)
and the SNP-based prediction models (GBLUP and CM). The
results showed that the predictive performances of GHBLUP
andCHM were more accurate than GBLUP and CM in CW,
LW, and SI (Figure 1). In the numerical dosage models, the
accuracy of GHBLUP was 5.4, 9.8, and 7.1% higher than GBLUP
in CW, LW, and SI, respectively (Table 5). In the CMs, CHM
improved the accuracies by 7.8, 9.5, and 9.4% in CW, LW,
and SI, respectively, compared with the CM results. Generally,
the numerical dosage models performed better than CMs for
most traits. For all markers, GBLUP slightly outperformed CM
with 3.0, 0.7, and 1.2% higher accuracy in CW, LW, and SI,
respectively (Table 5). The predictive performance of GHBLUP
was 1% more accurate than CH M only in LW.

Prediction Accuracy of Haplotype-Based
Prediction Model Given Genome
Annotation
Under the haplotyped-based model, we further compared the
prediction accuracies for the genomic classes with all markers to
characterize the benefits of usage genome annotation information
in GP. We found that the accuracy of using gene annotation
to define haploblocks was consistently higher than that of
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TABLE 4 | Mapping results and statistical descriptions of each genomic classes.

Genomic class # of SNPs1 MAF Mean MAF (SD) # of haploblocks # of represented genome feature2

IGR class 449,918 (67.03%) 0.009–0.5 0.26 (0.15) 87,407

Gene class 221,286 (32.97%) 0.009–0.5 0.26 (0.15) 45,748 16,286 (66.30%)

Exon class 9814 (1.46%) 0.010–0.5 0.25 (0.15) 9287 9287 (4.08%)

CDS class 7024 (1.05%) 0.010–0.5 0.25 (0.14) 6799 6799 (3.17%)

UTR class 2614 (0.39%) 0.010–0.5 0.25 (0.15) 2409 2409 (7.26%)

All markers 671,204 0.009–0.5 0.26 (0.15) 115,005

1The number of SNPs annotated in five genomic classes, and their percentage of the whole genome-wide markers is indicated in parentheses. 2The number of genomic
features represented by SNPs in the corresponding genomic class, and their percentage of the total genome features of the reference genome in parentheses. The bovine
reference genome contains 24,559 genes, 227,610 exons, 214,584 CDS, and 33,137 UTR. # means “the number.”

FIGURE 1 | The prediction accuracies of different genomic classes in three traits of Chinese Simmental beef cattle.

all markers across all traits (Figure 1). In GHBLUP|GA, the
prediction accuracy of gene class was 0.403, 0.502, and 0.506 for
CW, LW, and SI, which were 1.3, 2.0, and 2.1% higher than using
GHBLUP, respectively. In the CM, CHM|GA outperformed CHM
in gene class, with accuracy improvements of 1.6, 2.2, and 0.5%
in CW, LW, and SI, respectively. For IGR, exon, CDS, and UTR
genomic classes, the accuracies using the two haplotype-based
prediction models were not improved. In GHBLUP|GA, gene
class had 0.6–7.9, 7.6–28.5, 11.2–32.6, and 14.9–30.9% higher
accuracies than IGR, exon, CDS, and UTR classes for the three
traits, respectively. Analogously, in CHM|GA, the accuracies of
the three traits using gene class were 0.1–6.9, 11.3–25.7, 15.1–
28.8, and 19.1–31.6% higher than that of IGR, exon, CDS, and
UTR classes, respectively (Table 5). Comparing the prediction
accuracy of numerical dosage with the CM, we found that
GHBLUP|GA maintained more accurate predictive performance
than CHM|GA in most genomic classes (Table 5).

Prediction Accuracy of Epistasis Model
Considering the prediction model including epistatic effects may
increase the accuracy and reduce the bias of DGVs. The results
showed that incorporation of first-order epistatic effects into

prediction model can slightly improve the prediction accuracies
for most traits and genomic classes (Figure 1). When including
the epistatic effects amongst SNPs into the CE model for all
markers, prediction accuracy increased by 1.1 and 0.4% in CW
and LW, respectively (Table 5). Similarly, the extension of CHM
to CHE for all markers improved the prediction accuracies
by 1.4 and 0.7% in CW and LW, respectively. For the five
genomic classes, compared with CHM|GA, CHE|GA also had
higher prediction accuracies in the IGR class of LW (0.3%), gene
class of LW (1.4%), exon class of CW (0.2%) and SI (0.6%),
CDS class of CW (0.3%) and SI (0.8%), and UTR class of CW
(0.4%) and SI (0.5%).

