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The thyroid hormone receptor �1 (TR�) exhibits a dual role
as an activator or repressor of its target genes in response to
thyroid hormone (T3). Previously, we have shown that TR�, for-
merly thought to reside solely in the nucleus bound to DNA,
actually shuttles rapidly between the nucleus and cytoplasm.An
important aspect of the shuttling activity of TR� is its ability to
exit the nucleus through the nuclear pore complex. TR� export
is not sensitive to treatment with the CRM1-specific inhibitor
leptomycin B (LMB) in heterokaryon assays, suggesting a role
for an export receptor other than CRM1. Here, we have used a
combined approach of in vivo fluorescence recovery after pho-
tobleaching experiments, in vitro permeabilized cell nuclear
export assays, and glutathione S-transferase pull-down assays to
investigate the export pathway used by TR�. We show that, in
addition to shuttling in heterokaryons, TR� shuttles rapidly in an
unfused monokaryon system as well. Furthermore, our data show
that TR� directly interacts with calreticulin, and point to the
intriguing possibility that TR� follows a cooperative export path-
way inwhich both calreticulin andCRM1play a role in facilitating
efficient translocation of TR� from the nucleus to cytoplasm.

The thyroid hormone receptor �1 (TR�)4 is a member of the
nuclear receptor superfamily of transcription factors. TR� acts
as an intracellular receptor for thyroid hormone (T3), thereby

regulating expression of T3-responsive genes associated with
many aspects of development, growth, and metabolism.
Among the nuclear receptors, TR� is particularly intriguing in
that it canmodulate transcription whether or not it is bound to
T3. Consistent with this dual role as an activator or repressor of
transcription, at steady state TR� appears to be almost exclu-
sively localized in the nucleus. However, we have shown that
the receptor, in fact, shuttles rapidly between the nucleus and
cytoplasm (1).Whereas the significance of this nucleocytoplas-
mic shuttling remains to be precisely characterized, this activity
may be related directly to regulation of TR� target genes as well
as to yet unknown non-genomic functions (2).
Nucleocytoplasmic shuttling occurs as a result of a dynamic

balance between the recognition of nuclear localization signals
(NLS) and nuclear export signals (NES) by particular import
and export factors termed importins and exportins, respec-
tively (3). Most nuclear receptors appear to enter the nucleus
via importin �/� recognition and subsequent translocation
through the nuclear pore complex (3, 4). Unlike nuclear import,
however, the export pathways followed by nuclear receptors
remain more elusive.
The most thoroughly studied and well characterized nuclear

export pathway involves the exportin CRM1. Many shuttling
transcription factors outside of the nuclear receptor superfam-
ily follow a CRM1-dependent mechanism (5, 6). Like other
nuclear receptors, however, TR� lacks the leucine-rich NES
associated with classical CRM1-mediated nuclear export (1, 7).
Concordantly, we have shown through interspecies hetero-
karyon assays that TR� nuclear export is not inhibited by lep-
tomycin B (LMB), a potent inhibitor of CRM1 activity. These
data clearly indicate that, at least in a heterokaryon system,TR�
can use a CRM1-independent nuclear export pathway (1).
There is compelling evidence that suggests that the Ca2�-

binding protein calreticulin (CRT) may play a role in the
nuclear export of several nuclear receptors (8–12). For exam-
ple, the glucocorticoid receptor (GR) undergoes CRT-depend-
ent nuclear export (11, 12) mediated through its highly con-
served DNA binding domain (DBD) (8). However, the extent to
whichCRT functions as anexport receptorhas remaineda subject
of debate because its primary role is in the quality control of pro-
tein folding in the ER. In addition to this process, CRT has been
implicated in an increasing number of critical cellular processes
including regulation ofCa2�homeostasis (13–15), integrin-medi-
ated cell adhesion (16–18), numerous roles in immune response
(19, 20), and cardiac muscle development (21–23).
As noted above, a widely used technique to study the subcel-

lular trafficking of nuclear receptors has been the interspecies
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heterokaryon assay (1, 8, 24–28). Recently, it has been reported
that the polyethylene glycol (PEG)-induced fusion of the cyto-
plasm during this assay disrupts the ER, thereby causing a tran-
sient elevation in cytosolic CRT levels as the protein is released
from the ER lumen (29). This fusion process may alter the
export kinetics of some shuttling proteins. For example, in con-
trast to the rapid shuttling of GR observed in heterokaryon
assays (8, 25), GR shuttling was found to occur only slowly over
a period of hours during fluorescence recovery after photo-
bleaching (FRAP) experiments in monokaryons (29). More-
over, in contrast to heterokaryon fusion experiments in which
GR shuttling was shown to be CRT-dependent (8), slow GR
recovery in experiments other than heterokaryon fusions was
shown to occur in a CRT-independent manner (29). Given
these results, the question has arisen as to whether CRT-de-
pendent nuclear export occurs under physiological conditions
or merely in response to exogenous environmental stresses
such as cell fusion.
With these data inmindwe sought to ascertain whether TR�

shuttles under physiological conditions and, if so, whether it
follows aCRTorCRM1-dependent nuclear export pathway. To
this end, we used a combined approach of in vivo FRAP exper-
iments, in vitro digitonin-permeabilized cell nuclear export
assays, and GST pull-down assays. Taken together, our in vivo
and in vitro data point to the intriguing possibility that TR�
uses an export pathway in which CRT binds directly to TR�
and, thereby, promotes a cooperative interaction in which both
CRT and CRM1 play a role in mediating rapid, efficient trans-
location of TR� from the nucleus to cytoplasm.

EXPERIMENTAL PROCEDURES

Plasmids—The plasmid pGFP-TR� encodes a functional
GFP-TR� fusion protein expressed under human cytomegalo-
virus promoter control. This plasmid was constructed by sub-
cloning the PCR product of rTR�1 (rat) cDNA into the
enhanced GFP expression plasmid pEGFP-C1 (Clontech Labo-
ratories, Inc.) using SacI and BamHI enzymes (1).
The plasmid pNES-GFP-GST-NLS was a gift from R. Haché

(University of Ottowa, Ottowa, Ontario) and contains the clas-
sic HIV-1 RevNES sequence cloned into the ApaI site of pGFP-
GST-NLS, a plasmid that includes the sequence of the classic
simian virus 40 (SV40) large T antigen NLS at the 3� end
(described further in Ref. 29). The plasmid pGEX-CRTwt was a
gift from B. Paschal and encodes full-length calreticulin sub-
cloned into the pGEX-KG vector for overexpression in bacteria
(12). The plasmid pET-His-CRM1-H was a gift from J. Kjems
and encodes His-CRM1 for overexpression in bacteria (28).
Cell Culture—HeLa cells (ATCC CCL-2) were cultured in

MEM supplemented with 10% fetal bovine serum (Invitrogen)
containing penicillin (100 units/ml)/streptomycin (100�g/ml),
at 37 °C under 5%CO2 and 98%humidity. K41 (crt�/�) andK42
(crt�/�) cells were a generous gift fromM.Michalak (30). These
mouse embryonic fibroblasts were cultured inDulbecco’smod-
ified Eagle’s medium with 10% calf serum under similar condi-
tions. Cells were grown to 70–90% confluency.
Transient Transfection and Live Cell Imaging—For transient

transfections, cells were seeded at 4–7 � 105 cells per 60-mm
vented dish (Nunc, Rochester, NY) onto 5-cm coverslips.

