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Overview

Microsporidia are obligate intracellular parasites that can infect a wide range of hosts. They

cause death and disease in both humans and agriculturally important animals. They have also

become a powerful model for understanding the evolution of intracellular parasites. Recent

work has explored how microsporidia genomes have evolved, the evolutionary origins of

microsporidia, and how microsporidia adapt to interact with their hosts.

What do microsporidia have in common?

Microsporidia can only exist outside of their host as environmentally resistant, chitin-contain-

ing spores. These spores contain a unique infectious apparatus known as the polar tube. Dur-

ing infection, the polar tube is rapidly discharged and can pierce a host cell, depositing the

parasite’s sporoplasm within the host cell [1]. The sporoplasm then proliferates, eventually

producing spores that then exit the host to cause subsequent infections. Microsporidia are

thought to reproduce mostly asexually, although most are likely diploid based on genomic het-

erozygosity and conservation of meiotic genes [2–5].

Because of the intimate relationship between microsporidia and their hosts, they are heavily

dependent on host resources and have undergone extensive genomic reduction [6,7]. Analysis

of sequenced microsporidia genomes (Fig 1A) has revealed a wide loss of protein families that

are present in other eukaryotes, leaving only approximately 800 conserved microsporidia pro-

teins [6]. The proteins that have been retained function in essential core cellular processes

such as DNA replication, transcription, and translation [6,8,9]. Proteins that have been lost

include many metabolic enzymes, regulatory pathways, and proteins involved in vesicular

transport such as TOR (Target of Rapamycin) and clathrin [8–10]. In addition, the proteins

that are retained are shorter than their fungal orthologs, with Encephalitozoon cuniculi proteins

being on average only 85% as long as their yeast counterparts [3,11]. One such instance of pro-

teins that have decreased in size are the aminoacyl-tRNA synthetases, which have lost many

regulatory regions, including a domain in leucyl-tRNA synthetase (LeuRS) that edits mis-

charged tRNAs. The microsporidia Vavraia culicis was shown to have mistranslation error

rates of 5.9% at positions that coded for leucine—although valine, which has a corresponding

tRNA synthetases with an intact editing domain, has a mistranslation rate of 7.5%, suggesting

that there are other factors responsible for the high levels of mistranslated proteins [12].

Microsporidia also have reduced noncoding RNAs, including the 18s RNA, which is only

approximately 2/3 as large as in other eukaryotes and results in the smallest eukaryotic ribo-

somes [13]. Although this reduction has led to several binding sites being eliminated, struc-

tural and mass spectrometry analysis of ribosomes from Vairimorpha necatrix demonstrated
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that most conserved ribosomal proteins can still bind [14]. Microsporidia also have reduced

organelles, including mitochondrial remnants known as mitosomes [15]. These mitosomes do

not encode a mitochondrial genome and are incapable of carrying out oxidative phosphoryla-

tion; microsporidia must instead import ATP from their host [16]. Interestingly, there are 32

conserved protein families in microsporidia that are not found in any other eukaryote [6]. Sev-

eral of these proteins function as part of the polar tube or spore wall, and the function of most

of these proteins is unknown [6].

How do microsporidia genomes differ from one another?

Microsporidia genome sizes vary significantly. The largest is Edhazardia aedis at 51.3 Mb

(encoding approximately 4,200 proteins), and Encephalitozoon genomes are the smallest, with

Fig 1. Phylogeny, hosts, and characteristics of microsporidia species. (A) Phylogenetic tree of whole-genome sequenced microsporidia and related species. Tree was

generated as described previously using single-copy orthologs present in all species [19,35]. Predicted proteins for each genome were obtained from https://www.ncbi.

nlm.nih.gov, except for Metchnikovella incurvata and Enterospora canceri, which were predicted from genome assemblies using Prodigal 2.6.3. Orthologous gene

families were identified using OrthoMCL 2.0.9 using an inflation index of 1.5 and a BLAST E-value cutoff of 10−5. Phylogeny was constructed from 43 single-copy

orthologs present in all 28 species. Proteins from each orthogroup were aligned using MUSCLE 3.8.31. These alignments were trimmed using trimAl 1.4 with the

option-gappyout. Each orthogroup alignment was then concatenated into a single alignment using FASconCAT 1.11. Using ProtTest 3.4.2, it was determined that