Regression Coefficient
Table 6 displayed the slope of the regression of the adjusted
phenotype on DGVs. For numerical dosage models, the
regression coefficients of all marker, IGR, and gene classes
were not significantly different from 1 in all traits, indicating
the predictions were not significantly biased. For CMs, the
regression coefficients of gene, exon, CDS, and UTR classes were
significantly different from 1 in CW and LW. However, the
regression coefficients for the predictions using the CMs that
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TABLE 5 | The prediction accuracies (SD) of different genomic classes in three traits of Chinese Simmental beef cattle.

Trait1 Numerical dosage model Categorical model Categorical epistasis model

CW All maker GBLUP 0.336 (0.05) CM 0.316 (0.06) CE 0.327 (0.06)

All maker GHBLUP 0.390 (0.06) CHM 0.394 (0.06) CHE 0.408 (0.06)

IGR class GHBLUP|GA 0.397 (0.06) CHM|GA 0.387 (0.06 CHE|GA 0.381 (0.06)

Gene class GHBLUP|GA 0.403 (0.05) CHM|GA 0.410 (0.06) CHE|GA 0.403 (0.06)

Exon class GHBLUP|GA 0.246 (0.06) CHM|GA 0.215 (0.05) CHE|GA 0.217 (0.05)

CDS class GHBLUP|GA 0.225 (0.06) CHM|GA 0.197 (0.05) CHE|GA 0.200 (0.05)

UTR class GHBLUP|GA 0.232 (0.06) CHM|GA 0.188 (0.05) CHE|GA 0.192 (0.05)

LW All maker GBLUP 0.384 (0.05) CM 0.377 (0.06) CE 0.381 (0.06)

All maker GHBLUP 0.482 (0.06) CHM 0.472 (0.06) CHE 0.479 (0.05)

IGR class GHBLUP|GA 0.423 (0.06) CHM|GA 0.425 (0.06) CHE|GA 0.428 (0.06)

Gene class GHBLUP|GA 0.502 (0.07) CHM|GA 0.494 (0.07) CHE|GA 0.508 (0.07)

Exon class GHBLUP|GA 0.217 (0.06) CHM|GA 0.237 (0.06) CHE|GA 0.237 (0.06)

CDS class GHBLUP|GA 0.176 (0.06) CHM|GA 0.206 (0.06) CHE|GA 0.203 (0.06)

UTR class GHBLUP|GA 0.193 (0.06) CHM|GA 0.178 (0.05) CHE|GA 0.179 (0.05)

SI All maker GBLUP 0.414 (0.07) CM 0.402 (0.07)) CE 0.402 (0.07)

All maker GHBLUP 0.485 (0.06) CHM 0.496 (0.06) CHE 0.479 (0.06)

IGR class GHBLUP|GA 0.487 (0.06) CHM|GA 0.500 (0.06) CHE|GA 0.485 (0.06)

Gene class GHBLUP|GA 0.506 (0.06) CHM|GA 0.501 (0.06) CHE|GA 0.500 (0.06)

Exon class GHBLUP|GA 0.430 (0.06) CHM|GA 0.388 (0.06) CHE|GA 0.394 (0.06)

CDS class GHBLUP|GA 0.394 (0.06) CHM|GA 0.350 (0.05) CHE|GA 0.358 (0.05)

UTR class GHBLUP|GA 0.357 (0.06) CHM|GA 0.310 (0.06) CHE|GA 0.315 (0.06)

1Carcass weight (CW), live weight (LW), and striploin (SI); prediction accuracies are averaged over the fivefold cross-validation (CV) and then over the 20 replicates.

TABLE 6 | Regression coefficients (SD) of pre-adjusted phenotypes on DGVs for three traits of Chinese Simmental beef cattle.