Twenty-four h after seeding, cells at 40–60% confluency were
transfected with 4 �g of plasmid DNA and 20 �l of Lipo-
fectamine Reagent (Invitrogen) inOpti-MEMIReduced Serum
Medium (Invitrogen) according to the manufacturer’s proto-
col. Reduced serum medium was replaced with complete
medium 16–18 h post-transfection.
After transfection, cells were used for microscopy within

48 h. Prior to mounting in an enclosed perfusion chamber
(Bioptechs, Butler, PA), coverslips were incubated in 2 ml of
complete media containing 100 �g/ml cycloheximide (Sigma),
penicillin (100 units/ml)/streptomycin (100 �g/ml), and 2–4
nM LMB (Sigma) or with vehicle (0.1% methanol) for 30 min.
Coverslips were then washed with 2 ml of Dulbecco’s phos-
phate-buffered saline (PBS) and mounted. For the duration of
each experiment, cells were incubated in MEM or Dulbecco’s
modified Eagle’s medium containing 50 �g/ml cycloheximide,
penicillin (50 units/ml)/streptomycin (50 �g/ml), and 2–4 nM
LMB or vehicle (0.1% methanol).
Images were collected from an inverted Nikon ECLIPSE TE

2000-E fluorescence microscope equipped with a Radiance
2100 laser scanning unit using a �60 1.2 NA water objective
(Nikon). The 488-nm line of a krypton-argon laser with a band-
pass 515/30 nm emission filter was used for GFP detection and
images were obtained using the time course module of Laser
Sharp 2000 (Zeiss, Thornwood, NY).
FRAP was recorded to analyze shuttling of proteins between

nuclei within monokaryons. All FRAP experiments were per-
formed in a temperature-controlled setting using a FCS2 live-
cell chamber heating system and objective heater system
(Bioptechs) to maintain 37 °C. After the appropriate tempera-
ture was reached, an initial image was recorded from an area
containing a multinucleated GFP-expressing cell using 2–8%
laser power from the 488 nm line of a krypton-argon laser. One
nucleus within the monokaryon was exposed at 50% laser
power for two cycles using the same laser. After this bleaching
exposure, sequential images were taken every 5 min for 11
cycles. Tominimize undesired photobleaching, low laser inten-
sities of 2–8% were again used for post-bleach images. For
quantitative analysis of digitized images, fluorescence intensity
values were generated using ImageJ (NIH). Bleached and
unbleached nuclei were each considered as independent
regions of interest. In addition, these values took into account
the background brightness levels during each experiment.
Intensity values were subsequently normalized so that the total
fluorescence within each monokaryon after bleaching was
equal to 1. Graphs were generated using Microsoft Excel.
Heterokaryon Assay—For the preparation of heterokaryons,

crt�/� cells (K42) were seeded at 2–2.5 � 105 cells/well onto
coverslips in 6-well dishes. Cells were then transfected with a
GFP-TR� expression vector. Twenty-four hours post-transfec-
tion of the crt�/� cells, human HeLa cells were trypsinized and
resuspended in heterokaryon growth medium containing 70%
Dulbecco’s modified Eagle’s medium, 10% fetal bovine serum,
and 20% sterile distilled water. The resuspended cells were then
plated on the same coverslips at 5–6 � 105 cells/well. The cells
were then incubated for 2.5 h in the presence of cycloheximide
at 50 �g/ml followed by 30min in media with cycloheximide at
100 �g/ml at 37 °C to allow adherence. Subsequently, the cells
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were rinsed with Dulbecco’s PBS. For cell fusion, coverslips
were placed on 100-�l drops of warm 50% polyethylene glycol
1500 (Roche Applied Science, Indianapolis, IN) and incubated
for exactly 2 min. Each coverslip was then rinsed with Dulbec-
co’s PBS and incubated for 2 h at 37 °C in heterokaryon growth
media containing 100 �g/ml cycloheximide.

Following incubation, the cells were rinsed with Dulbecco’s
PBS and then fixed for 10 min in 3.7% formaldehyde. After
three 5-min washes with Dulbecco’s PBS, the cells were perme-
abilized using 0.2% Triton X-100. Following three 5-min
washes with Dulbecco’s PBS the cells were incubated in 200 �l
of 1.5% normal goat serum for 20 min. The cells were then
washedwithDulbecco’s PBS and incubated for an additional 20
min in 1.5% normal goat serum containing 0.5 units/ml rhoda-
mine-phalloidin (Molecular Probes, Eugene, OR) to visualize
actin. Following a wash in Dulbecco’s PBS, the cells were then
incubated for 10 min in Dulbecco’s PBS containing 10 �g/ml
Hoechst 33258 (Sigma) to visualizeDNA. Finally, the coverslips
were mounted on slides using GelMount mounting media
(Biomeda, Foster City, CA). Slides were examined by fluores-
cence microscopy and images were obtained with a CoolSNAP
HQ2 CCD camera (Photometrics, Tucson, AZ) and NIS-Ele-
ments software (Nikon).
Antibody Staining—Cells were grown to 80–90% confluency

and plated at 2 � 105 cells/well onto coverslips in six-well
dishes (Nunc). 24 h post-plating, coverslips were incubated in 2
nMLMBor 0.1%methanol for 5 h. The cells were then fixed and
permeabilized. After fixation and permeabilization, cells were
incubated in 1.5% normal goat serum in Dulbecco’s PBS for 30
min. The cells were then washed in Dulbecco’s PBS and probed
for 1 h in blocking solution containing rabbit polyclonal anti-
CRT antibodies (Stressgen, Ann Arbor, MI) diluted to 1:1000.
Cells were thenwashed inDulbecco’s PBS three times for 5min
eachprior to incubation for 1 hwith fluorescein isothiocyanate-
conjugated goat anti-rabbit IgG (Vector Laboratories, Burl-
ingame, CA) diluted to 1:600. After incubation the cells were
washed in Dulbecco’s PBS and mounted using GelMount
containing 4�,6-diamidino-2�-phenylindole dihydrochloride
(Sigma) (0.5 �g/ml). CRT staining was visualized by fluores-
cence microscopy.
Nuclear Extractions—Cells were plated at 1–2 � 107 and

grown for 24 h to confluence in 100-mm vented dishes. Cells
were rinsed 3 times in Dulbecco’s PBS and nuclei lysed in 1 ml
of Cell Lysis Solution (10mMHepes, pH 7.9, 10mMKCl, 10mM
EDTA pH 8.0, 0.4% IGEPAL (Sigma), 0.5 mM phenylmethylsul-
fonyl fluoride (Roche), 1 mM dithiothreitol (dithiothreitol)
(Omnipur, Gibbstown, NJ), Complete Mini EDTA-free Prote-
ase InhibitorMixtureTablet (1 tablet/10ml) (Roche) for 10min
at 4 °C. The lysed cells were scraped and sheared by four pas-
sages through a 21-gauge needle. The quality and purity of the
nuclei were monitored by differential interference contrast
(DIC) microscopy at �600; shearing was repeated until �95%
of nuclei were visibly free from ER and other cytoplasmic con-
tamination. Nuclei were pelleted by a 5-s pulse spin (200� g) at
4 °C in a microcentrifuge. The cytoplasmic fraction was col-
lected and the purified nuclei were washed twice with 1 ml of
extraction solution. A small fraction of the resuspended nuclei
from the last wash was observed by DIC to confirm that the