PROTGAMMAIWAGF was the best fitting model for the data. Phylogeny was then inferred using RAxML 8.2.12 with the best fitting model and 1,000 bootstrap

replicates. Scale bar indicates changes per site. To the right of each species are illustrations of the host(s) that each species has been reported to infect. This phylogenetic

tree is largely in agreement with recent previously published phylogenies [3,4,8,9,19,23,27], with the exception of Anncaliia algerae or Edhazardia aedis, which have

different placements in several reports [3,8,23,27]. (B) Comparision of protein content for each species. (C) Comparision of genome size for each species. (D)

Morphological and molecular characteristics of each species. E-value, expect value; TOR, target of rapamycin.

https://doi.org/10.1371/journal.ppat.1008276.g001
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some being only 2.3 MB (encoding approximately 1,800 proteins) [17] (Fig 1B and 1C). Much

of this size disparity results from noncoding DNA, with only 9% of the E. aedis genome coding

for proteins, compared to approximately 90% for E. cuniculi. The regions between genes can

become very compact, with the intergenic regions averaging only 115 base pairs in Encephali-
tozoon intestinalis [17,18]. Though microsporidia have much fewer proteins overall compared

to other eukaryotes, genomic reduction was followed by a large expansion in lineage-specific

protein families [6]. For example, Nematocida parisii comprises 2,661 proteins, of which only

1,074 are conserved with other eukaryotes or with other microsporidia species outside of its

genus. This means that over half of the proteins in N. parisii are unique to the Nematocida
genus, with 318 not even present in N. ironsii, a closely related sister species [19]. Many of

these unique genes are found in subtelomeric regions and likely arose through local duplica-

tion events [19]. Additional mechanisms that have changed the protein content of microspori-

dia species include whole-genome duplications and genes arising from noncoding regions

[20].

Several key eukaryotic processes have been lost in some, but not all, microsporidia. The

ability to splice mRNA transcripts has been lost multiple times in microsporidia evolution,

including in E. aedis, Nematocida species, and Enterocytozoon species, which no longer contain

functional spliceosome machinery [21] (Fig 1D). This has resulted in some genomes having no

detectable introns and the loss of most conserved splicing proteins [3]. Although many micro-

sporidia genomes have retained Dicer and Argonaute, the two key effectors of the RNA inter-

ference (RNAi) pathway, both of these proteins have been lost several times, including in all of

the species in Nematocida and Encephalitozoon [4,22]. Although all microsporidia species have

lost many metabolic enzymes, there are important distinctions such as differential losses in

lipid biosynthesis genes [3]. Additionally, Enterocytozoon species have lost genes necessary for

glycolysis, leaving them completely dependent on their host for energy production [23].

What did the last common ancestor of microsporidia look like?

Microsporidia were once considered the earliest diverging eukaryotes, but sequencing of a

large number of microsporidia genomes in the last several decades has made it clear that they

belong to a group of the earliest diverging fungi [2,24]. More recently, the discovery and subse-

quent genome sequencing of related basal species has shed light on the evolutionary origin of

microsporidia. Microsporidia are closely related to a group of obligate intracellular parasites

called the Cryptomycota or Rozellomycota [25] (Fig 1A). The only one of these species to have

its genome sequenced so far, Rozella allomycis, infects water mold using motile flagellated

spores [26]. Different than microsporidia, R. allomycis possesses mitochondria and encodes a

much larger set of proteins that is more conserved with other eukaryotes. To date, the two

most early diverging microsporidian species that have been sequenced are Paramicrospori-
dium saccamoebae (classified as a Rozellomycota), an intranuclear parasite of amoeba, and

Mitosporidium daphniae (classified as a microsporidia), which infects daphnia [27,28].