Trait1 Numerical dosage model Categorical model Categorical epistasis model

CW All maker GBLUP 1.102 (0.08) CM 1.097 (0.05) CE 1.087 (0.05)

All maker GHBLUP 1.062 (0.06) CHM 1.079 (0.06) CHE 1.388 (0.08)

IGR class GHBLUP|GA 1.064 (0.06) CHM|GA 1.080 (0.07) CHE|GA 1.318 (0.07)

Gene class GHBLUP|GA 1.071 (0.06) CHM|GA 1.090 (0.06) CHE|GA 1.300 (0.07)

Exon class GHBLUP|GA 1.131 (0.16) CHM|GA 1.143 (0.18) CHE|GA 1.135 (0.18)

CDS class GHBLUP|GA 1.173 (0.18) CHM|GA 1.169 (0.23) CHE|GA 1.156 (0.21)

UTR class GHBLUP|GA 1.165 (0.16) CHM|GA 1.232 (0.16) CHE|GA 1.218 (0.16)

LW All maker GBLUP 0.984 (0.10) CM 1.062 (0.09) CE 1.094 (0.09)

All maker GHBLUP 1.009 (0.07) CHM 1.023 (0.08) CHE 1.546 (0.10)

IGR class GHBLUP|GA 1.051 (0.07) CHM|GA 1.073 (0.08) CHE|GA 1.311 (0.08)

Gene class GHBLUP|GA 1.051 (0.04) CHM|GA 1.088 (0.04) CHE|GA 1.629 (0.04)

Exon class GHBLUP|GA 1.187 (0.30) CHM|GA 1.159 (0.22) CHE|GA 1.165 (0.22)

CDS class GHBLUP|GA 1.386 (0.31) CHM|GA 1.285 (0.25) CHE|GA 1.294 (0.25)

UTR class GHBLUP|GA 1.197 (0.29) CHM|GA 1.282 (0.33) CHE|GA CHE|GA 1.278 (0.32)

SI All maker GBLUP 1.079 (0.03) CM 1.076 (0.05) CE 1.083 (0.05)

All maker GHBLUP 1.038 (0.05) CHM 1.046 (0.04) CHE 1.414 (0.07)

IGR class GHBLUP|GA 1.038 (0.05) CHM|GA 1.049 (0.04) CHE|GA 1.338 (0.07)

Gene class GHBLUP|GA 1.050 (0.05) CHM|GA 1.050 (0.05) CHE|GA 1.643 (0.06)

Exon class GHBLUP|GA 1.055 (0.03) CHM|GA 1.048 (0.05) CHE|GA 1.052 (0.05)

CDS class GHBLUP|GA 1.058 (0.05) CHM|GA 1.046 (0.07) CHE|GA 1.049 (0.08)

UTR class GHBLUP|GA 1.064 (0.07) CHM|GA 1.081 (0.10) CHE|GA 1.080 (0.10)

1Carcass weight (CW), live weight (LW), and striploin (SI); for each trait (row), the values in bold face indicate the coefficient are significantly different from 1 (p < 0.05);
regression coefficients are averaged over the fivefold cross-validation (CV) and then over the 20 replicates.
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included the first-order epistasis were significantly different from
1 in all markers and genomic classes, suggesting that these models
increased the biasedness of GPs. Generally, among five genomic
classes, the regression coefficients of IGR and gene classes were
similar to those of all markers, and they contribute to less bias
prediction than exon, CDS, and UTR classes. When compared
haplotype-based prediction models without including epistasis to
the corresponding SNP-based prediction models, we found that
the formers’ regression coefficients were closer to one, with less
biasedness prediction.

DISCUSSION

Advances in high-throughput genotyping technology and the
availability of genome annotation information have contributed
to the improvement of the predictive performance of complex
quantitative traits in livestock species (Morota et al., 2014;
Do et al., 2015; Edwards et al., 2016; Nani et al., 2019). To
bridge the gap between mathematical models and underlying
biological processes, we combined bovine genome annotation
information with haplotype-based prediction models to improve
the predictive accuracies in Chinese Simmental beef cattle. In this
study, whole genome-wide SNPs of BovineHD Beadchip were
annotated to five genomic classes. The predictive performance
of five genomic classes and all markers was assessed using
both numerical and CMs, and the contribution of first-order
epistatic effects among SNPs and haploblocks were modeled
using categorical coding strategy.