nuclei had remained intact and were free from ER and other
cytoplasmic debris. The nuclear proteins were then extracted
with 100 �l of Nuclear Extraction Solution (20 mM Hepes, pH
7.9, 0.4 M NaCl, 10 mM EDTA, pH 8.0, 10% glycerol, 0.5 mM
phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, Complete
Mini EDTA-free Protease Inhibitor Mixture Tablets (1 tab-
let/10 ml)). Proteins from nuclear and cytoplasmic fractions
were then analyzed by Western blot.
Western Blotting—The approximate concentration of total

protein in nuclear and cytoplasmic samples was determined by
absorption at 280 nm. For cytoplasmic and whole cell extract,
40 �g of protein were analyzed per lane, 40–60 �g per lane
were used for nuclear extracts, and 0.5–2 �l of rabbit reticulo-
cyte lysate (RRL) (Promega, Madison, WI) were analyzed. The
samples were separated by 8% SDS-PAGE and transferred to
polyvinylidene difluoridemembranes (AmershamBiosciences)
by semi-dry electroblotting (Bio-Rad). The membranes were
incubated overnight in the presence of blocking solution (Tris-
buffered saline (TBS), 1% bovine serum albumin, 0.1% Tween
20). After six washes with TBS, the membranes were incubated
with the primary antibodies for 1 h. For the detection of CRT
and �-tubulin both rabbit polyclonal anti-CRT antibodies
(SPA-600D, Stressgen) and rabbit polyclonal anti-�-tubulin
antibodies (Affinity Bioreagents, Golden, CO) were mixed
together in blocking solution at 1:20,000 and 1:200, respec-
tively. For the detection of CRM1 andCRT,Western blots were
incubated separately with anti-CRM1 (Affinity Bioreagents) or
anti-CRT (Stressgen) antibodies at 1:200 or 1:20,000, respec-
tively. The blots were thenwashed six timeswith TBS and incu-
bated with a horseradish peroxidase-conjugated goat anti-rab-
bit IgG (GEHealthcare) at 1:30,000 for 1 h in blocking solution.
Following this incubation, the blots were washed again six
times and incubated with ECL-Plus detection reagent (GE
Healthcare). Subsequently, the blots were analyzed using a
Storm 860 Molecular Imager scanner (GE Healthcare) and
ImageJ (NIH).
Protein Overexpression—Plasmids coding for the protein of

interest were transformed into competent Escherichia coli
(BL21 DE3-RIl) (Stratagene, La Jolla, CA), per the manufactur-
er’s protocol, and grown to anA600 of 0.6–0.8 at 37 °C. Expres-
sion was induced with 0.5 mM isopropyl �-D-thiogalactoside
(Fisher Scientific, Pittsburgh, PA) and grown 3–5 h at 30 °C.
Post-expression cultures were centrifuged at 1,700 � g for 15
min at 4 °C; bacterial pellets were stored at �80 °C prior to
protein purification.
GST Protein Purification—Bacterial pellets were resus-

pended in 10 ml of B-PER� Bacterial Protein Extraction Rea-
gent (Pierce), 1 ml of 5.0 mg/ml lysozyme (Fisher), 10 mM Tris,
pH 8.0, and one Complete Mini EDTA-free Protease Inhibitor
Mixture tablet (Roche). Resuspended pellets were incubated on
ice for 30 min. The pellets were subsequently sonicated (Sonic
Dismembrator model 100; Fisher) on ice to fully lyse the bacte-
ria. The lysedmixture was then centrifuged at 17,950� g for 15
min at 4 °C, and the supernatant was applied to 200 �l of 50%
glutathione-Sepharose 4B resin (GEHealthcare). Samples were
incubated for 60 min at 4 °C with gentle rotation, then centri-
fuged for 5 min at 500 � g at 4 °C to pellet the resin. The resin
pellet was washed 3 times with 10 ml of ice-cold PBS (140 mM
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NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3)
and then transferred to aMicrofilter Spin Column (Pierce) and
washed twice with 600�l of ice-cold PBS. 100�l of Glutathione
Elution Buffer (10 mM glutathione) was added to the column,
incubated at room temperature for 2–4 min with agitation,
then centrifuged at 700 � g for 30 s at 4 °C to collect eluted
protein. The elution step was repeated 3 times. The eluted frac-
tions were pooled and dialyzed (Slide-A-Lyser� Mini Dialysis
Units, 7000 MWCO, Pierce) against Dulbecco’s PBS overnight
at 4 °C. Protein samples were then concentrated using Micron
Ultracel YM-30 Centrifugal Filter Devices (Millipore, Bedford,
MA). Concentrated protein samples were analyzed by SDS-
PAGE and protein concentration estimated using a Nano-
Drop� ND-1000 full-spectrumUV-Visual Spectrophotometer.
Samples were stored at �80 °C.
Permeabilized Cell Nuclear Export Assays—HeLa cells were

seeded on 22-mm Coverslips for Cell GrowthTM (Fisher) in
6-well culture dishes (Nunc) at a concentration of 2–3 � 105
cells per well. 24 h post-seeding each well was transiently trans-
fected with 2 �g of plasmid DNA and 10 �l of Lipofectamine
reagent (Invitrogen) in Opti-MEM I reduced serum medium,
and incubated 12–16 h. After 12–16 h Opti-MEM I was
replaced with MEM containing 10% fetal bovine serum. After
4 h cells were washed 3 times with 2 ml/well of ice-cold export
buffer (20 mM Hepes, pH 7.3, 110 mM KOAc, 5 mM NaOAc, 2
mM Mg(OAc)2, 1 mM EGTA, 2 mM dithiothreitol, 1 mM phen-
ylmethylsulfonyl fluoride, Complete Mini EDTA-free Protease
Inhibitor Mixture tablet (1 tablet/10 ml) (Roche), then perme-
abilized with digitonin (50 �g/ml; Calbiochem, San Diego, CA)
in export buffer for 4.5 min. Subsequently, cells were rinsed
with 2 ml/well of ice-cold export buffer for 10 min. Coverslips
were then inverted over 50-�l drops of export reactionmixture
(energy regeneration system composed of 5 mM creatine phos-
phate, 20 units/ml creatine phosphokinase, 0.5 mM ATP, 0.5
mM GTP, 5� export buffer, 670 nM GST-CRT, and 25 �l of
RRL) on parafilm in a moist chamber for 30 min at 30 °C. Cells
were then fixed in 3.7% formaldehyde (Fisher) for 10 min fol-
lowed by a 5-min rinse with export buffer. Coverslips were sub-
sequently mounted on slides with 8 �l of GelMount with 4�,6-
diamidino-2�-phenylindole (0.5 �g/ml), and viewed by
fluorescence microscopy.
GST Pull-down Assays—Pull-down assays using GST-CRT

were performed using the ProFound Pull-down GST Protein:
Protein Interaction Kit (Pierce), and modified amounts of GST
resin/protein. GST resin was equilibrated with five 0.5-ml
washes of TBS (25 mM Tris�HCl, 0.15 M NaCl, pH 7.2):Pro-
Found Lysis Buffer (1:1). Bait protein immobilization was per-
formed at 4 °C for 30 min with gentle rocking. For GST-CRT/
His-CRM1 interactions, 50 �l of 50% GST resin was used to
bind 40 �g of GST-CRT bait protein. For GST-CRT/His-TR�
and GST-CRT/His-TR�/His-CRM1 interactions, 5 �l of 50%
GST resin was used to bind 4 and 7 �g of GST-CRT bait pro-
tein, respectively. Bound bait protein was washed 5 times with
0.5ml of TBS:ProFound Lysis Buffer (1:1). Prey protein capture
was performed at 4 °C for 1 h with gentle rocking. For GST-
CRT:CRM1, GST-CRT:TR� binding, and GST-CRT:TR�:
CRM1, 40 �g of His-CRM1, 2 �g of His-TR� (Active Motif,
Carlsbad CA), and 3.5�g of His-TR�, 3.5�g of His-CRM1 prey

were used. Bait-Prey elution was performed with 50 �l of 100
mM Glutathione Elution Buffer for GST-CRT/CRM1 interac-
tions, and 12.5 �l for GST-CRT/TR� and GST-CRT/TR�/
CRM1 interactions. All elutions were analyzed via SDS-PAGE
using an 8–16% precast Gene Mate Express Gel (ISC Bio-
Express, Kaysville, UT). Gels were stained with SimplyBlueTM
SafeStain (Invitrogen) and imaged using a Bio-Rad Gel Doc XR
documentation system with Quantity One analysis software
(version 4.6.1).
Coimmunoprecipitation Assays—For coimmunoprecipita-

tion assays, HeLa, crt�/�, and crt�/� cells were transfectedwith
expression vectors for GFP-TR�, or GFP alone as a control, in
100-mm plates using Lipofectamine 2000 (Invitrogen). 20 h
post-transfection, themediumwas replaced withmedium con-
taining 2–4 nM LMB or vehicle (0.1% methanol). Cells were
lysed 5 h later and nuclear extracts were prepared using a
Nuclear Extract Kit (Active Motif) according to the manufac-
turer’s instructions. Nuclear extracts were incubated with anti-
CRT antibodies bound to Dynal Dynabeads� Protein G
(Invitrogen) for 2 h at 4 °C. The immunoprecipitated material
was captured on a DynaMagTM-2magnetic particle concentra-
tor, washed, and eluted in SDS-PAGE sample buffer. Samples of
immunosupernatants and immunoprecipitated material were
separated by 8% SDS-PAGE. ReplicateWestern blots were pre-
pared and probed with anti-CRT, anti-CRM1, and anti-GFP
(Santa Cruz Biotechnology Inc.) antibodies, followed by chemi-
luminescent detection.

RESULTS

TR� Shuttling in Living Cells Is Leptomycin B Sensitive—The
thyroid hormone receptor is a dynamic protein that shuttles
rapidly between the nucleus and cytoplasm in heterokaryon
assays. This shuttling is not blocked by LMB in heterokaryons,
indicating that TR� is exiting the nucleus by a CRM1-inde-
pendent pathway in the heterokaryon assay (1). The hetero-
karyon assay involves PEG-induced fusion of the cytosols of
transfected cells of one species (e.g.mouse) with untransfected
cells of another species (e.g. human). Movement of the protein
of interest can then bemonitored from the nuclei of transfected
cells into the shared cytosol of the fused cells and, subsequently,
into the nuclei of the opposing species. The recent finding that
PEG-induced cell fusion causes changes in the cellular environ-
ment including a transient elevation in CRT levels (29) has
called into question the validity and interpretation of previous
heterokaryon experiments.
We first sought to determine whether TR� shuttles under

physiological conditions by performing experiments in living
cells, independent of heterokaryon formation. To maintain
physiological conditions, we used a FRAP assay in multinucle-
ate live cells (monokaryons) to monitor the movement of GFP-
TR� fromunbleached to bleached nuclei. Unlike in heterokary-
ons, a monokaryon system does not require cell fusion or other
manipulation that would compromise the integrity of the ER
and thus, presumably, maintains low levels of cytosolic CRT.
Transfected monokaryons were selected and one nucleus
within these cells was exposed to intense laser illumination.
This exposure resulted in loss of fluorescence within the
selected nucleus due to irreversible photobleaching of the GFP
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fluorophore. The initial bleaching did not, however, result in
loss of fluorescence to neighboring nuclei within the same cells
(Fig. 1). A series of images was taken for each individual exper-
iment in which fluorescence recovery to bleached nuclei was

measured and compared with the
concomitant decrease in intensity
within unbleached nuclei. Through
image analysis and plotting of these
fluorescence intensity data, we were
able to determine the relative
degree of nucleocytoplasmic shut-
tling within particular cell types and
treatments. Specifically, we assayed
for TR� shuttling in human HeLa
and mouse crt�/� cell lines, both of
which express CRT. We show that,
in contrast to the slow nuclear
export observed for GR in COS-7
cells (29), TR� in fact shuttles rap-
idly between nuclei in both HeLa
(Fig. 1A) and crt�/� monokaryons
(Fig. 1B). These data are in close
agreement with those observed for
TR� shuttling kinetics in hetero-
karyons (1), and suggest that TR�
may play an as yet unknown role in
cytosolic signaling pathways. After
confirming that TR� rapidly shut-
tles between nuclei in these cells, we
sought to determine whether TR�
follows a CRM1 or CRT-dependent
nuclear export pathway in live,
unfused cells.
Based on our previous data show-

ing that TR� nucleocytoplasmic
shuttling is not blocked by LMB in a
heterokaryon system (1), we pre-
dicted that we would observe rapid
shuttling of TR� between nuclei
when HeLa and crt�/� monokary-
onswere treatedwith LMB. Surpris-
ingly, we saw only slow recovery of
TR� within photobleached mono-
karyon nuclei of both cell types dur-
ing FRAP experiments (Fig. 1). In
contrast to previous data for hetero-
karyons in which near complete
equilibration between nuclei was
seen over the course of 1 h (1),
recovery of fluorescence to
bleached nuclei within live mono-
karyons treated with LMB was lim-
ited to only 22% (�3%) for HeLa
cells and 14% (�2%) for crt�/� cells
over a similar time course (Fig. 1).
These results are in sharp contrast
to parallel FRAP experiments per-
formed in the absence of LMB, dur-

ing which TR� shuttling was much more rapid. In these exper-
iments recovery to the bleached nuclei was measured at 56%
(�4%) equilibration for HeLa cells and 88% (�2%) equilibra-
tion for crt�/� cells over 1 h (Fig. 1). To graphically illustrate the

FIGURE 1. TR� shuttling is inhibited by treatment with LMB in live monokaryons expressing CRT. A, HeLa
cells were transfected with a GFP-TR� expression plasmid and nucleocytoplasmic shuttling was monitored
through FRAP (n � 7). White arrowheads indicate photobleached nuclei. Parallel experiments were performed
in the presence of LMB (n � 6) to block CRM1-mediated nuclear export and DIC images were taken to delineate
cell borders. Fluorescence recovery graphs indicating relative shuttling of GFP-TR� were generated. Black
squares indicate relative fluorescence levels within unbleached nuclei and open diamonds represent levels
within bleached nuclei. Any apparent change in nucleus morphology is a result of cell movement over the
course of the experiment. Error bars, � 1 S.E. B, as in A using crt�/� cell line (n � 10, �LMB; n � 6, �LMB). Bar,
10 �m.
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sensitivity of TR� nucleocytoplasmic shuttling to LMB, mean
brightness values for photobleached and unbleached nuclei
were plotted as a function of time post-bleach. Fluorescence
intensity was normalized so that the overall fluorescence of
bleached and unbleached nuclei was equal to 1.0 (arbitrary
units). After normalization, convergence of the representative
curves for bleached nuclei and unbleached nuclei toward one
another represents the degree of fluorescence equilibration
between these compartments. When one bleached and one
unbleached nucleus are present, complete equilibration occurs
at 0.5 fluorescence units.
To ensure that any recovery in GFP signal to bleached nuclei

occurred as a result of nucleocytoplasmic shuttling and not as a
result of de novo protein synthesis, all experiments were per-
formed in the presence of cycloheximide. DIC microscopy was
also performed to visualize monokaryon borders, thereby con-
firming that the experiments in which no shuttling was
observed were conducted in cells that were, indeed, multinu-
cleated as opposed to adjacent independent cells.
Taken together, these data show that TR� nuclear export is