Predictive Performance of
Haplotype-Based Prediction Model
Haplotypes have been used widely in human genetics research
(Curtis et al., 2001; Chapman et al., 2003; Curtis, 2007); in
animal breeding studies, haplotypes have been used for the
GP of breeding values with the use of high density SNP
chips (Calus et al., 2008; Boichard et al., 2012; Cuyabano
et al., 2014; Mucha et al., 2019). In this study, haplotype-based
prediction models (GHBLUP and CHM) were applied to the
whole genome-wide markers, and the result of this scenario
was treated as a benchmark. We found that the predictive
performance of haplotype-based prediction models was superior
to corresponding SNP-based prediction models in the three traits
(Figure 1), with higher accuracy and less bias. This was consistent
with previously reported results in simulated datasets (Calus
et al., 2008; Villumsen et al., 2009), dairy cattle (Cuyabano et al.,
2014; Hess et al., 2017; Karimi et al., 2018) and beef cattle
(Hayes et al., 2007). This may be attributable to haplotypes better
capturing LDs with causative mutation or QTLs than single SNPs.

In livestock, SNPs are commonly bi-allelic. When mutations
occur, the allele frequencies may remain (almost) unaltered.
However, mutations in different loci tend to cause major changes
in the haplotype frequencies (Curtis et al., 2001). Thus, when
haplotypes were analyzed, a QTL that was not in complete LD
with any individual bi-allelic SNP marker may be in complete LD
with a multi-marker haplotype. To use a haplotype as an indicator
variable in GP, previous studies defined haploblocks by setting

windows with a fixed number of SNPs to be placed together
as a haploblock (Boichard et al., 2012; Schrooten et al., 2013;
Hess et al., 2017), or by considering only the first locus out of
10 consecutive loci in genomic evaluation (Schrooten et al., 2013;
Meuwissen et al., 2014). Although their prediction accuracies
were improved in GP, the number of SNPs used to outline
haploblocks was arbitrarily defined.

To efficiently use the genome properties to define haploblocks
and reduce the number of variables for the GP models, several
researchers used only haplotypes with a high frequency in the
population (Mucha et al., 2019) or based on LD threshold
to define haploblocks (Cuyabano et al., 2015). For instance,
Cuyabano et al. (2014) used an average LD threshold (≥0.45)
to construct haploblocks and found that prediction accuracies
increased for the three traits compared with the commonly-used
individual SNP. Similarly, we used the cattle genome annotation
information to define a biologically functional unit and
constructed a haploblock for each unit. This strategy may reflect
underlying biological processes and avoid haploblocks being
arbitrarily defined. Our study contributes to the improvement
of prediction accuracy using a haplotype-based model, since
the functional unit contains the combined effects of tightly
linked cis-acting causal variants (Garnier et al., 2013; Da, 2015),
and the number of haplotypes having effects was significantly
larger than that for SNP models (Calus et al., 2008). Jiang
et al. (2018) indicated that the increase in accuracy bringing
by haplotype-based prediction models may be explained by this
model capitalizing on local epistatic effects among markers.

Predictive Performance Among Five
Genomic Classes
In our study, we applied | GA approaches based on the concept of
defining biologically functional units as predictor variables. The
results showed that the accuracies and biasedness of prediction
for gene and IGR classes were consistently better than those
for the exon, CDS, and UTR classes, regardless of which |
GA prediction models were used. Firstly, this finding may be
attributed to the number of SNPs annotated in its corresponding
genomic class, which decreased from the IGR to UTR classes. As
previously suggested, the number of markers plays an important
role in affecting the GP performance (Zhong et al., 2009;
Daetwyler et al., 2010). With decreasing number of markers, the
physical distance increased between the markers and QTLs and
reduced the LD between markers and QTLs, which would lead to
poor predictive power (Yang et al., 2010; Zhang et al., 2011; de
los Campos et al., 2013). Yang et al. (2010) found that when the
causative mutation loci had a lower MAF, a decrease in marker
density would result in an incomplete linkage between the SNP
and causative mutation loci; thus, these markers only explained a
limited genetic variance.

In our study, 67.03 and 32.97% of the total SNPs were located
within the IGR class and gene class, respectively, whereas only
0.39% of total SNPs was annotated in the UTR class, which had
the lowest predictive accuracy. Secondly, the average number
of SNPs in a haploblock may affect the prediction accuracy
of genomic classes as well. It is clear that if each haploblock
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consisted of only one marker, the haplotype-based prediction
models were exactly identical to the corresponding SNP-based
prediction models (Gao et al., 2017). In the IGR and gene classes,
87,407 and 45,748 haploblocks were constructed (Table 4),
respectively, and 96.82 and 94.21% of the total haploblocks
consisted of more than one SNP, which resulted in 5.15 and
4.84 SNPs per haploblock on average, respectively. However,
only 9287, 6799, and 2409 haploblocks were constructed in the
exon, CDS, and UTR classes. The average number of SNPs
per haploblock was 1.06, 1.03, and 1.08, respectively, which
indicated haplotype-based prediction models for these genomic
classes were similar to SNP-based prediction models. Finally,
the number of biological functional units that was used to
construct the statistical framework in the | GA approaches
could also be a key factor in affecting the predictive accuracies,
since the biological functional units may reflect the underlying
biological process.