LMB-sensitive, suggesting that in live, unfused cells the CRM1
pathway plays a role in mediating export of TR�. One possible
explanation for these unexpected results is that the hetero-
karyon system used previously to assay for CRM1 dependence

(1) creates an artificial environment
in which the effects of deactivating
CRM1 activity are overshadowed by
cell fusion-dependent up-regula-
tion of alternative export factors
such as CRT.With this possibility in
mind, we sought to determine
whether CRT is used as an alterna-
tive, or cooperative, nuclear export
receptor by TR� in vivo.
TR� Shuttling Is Inhibited in

Living Cells Deficient in CRT
Expression—CRT has previously
been shown to function as an expor-
tin for nuclear receptors related to
TR� (8, 11, 12, 31). To address the
question of whether TR� export is
also mediated by CRT, we tran-
siently transfected mouse embry-
onic fibroblast cells isolated from
CRT knock-out mouse embryos
(crt�/� cells) (23) with GFP-TR�
and monitored FRAP in bleached
nuclei of transfected CRT-deficient
monokaryons (Fig. 2).
Prior to analysis of nuclear

export, we first assessed the ability
of TR� to enter the nucleus of
crt�/� cells. Although nuclear
import of both the tumor suppres-
sor p53 and the transcription factor
NF-AT3 are impaired in cells defi-
cient inCRTexpression, other shut-
tling proteins including GR and

GATA4 are unchanged in their import properties regardless of
whether CRT is present (32). Thus, the altered nuclear import
of some proteins in crt�/� cells is a specific effect and is not
indicative of a general defect in the import cycle. Nuclear
import of TR� was not impaired in crt�/� cells, indicating that
CRT is not required for its nuclear localization (Fig. 2).
Although TR� remained localized to crt�/� cell nuclei prior

to FRAP, we observed a striking reduction in its nucleocyto-
plasmic shuttling after photobleaching (Fig. 2). Indeed, only
14% (�2%) fluorescence equilibration from unbleached nuclei
to bleached nuclei was seen in the crt�/� cell line. In contrast,
HeLa cells and crt�/� cells not treated with LMB showed 56%
(�4%) and 88% (�2%) fluorescence equilibration with
unbleached nuclei, respectively (Fig. 1). To demonstrate that
the lack of CRT in these cells was not responsible for any non-
specific action preventing all nucleocytoplasmic shuttling,
crt�/� cells were also transfected with a shuttling control con-
struct, pNES-GFP-GST-NLS. The fusion protein localizes to
the nucleus at steady state and shuttles via a CRM1-mediated
nuclear export pathway (29). As expected, shuttling of this pro-
tein was not inhibited in crt�/� cells, indicating that the CRM1
pathway is functional in these cells (t1⁄2 � 10min) (Fig. 3). Taken
together, these data support the hypothesis that TR� can follow
a CRT-mediated nuclear export pathway.

FIGURE 2. TR� requires CRT for nuclear export. crt�/� cells were transfected with a GFP-TR� expression
plasmid and nucleocytoplasmic shuttling was monitored through FRAP (n � 8). White arrowheads indicate
bleached nuclei. DIC images were taken to delineate cell borders and a fluorescence recovery graph indicating
relative shuttling of GFP-TR� was generated. Bar, 10 �m.

FIGURE 3. The CRM1-mediated nuclear export pathway is active in crt�/� cells. An expression plasmid for
a CRM1-dependent shuttling control protein (GFP-GST-NES-NLS) was transfected into crt�/� cells and nucle-
ocytoplasmic shuttling was monitored by FRAP. White arrowheads represent bleached nuclei. Bar, 10 �m.
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CRT Is Localized to the Cytoplasm andNuclei of Various Cell
Types—Previously, CRTwas believed to reside solely in the ER.
Recently, however, increasing numbers of reports have identi-
fied small fractions of CRT in both the cytosolic and nuclear
compartments of various cell lines in addition to its primary
location within the ER (33–35). To assess whether a detectable

population of CRT was localized to
the nuclei of the cells used in our
study, we isolated nuclei by bio-
chemical fractionation. To ensure
that the nuclei extracted were free
of ER and other cytoplasmic con-
tamination, during the purification
process nuclei were monitored by
DIC at high resolution (Fig. 4A).
Purification steps were repeated
until only nuclei that were free of ER
and other cytoplasmic debris
remained. Proteins were extracted
from the cytoplasmic fraction and
from the purified nuclei and ana-
lyzed by Western blot. Blots were
probed simultaneously with anti-
CRT and anti-� tubulin, which was
used to normalize the data. When
comparing the amount of CRT in
purified nuclei to the amount of
tubulin, a strictly cytoplasmic pro-
tein, we found that the purified
nuclei from HeLa cells were signifi-
cantly enriched in CRT (p � 0.001)
(Fig. 4, B and C). In HeLa cells, the
ratio between CRT and tubulin
increased from1.7� 0.3 in the cyto-
plasm to 9.6 � 4.2 in the nucleus
indicating that the amount of CRT
observed in the purified nuclei is not
a result of residual cytoplasmic con-
tamination. These results were also
significant in crt�/� cells (p �
0.001) (Fig. 4, B and C). In these
cells, the ratio between CRT and
tubulin increased from 1.3 � 0.1 in
the cytoplasm to 2.3 � 0.7 in the
purified nuclei. Together these data
provide further evidence that CRT
is present in a small but significant
fraction within the nucleus in the
cell lines used for our experiments.
To further demonstrate that CRT is
localized to multiple cellular com-
partments, we performed indirect
immunofluo-
rescence assays. Consistent with the
Western blot analysis a small popu-
lation of nuclear CRT was observed
in addition to a more prominent
cytoplasmic pool (Fig. 4D).

TR� nuclear export is partially inhibited by treatment with
LMB (Fig. 1). This suggests a role for CRM1 inTR� shuttling, in
addition to that played by CRT, and points to a possible inter-
play between CRT and CRM1. A direct interaction between
CRT and CRM1 could, in theory, induce a shift in CRT toward
the nucleus upon treatment with LMB, which would be indic-

FIGURE 4. CRT is localized to the cytosol and nuclei of various cell types. A, to ensure that purified nuclei
were free of ER and other cytoplasmic contaminants, nuclear fractions were monitored by DIC. Left panel, a
clump of nuclei with residual ER and cytoplasmic debris; these nuclei were subjected to additional purification
steps prior to use (see “Experimental Procedures”). Right panel, an isolated nucleus free of residual ER and other
cytoplasmic contaminants. B, proteins extracted from purified nuclei and cytosolic fractions from HeLa and
crt�/� cells were analyzed by Western blot, using anti-CRT and anti-� tubulin antibodies. Magic Marker (MM)
size standard is indicated and crt�/� cells were used as a negative control. A representative blot for HeLa cells
is shown. C, the ratio of CRT to tubulin increased significantly from cytosolic to nuclear fractions in both HeLa
cells (n � 12, *, p � 0.001) and crt�/� cells (n � 13, **, p � 0.001). Error bars, 99.9% confidence interval. D, HeLa
cells incubated for 5 h in the presence or absence of LMB, as indicated, were fixed and labeled with anti-CRT
antibodies by indirect immunofluorescence. Bar, 10 �m.

Thyroid Hormone Receptor Nuclear Export

25582 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 37 • SEPTEMBER 12, 2008



ative of CRM1 sequestering CRT in this compartment. To test
this, we treated cells with LMB and performed immunostaining
for CRT in situ. This treatment did not, however, induce a
detectable shift in the subcellular localization of CRT toward
the nucleus (Fig. 4D); a comparable population of nuclear CRT
was observed in both LMB-treated and untreated cells.

Polyethylene Glycol-induced Heterokaryon Formation
Restores TR� Export from CRT-deficient Cell Nuclei—Having
shown that TR� nuclear export is impaired in crt�/� cells (Fig.
2), we sought to test whether TR� export could be restored by
the addition of exogenousCRT. To do so, we transfected crt�/�

cells with GFP-TR� and then fused them with untransfected
HeLa cells. Because PEG-induced heterokaryon formation
causes a transient elevation in cellular CRT levels (29), we
hypothesized that if TR� uses CRT for nuclear export that the
fusion process with CRT-expressing HeLa cells would restore
export in crt�/� cells. This could occur either as a result of CRT
release from the HeLa cell ER or, alternatively, from the rela-
tively low CRT levels present within HeLa cell nuclei and
cytosol prior to fusion. Experiments were performed in the
presence of cycloheximide to inhibit de novo protein synthesis.
Consistent with our prediction, we found that TR�was capable
of exporting from crt�/� nuclei into the shared cytosol and
subsequently reimporting into HeLa nuclei in these hetero-
karyon assays (Fig. 5). Taken together, the results from these
heterokaryon experiments and our live-cell FRAP experiments
support the hypothesis that TR� uses CRT as a nuclear export
receptor.
Efficient Nuclear Export of TR� in Permeabilized Cells

Requires Cytosol and CRT—To provide further evidence for a
role of CRT in the nuclear export of TR�, we performed per-
meabilized cell in vitro nuclear export assays utilizing purified

recombinant GST-CRT. For this
assay, HeLa cells were transiently
transfectedwith aGFP-TR� expres-
sion plasmid. GFP-TR� displays a
complete and strong nuclear fluo-
rescence 16 h post-transfection. At
this point the outer cell membrane
was permeabilized with digitonin
and export reactions were per-
formed. First, we sought to assess
whether exogenous CRT was suffi-
cient to induce nuclear export of
TR�. Our results showed no observ-
able change inTR�nuclear localiza-
tion between 0 and 40min irrespec-
tive of varying CRT concentration
from 270 nM to 1 �M. During this
period, all TR� remained localized
to the nucleus (Fig. 6A).
To determine whether additional

factors were required to either per-
mit nuclear import of CRT or to aid
in the nuclear export of TR� in con-
junctionwithCRT, export reactions
containing CRT and a cytosol mix-
ture (RRL) alone or a combination
of CRT and RRL were similarly
assayed at 0 and 40min. RRL is com-
monly used as a source of cytosol for
nuclear import and export assays
(36). Initially, we tested RRL alone.
As expected, at t0 TR�was localized

FIGURE 5. Addition of CRT to CRT-deficient cells restores rapid nucleocy-
toplasmic shuttling and promotes export of thyroid hormone receptor
(TR�) from CRT-deficient cell nuclei. crt�/� cells were transfected with a
GFP-TR� expression plasmid. Subsequently, CRT-expressing HeLa cells were
plated on the same coverslip and cytoplasmic fusion was performed using
50% PEG. Left panel, cells were fixed and GFP-TR� localization was observed
by fluorescence microscopy. Nuclei of crt�/� cells are indicated by white
arrowheads. Right panel, HeLa cell nuclei exhibit diffuse Hoechst staining,
whereas crt�/� have a speckled appearance. Heterokaryon borders are visu-
alized by staining of F-actin with rhodamine-phalloidin. Bar, 10 �m.

FIGURE 6. Nuclear export of thyroid hormone receptor (TR�) in permeabilized cells. A, GFP-TR� remains
nuclear at t40 in the presence of 670 nM CRT. HeLa cells transfected with a GFP-TR� expression plasmid were
digitonin permeabilized, and incubated in an export reaction containing CRT, energy regeneration system, and
export buffer alone. At t40 no GFP-TR� export was observed. B, export reactions containing RRL, energy regen-
eration system, and export buffer were able to support �80% loss of nuclear fluorescence of GFP-TR� at t40.
C, export reactions containing both CRT and RRL were able to support �95% loss of nuclear fluorescence of
GFP-TR� at t40. White values were normalized to 2,000 using IPlab 3.55 for A–C. D, enlarged section from panels
B, t40 (*), and C, t40 (**). White values for * from panel B and ** from panel C were adjusted to 200 for low intensity
visualization of the residual GFP-TR� in export reactions. Bar, 10 �m.
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to the nucleus. At t40 amoderate level of export was observed as
indicated by a decrease in GFP-TR� fluorescence in the nuclei
compared with t0 (�80% loss of fluorescence) (Fig. 6, B andD).
Upon addition of RRL and CRT in combination, however, we
observed a striking increase in the nuclear export of TR� as
compared with that which was observed for RRL or CRT indi-
vidually. Indeed, over a similar time course nuclear export was
nearly complete (�95% fluorescence loss) (Fig. 6, C and D).
These data suggest that an additional factor (or factors) present
in the cytosol interacts cooperatively with CRT to mediate effi-
cient nuclear export of TR�.
The GTPase Ran plays an integral role in the shuttling of

many transcription factors and exists predominantly in a GTP-
bound state within the nucleus. In this conformation, RanGTP
participates in the formation of export complexes containing
the classical leucine-rich NES (3, 4, 37, 38). In addition, it also
stabilizes protein kinase inhibitor/CRT interactions as well as
enhances CRT-dependent nuclear export of protein kinase
inhibitor in permeabilized cells (12). It has been shown in per-
meabilized cell nuclear export assays that residual nuclear
RanGTP remaining in cells after permeabilization was suffi-
cient to permit CRT-dependent nuclear export (12). To deter-
mine the role of Ran in the nuclear export of TR�, we per-
formed assays with recombinant CRT in the absence of
RanGTP or having supplemented the system with 1.9 �M
RanGTP. We did not, however, observe any difference in TR�
nuclear localization between these conditions; TR� remained
localized to the nucleus in either case (data not shown). This
suggests that RanGTP is not the limiting factor for TR� nuclear
export.
Several factorsmay play a role in stabilizingCRT/cargo inter-

actions, inducing a conformational shift in CRT, or in other
nonspecific functions. Calcium, for example, modulates CRT
conformation within the lumen of the ER (39) and also regu-
lates CRT function as a chaperone for the T-cell protein per-
forin (40). In addition, Ca2� enhances CRT-mediated nuclear
export of GR-GFP but, interestingly, excess Ca2� also inhibits
classicalNES-regulated nuclear export of Rev-GFP in vitro (15).
We supplemented permeabilized cell export assays with 20mM
Ca2� in the presence of CRT but observed no difference in TR�
nuclear localization. Under these conditions TR� remained

localized to the nucleus (data not shown). These results suggest
that Ca2� also is not the limiting factor required for nuclear
export in these assays.
Based on our findings in live cells that the nuclear export of