According to the bovine genome annotation information,
the bovine reference genome contained 24,559 genes, 227,610
exons, 214,584 CDS, and 33,137 UTR. In this study, gene class
represented 66.3% (16,286 out of 24,559 genes) of the total
genes of the reference genome, whereas 4.08% (9287 out of
227,610 exons), 3.17% (6799 out of 214,584 CDS), and 7.26%
(2409 out of 33,137 UTR) of the total exons, CDS, and UTR
of reference genome were respectively represented by exon,
CDS, and UTR classes. Consequently, the high proportion of
biological-functional-unit-like genes may contribute to stronger
predictive power. Taken together, these factors may explain
the outstanding predictive performance displayed in gene class
compared with the other classes.

Benefits of Using Genome Annotation
Information in GP
When the genome annotation information was incorporated
into the haplotype-based prediction models, we also observed a
slight or moderate improvement in prediction accuracies for the
three traits. This can be explained by the traits having different
genetic architectures (Daetwyler et al., 2010). The number of
QTLs and the distribution of their effects may influence the
prediction accuracies of genomic classes. For three traits, the
gene class improved the prediction accuracy in comparison with
the result of all markers using the haplotype-based prediction
model, which was consistent with reported results in mouse and
drosophila populations (Gao et al., 2017). This may reflect that
genetic signals of the gene class are well tagged in these traits,
despite more haploblocks being constructed in the scenario of
all markers. The method of defining a biological unit through
haplotypes might have increased the linkage of markers and
QTLs, which not only allowed the effects of QTL to be better
captured but also reduced the density of unrelated markers.
Studies have reported that gene class has the most potential to
be enriched for trait-associated variants and was more likely
to explain a large proportion of the total additive variance
(Kamanu et al., 2012; Kindt et al., 2013; Koufariotis et al., 2014).
However, Morota et al. (2014) and Abdollahi-Arpanahi et al.
(2016) found that the gene class did not lead to an improvement

in predictive ability, and the whole genome-wide SNP-based
prediction model remained the most efficient method for GP in
chicken. These studies only annotated SNPs to the corresponding
genomic class and applied the routine GP process for genomic
classes. In this case, the genome annotation information cannot
be comprehensively used in the SNP-based model because
the biologically functional units were not defined as predictor
variables in the model.

The usage of genome annotation information of the IGR
class also led to a slight improvement in prediction accuracy in
CW and SI. Studies have suggested that the IGR class, such as
non-coding conserved regions, miRNA, and regulatory regions,
might harbor important genetic variants associated with complex
traits in crops (Hindorff et al., 2009; Schaub et al., 2012) and
humans (Gusev et al., 2014; Finucane et al., 2015). For instance,
a study suggested that more than 75% of identified SNPs are
embedded in regulatory genome segments in common human
diseases (Maurano et al., 2012). Therefore, the IGR class may
contribute to a large phenotypic variation. Overall, combining
the genome annotation information of the gene class with the
haplotype-based prediction models can improve the prediction
accuracies, and this can be considered as a promising tool of
GP for economically important traits in Chinese Simmental
beef cattle.

Effects of Numerical and Categorical
Model on Prediction Accuracy
When comparing the predictive performance of the numerical
model with the CM, we found that GBLUP slightly outperformed
the SNP-based CM in three traits. Martini et al. (2017) compared
the predictive performance of CM with GBLUP, and found
only slight differences in predictive ability between CMand
GBLUP among 13 traits in mouse. The CM does not use the
assumption of constant allele substitution effects like GBLUP;
instead, it models the independent effect of each genotype at
a locus, which enables the modeling of dominance (Martini
et al., 2017). The advantages of CM depend on the population
structure and the influence of the dominance effects on a
particular trait. One reason to use CM instead of GBLUP might
be the population having prevalent heterosis, since heterosis
creates a deviation from the linear dosage model. When most
loci are mainly present in only two of the three possible SNP
genotypes, the CM cannot substantially outperform GBLUP
(Martini et al., 2017). Gao et al. (2017) found that GHBLUP
outperformed CHM in eight traits, and CHM outperformed
GHBLUP in three traits. Analogously, in our study, GHBLUP|GA
displayed better predictive performance than CHM|GA in most
of the genomic classes among three traits. However, a similar
pattern was not observed by Gao et al. (2017), who found that
CHM|GA performed better than GHBLUP|GAin the gene class
among most traits.