TR� shows partial CRM1 dependence (Fig. 1), we performed
Western blot analysis to testwhetherCRM1was present inRRL
and could be the additional factor required for efficient CRT-
dependent nuclear export. Our data show that CRM1was pres-
ent in RRL and HeLa cell extracts, whereas CRT was detected
only in HeLa cell extract and was absent from RRL (Fig. 7).
These findings point to the possibility that CRM1 could be the
additional factor accounting for the enhanced export of TR� in
in vitro export assays supplemented with RRL. A cooperative
interaction between CRT and CRM1, whether direct or indi-
rect, also accounts for the observation that TR� is not exported
as efficiently from nuclei treated with RRL, as CRT is absent
from this exogenous cytosol replacement.
TR� Interacts Directly with CRT—To determine whether

interactions between TR�, CRT, and CRM1 during nuclear
export are direct or indirect, GST pull-down assays were per-
formed (Fig. 8). A GST-CRT fusion protein was incubated with
His-tagged TR� (Fig. 8A), His-tagged CRM1 (Fig. 8B), or both
(Fig. 8C), and the input (flow-through) and binding (elution)
fractions were analyzed by SDS-PAGE. TR� interacted with
GST-CRT (Fig. 8A, lane 3), but not with GST alone (Fig. 8A,
lane 5). In contrast, all input CRM1 was present in the flow-
through fraction (Fig. 8B, lane 5); no CRM1 bound specifically
to CRT alone (Fig. 8B, lane 6), or together with TR� (Fig. 8C,
lane 4). Supplementing in vitro binding assays with RRL had no
effect on complex formation (data not shown). Complex forma-
tion in HeLa, crt�/�, and crt�/� cells was not detectable by
coimmunoprecipitation assays (data not shown), suggesting
that interaction of TR� with CRT in situ is transient and that
only a small fraction of TR� forms export complexes at any
given time. This is consistent with the primarily nuclear popu-
lation of TR at steady state.

DISCUSSION

Here, we present findings that provide evidence for a previ-
ously uncharacterized mechanism for the dynamic shuttling of
TR�. We have used a combination of in vivo FRAP experi-
ments, in vitro digitonin-permeabilized cell nuclear export
assays of transiently transfected cells, and GST pull-down
assays to investigate aspects of TR� subcellular trafficking.
Taken together, our data suggest a novel export mechanism in
which CRT directly binds TR�, and CRT and CRM1 work
cooperatively to promote rapid, efficient export of TR� from
the nucleus (Fig. 9). Alternatively, when the CRM1 pathway is
blockedorCRT levels are increasedunder cellular stress, CRTcan
act independently as a less efficient exportin. crt�/� cell lines fail to
support nuclear export of TR�, suggesting that CRT is indispen-
sable for TR� nuclear export. Thus, CRTmay be themost impor-
tant component of the TR� nuclear export pathway. These data
suggest that CRT deficiency prevents CRM1 interacting either
directly or indirectly with TR�, and inhibits both cooperative and
autonomous TR� export as a consequence.
Prior to this study, the role that CRT plays in nuclear export

was a subject of debate. Previously, CRT was thought to reside

FIGURE 7. RRL contains CRM1 but not CRT. HeLa whole cell extract and
varying volumes of RRL were subject to Western blot analysis, using anti-
CRM1 and anti-CRT antibodies. Magic Marker (MM) size standard is indicated.
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permanently within the ER lumen where it participates in the
maturation of newly synthesized proteins and sequesters Ca2�.
In addition to its prominence in the ER, however, increasing
numbers of reports have suggested that CRT may in fact be
present in small fractions in other cellular compartments. For
example, CRT appears to interact with a ubiquitin-like nuclear
protein in the nucleus of rice cells (34). Moreover, CRT also
localizes to the nuclear matrix of some carcinoma cells and
assists in chromatin formation (35). All of these data suggest
that CRT is likely to possess an evolutionarily conserved ability
to access the nucleus, where it appears to serve multiple func-
tions. Recently, a mechanism involving the post-translational

FIGURE 8. Thyroid hormone receptor (TR�) interacts directly with CRT. In
vitro binding interactions were examined by GST pull-down assays. A, His-TR�
(46 kDa) was retained by GST-CRT bait (lane 3, elution), whereas the negative
control GST-only bait did not retain TR� (lane 5, elution). Lane 1, Bio-Rad
prestained Kaleidoscope protein molecular mass standards, given in kDa
(P-KPS); lanes 2 and 4, TR� protein inputs; lanes 6 – 8, reference protein sam-
ples. B, CRM1 alone was not retained on either GST-CRT (lane 3, elution) or
negative control GST-only bait (lane 6, elution). Lane 1, Bio-Rad Kaleidoscope
protein molecular mass standards, given in kDa (KPS); lanes 2 and 5, His-CRM1

flow-through (input); lane 4, no prey input, GST-CRT bait elution; lanes 7–9,
reference protein samples. C, TR� binds CRT, but His-CRM1 does not interact
directly with the TR�-CRT complex. His-TR� was retained by GST-CRT bait
from the combined TR�:His-CRM1 input, whereas the His-CRM1 was not
retained (lane 4, elution). The negative control GST-only bait did not retain
either TR� or His-CRM1 (lane 7, elution). Lane 1, Bio-Rad prestained Kaleido-
scope protein molecular mass standards, given in kDa (P-KPS); lanes 2 and 5,
His-tagged TR� and CRM1 input; lanes 3 and 6, post-prey binding wash sam-
ples; lanes 8 –10, reference protein samples. The His-CRM1 input included
full-length CRM1 and lower molecular weight degradation products, as
indicated.

FIGURE 9. Model for nuclear export of thyroid hormone receptor (TR�)
involving a cooperative CRT and CRM1-mediated pathway. A, nuclear
export complex in cells expressing CRT (HeLa, crt�/�) in which CRT binding
promotes a cooperative export pathway involving CRM1. This cooperative
interaction is indicated by the double-headed curved arrow. CRM1 binding to
TR� may require additional factors (indicated by dashed line). Although CRT
levels are low under these conditions, export of TR� is efficient and rapid
export is observed. B, inefficient nuclear export of TR� in cells expressing CRT
(HeLa, crt�/�) occurs upon treatment with LMB. CRM1 is inactivated but CRT
can still support modest export autonomously. C, rapid export of TR� occurs
even in the presence of LMB upon PEG-induced heterokaryon fusion.
Although the CRM1 pathway is inactivated, transient CRT release from the ER
renders sufficient CRT levels to support rapid export of TR�. D, crt�/� cells do
not support nuclear export of TR� because CRT is not present to facilitate the
CRM1-dependent component of the export pathway.
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processing and retrotranslocation of CRT from the ER to the
cytoplasm has been identified, suggesting a potential pathway
for CRT to subsequently gain access to the nucleus via import
(41).
Although low levels of CRT are found in multiple cellular

compartments, the majority of CRT present in heterokaryons
immediately after cell fusion comes as a result of ER disruption
and its release from the ER lumen (29). Although TR� export
was inhibited in crt�/� monokaryons, rapid shuttling and fluo-
rescence equilibration was observed between nuclei of hetero-
karyons. For CRT tomediate export of TR� from crt�/� nuclei,
presumably it must first be imported into these same nuclei.
Following import, CRT could then interact with TR� and facil-
itate its nuclear export. Our in vitro nuclear export assays sug-
gest that whereas CRT is necessary for efficient export, there is
also an additional factor (or factors) in the cytosol required for
its nuclear import, its role in the export of TR�, or both. Based
on our in vivo FRAP experiments, our in vitro nuclear export
assays, and our Western blot analysis of RRL composition, we
suggest that at least one of these additional factors is the expor-
tin CRM1.
In both HeLa and crt�/� cell lines, TR� displayed rapid