Contribution of First-Order Epistasis to
Prediction Accuracy
Epistasis has long been recognized as a biologically influential
component contributing to the genetic architecture of
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quantitative traits (Mackay, 2014). Several genomic selection
approaches have been developed to model both additive and
epistatic effects (Xu, 2007; Cai et al., 2011; Wittenburg et al.,
2011; Wang et al., 2012). To minimize the inherently high
computational costs of those methods, EGBLUP (Jiang and
Reif, 2015) and kernel Hilbert space regression accommodating
epistasis within the GP models were proposed (Morota and
Gianola, 2014). Generally, the influence of epistasis on GP ranges
from positive to negative. In some studies, prediction accuracies
increased (Hayes et al., 2009; Su et al., 2012; Jiang and Reif, 2015;
He et al., 2016), whereas in others, modeling epistasis adversely
affected prediction accuracies (Lorenzana and Bernardo, 2009).
For instance, Su et al. (2012) extended GBLUP to EGBLUP to
estimate both additive and additive by additive epistatic genetic
effects. They found that the epistatic variance accounted for 9.5%
of the total phenotypic variance, and the predictive reliabilities of
genomic predicted breeding values increased by 0.3%, which was
consistent with the results reported by Muñoz et al. (2014). These
discrepancies can be explained by the complexities of the studied
traits, which are controlled by many loci exhibiting small effects
entailing a low QTL detection power.

In this study, the first-order epistatic effects were captured
by the categorical epistasis model, which can eliminate the
undesired coding-dependent properties of EGBLUP (He et al.,
2015; Martini et al., 2017). Although EGBLUP has been applied
in other studies (Jiang and Reif, 2015), Martini et al. (2017)
suggested that both EGBLUP and the Gaussian kernel in an
RKHS approach respond differently to a change in marker
coding: a translation of the coding impacts the predictive ability
of EGBLUP, but not that of the Gaussian kernel. The difference
of coding strategy in the CM with the traditional encoding (0,
1, 2) in EGBLUP meant that the additivity assumption was
not necessary in the categorical coding and the encoding of
SNPs or haploblocks corresponded to the allele configurations,
which enables the modeling of dominance (Martini et al.,
2017). In CMs, for all markers, the first-order epistasis of pairs
of SNPs were modeled by the CE model, and we found an
increase in predictive accuracies from step CM to the CE model
in all traits except SI. Martini et al. (2017) also found that
CE was slightly better than CM in the simulated and mouse
datasets.CHE modeling of the first-order epistasis between pairs
of haploblocks also increased the predictive accuracies of all
makers of CW and LW. Similarly, Gao et al. (2017) found an
improvement in predictive ability from CM to CE, and from
CHM to CHE. For genomic classes, we observed a slight increase
in accuracy in the gene class of LW and the CDS class of
SI from CHM|GA to CHE|GA. These findings suggest that the
first-order epistatic effects captured by markers was likely to
contribute to some of the phenotypic variations of the traits
observed in this study.

CONCLUSION

In our study, genome annotation information was incorporated
into the haplotype-based prediction model for GP of three

carcass traits in Chinese Simmental beef cattle. To enable
comparison, the SNP-based and haplotype-based prediction
methods were applied for all markers, and their results
were treated as a benchmark. We found that when the
haplotype was treated as a predictor variable, the prediction
accuracy improved in most traits. After combining the genome
annotation information of the gene class with the haplotype-
based prediction model, a further increase in accuracy was
observed in most traits compared with the results of all
markers obtained by haplotype-based prediction models without
genome annotation. The first-order epistatic effects among SNPs
and haplotypes slightly improved the prediction accuracy of
all markers in LW and CW. In conclusion, incorporating
genome annotation information of gene classes into GP
models through haplotype-based models could be considered
as a promising tool for the GP of carcass traits in Chinese
Simmental beef cattle.
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