nucleocytoplasmic shuttling in the absence of LMB. Although
the precise mechanism by which this export occurs remains to
be determined, there are several potential explanations. CRT
and CRM1 could undergo a conformational shift that maxi-
mizes interaction with components of the nuclear pore com-
plex, thus expediting the export process. Alternatively, CRM1
could increase the affinity of CRT for TR� allowing for more
efficient export. In any case, the fluorescence equilibration
between photobleached and unbleached nuclei in monokary-
ons of either cell type (HeLa t1⁄2 � 40 min, crt�/� t1⁄2 � 10 min)
indicates that TR� shuttles rapidly under these conditions.
As treatment with LMB results in covalent modification of a

critical cysteine residue within CRM1 (42), this potential coop-
erative interaction with CRT may be abolished upon LMB
treatment. As such, CRT may still be capable of binding TR�
and facilitating export, albeit to a lesser extent. This would
explain our results in which TR� shuttling in HeLa and crt�/�

monokaryons occurs only slowly after treatment with LMB.
Finally, ourmodel takes into account the cell fusion-depend-

ent release of CRT during heterokaryon experiments (29) and
explains the stark contrast between LMB-insensitive TR� shut-
tling in heterokaryons (1) versus LMB-sensitive shuttling in
monokaryons (present study). Although CRT may be the lim-
iting factor inTR�nuclear export under normal circumstances,
this limitation is countered by the increased efficiency of export
resulting from the cooperative pathway involving CRM1 (Fig.
9). Although CRM1 is undoubtedly inactivated by LMB treat-
ment in heterokaryons, the attenuated nucleocytoplasmic
shuttling expected may not be observed due to the increased
cytosolic levels of CRT resulting from PEG-induced cell fusion.
Under these conditions, the relatively low levels of CRT found
within the nucleus or cytosol under normal circumstances
would bemarkedly increased and its low levels would no longer
be limiting. Although, according to this model, autonomous
CRT-mediated export of TR� is not as efficient as cooperative
export in the presence of CRM1, the sheer increase in free CRT

directly after cell fusion may be enough to overcome this defi-
ciency and allow rapid nuclear export to proceed in the pres-
ence of LMB (Fig. 9).
Previously, the only support for the hypothesis that CRT

mediates export of TR was the finding that the DBD of TR� is
sufficient to confer nuclear export when fused to a GFP
reporter. TheDBDsofTR� andGR share 43% sequence homol-
ogy and, most importantly, the amino acids predicted to be key
for CRT binding are conserved (12). Thus, it is not unreason-
able to propose that the TR� DBD could also interact directly
with CRT, as has been shown for the GR DBD (8). Examining
the specific nucleocytoplasmic shuttling properties of TR�
domains within CRT-deficient and CRT-expressing cell lines
will provide valuable insight into the physical basis for TR�
binding of CRT. Comprehensive analysis of the effects ofmuta-
tions by in vitro binding assays and in vivo functional assays
should help to identify and clarify those specific amino acid
sequences required for nuclear export, as well as nuclear
import, of TR�.

In a prior study we showed that in vitro-generated 35S-la-
beled TR� does not interact with purified CRM1 in a His pull-
down assay (28). However, most CRM1-dependent NESs bind
CRM1 with low affinity and often require additional adapter
proteins to serve as a bridge between CRM1 and the cargo pro-
tein being exported (3, 43). For example, Ran-binding protein 3
(RanBP3) directly binds CRM1 in the nucleus and increases the
affinity of CRM1 for NES containing cargo as well as RanGTP
(44, 45). In addition, RanBP3 binding also maximizes the inter-
action of the CRM1 export complex with nucleoporins of the
nuclear pore complex (44). Similar conditions are observed for
CRM1 binding of other regulatory proteins that participate in
nucleocytoplasmic shuttling. Although steroid receptor coacti-
vator-1 contains two clusters of hydrophobic amino acids sim-
ilar to the classic leucine-rich NES associated with CRM1-me-
diated nuclear export, this protein failed to accumulate within
the nuclei ofCOS-7 cellswhen these regionsweremutated even
though its export was sensitive to LMB (46). Presumably then,
an unknown adapter protein that is recognized by both CRM1
and steroid receptor coactivator-1 accounts for the nuclear
accumulation of steroid receptor coactivator-1 upon LMB
treatment. Other examples include both the 60 S and 40 S
ribosomal subunits of the yeast Saccharomyces cerevisiae.
These large complexes undergo CRM1-mediated nuclear
export in an adapter-dependent manner (47–49). Such situ-
ations are analogous to our TR� export pathway model in
which additional export factors may be required to facilitate
the CRM1-dependent component of TR� translocation
from the nucleus to cytoplasm.
Themodel presented here explains several previously anom-

alous observations relating to CRT, CRM1, and nuclear recep-
tor export in general. There is certainly a discrepancy between
the shuttling kinetics of nuclear receptors in a heterokaryon
system versus under other experimental conditions, such as
those reported inWalther et al. (29). Particularly striking is the
disparity observed between protein shuttling within in vivo
monokaryon experiments compared with the interspecies het-
erokaryon assay. Here, for the first time, the observation that
some nuclear receptors such as TR� (present study) and GR
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(50, 51) rely in part on CRM1-dependent nuclear export can be
reconciled with the observation that cell lines deficient in CRT
expression, but retaining their CRM1 activity, fail to support
nuclear export of the same proteins (8) (present study).
Interestingly, we have also shown that the p53 tumor sup-

pressor protein displays highly reduced shuttling kinetics in
crt�/� monokaryons as compared with heterokaryon assays
using HeLa and NIH/3T3 cells.5 Although the significance of
these observations remain to be determined, they again high-
light the complexity of nucleocytoplasmic transport pathways
and point to a similar discrepancy between p53 shuttling under
in vitro and in vivo conditions. As p53 undergoes nuclear export
in a CRM1-dependent manner (52–55), this observation
should be consideredwhen designing experiments that attempt
to utilize p53 as a control for CRM1 activity.
These data provide insight into the nuclear export pathway

of TR� and suggest a possible mechanism by which other shut-
tling proteins may use complex and, to some extent, function-
ally redundant export modes involving both characterized
pathways (CRM1) and a multitude of other chaperones. In
addition, these results also represent a novel role in nuclear
export for the functionally diverse proteinCRT.Althoughmore
research will be necessary to precisely determine the signifi-
cance of this cooperative export pathway, regulation of TR�
target genes may be influenced in several ways. Inefficient TR�
nuclear export in the absence of CRT could, for example, be
indicative of an evolved compensatory mechanism to up-regu-
late the transcription of genes involved in similar cellular pro-
cesses as the numerous ones that have been identified for CRT.
Conversely, rapid shuttling of TR� dependent on an intact
cooperative export pathway may be representative of a general
mechanism to clear shuttling transcription factors from the
nucleus under physiological conditions. This cooperative
CRM1/CRT-mediated nuclear export pathwaymay be relevant
to related members of the nuclear receptor superfamily other
than TR�. Identification of this export pathway and other
mechanisms by which nuclear receptors exit the nucleus will
contribute substantially to understanding the regulatory activ-
ity of these proteins. One challenge for the future will be to
examine how regulation of this cellular compartmentalization
is impaired or altered in the case of aberrant nuclear receptor
expression. In addition, defining how nuclear export integrates
TR� activity with other signaling pathwaysmay provide impor-
tant clues as to the mode of action of mutant TRs that are
responsible for a host of pathological conditions including can-
cer (56–58).
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