Although there has been debate about whether these species should be classified as microspori-

dia, recent analysis of environmental samples supports the existence of an expanded micro-

sporidia that includes a diversity of early diverging species [29]. P. Saccamoebae and M.

daphniae differ from R. allomycis in that their spores have lost flagella and contain a polar fila-

ment, although invasion by P. saccamoebae is carried out through host phagocytosis [30].

While P. saccamoebae and M. daphnia have a reduced gene set compared to other fungi, they

have undergone less genome reduction than canonical microsporidia. Both species also have

mitochondrial genomes, although P. saccamoebae has a conserved electron-transport chain

whereas both R. allomycis and M. daphnia have lost Complex I and have different nuclear-
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encoded genes that are thought to facilitate ATP generation [26–28]. Additionally, P. sacca-
moebae has more genes in common with distantly related fungi than with R. allomycis or M.

daphnia, suggesting that these species have undergone independent gene loss during coevolu-

tion with their hosts [27].

Another early diverging group of microsporidia are the metchnikovellids, which parasitize

apicomplexan gregarines. Recent genome sequencing of two of these species, Metchnikovella
incurvata and Amphiamblys sp., has revealed that this group is most similar to the canonical

microsporidia, as these species have undergone dramatic gene loss and do not contain mito-

chondrial genomes [8,9] (Fig 1). One of the most striking differences in metchnikovellids is

the presence of clathrin, which has been lost in the canonical microsporidia [8,9]. Additionally,

the 32 conserved protein families that were found to be specific to the canonical microsporidia

are not present in Amphiamblys sp. [9], indicating that the canonical microsporidia have a

number of proteins that differentiate themselves from the metchnikovellids.

Taken together, these genomic analyses suggest that the earliest steps in microsporidia evo-

lution were the development of the defining polar filament and the loss of flagellum. This was

followed by genomic reduction, including loss of the mitochondrial genome and subsequent

expansion of microsporidia-specific and genus-specific gene families. Recent environmental

sampling has revealed a great diversity of early diverging microsporidia species, and it is

expected that additional whole-genome sequencing of these species will provide even greater

clarity into the evolution of microsporidia [29]. Are there species that have evolved polar fila-

ments while maintaining a flagella apparatus? Was the mitochondria genome lost in indepen-

dent lineages? In species that have retained the mitochondrial genome, are there proteins

besides Complex I that are commonly lost? Have other branches of early diverging microspori-

dia undergone as dramatic of gene reduction as in canonical microsporidia? Are there features

associated with the transition to infecting animals? Was the last common ancestor of Rozella
and microsporidia a parasite, or did this ancestor have a free-living lifestyle? Additional com-

parative studies of microsporidia and related species will help in answering these and other

questions of how microsporidia evolved.

What is the host specificity of microsporidia?

Microsporidia infections are extremely common in animal species. Fig 1A shows a variety of

invertebrate and vertebrate species that microsporidia infect. Microsporidia also infect protists

such as free-living ciliates and other parasites, including paramyxids, which infect bivalve mol-

lusks [29]. Although most microsporidia have a narrow host range and infect only one or sev-

eral closely related host species, several microsporidia species are generalists and have broad

host ranges [3,31–33]. Examples of generalists include Enterocytozoon bieneusi and the Ence-
phalitozoon species, which can infect a wide variety of birds and mammals [34]. Many genera

of microsporidia show specialization to a certain group of animals, such as the nine known

Nematocida species that parasitize nematodes [19,31,35]. Species within a clade have also been

observed to have different host specificity. For example, Encephalitozoon romaleae infects

grasshoppers, unlike the other vertebrate-infecting members of the genus. This suggests that

host specificity can rapidly switch between vertebrates and insects [36]. There are also several

examples in which microsporidia have independently evolved to infect the same species,

including humans, mosquitos, and nematodes [31]. Interestingly, host ranges can be extended

when microsporidia encounter immunocompromised hosts [37]. This is thought to be the

case for several species that infect immunocompromised humans, such as Trachipleistophora
hominis, whose natural host is thought to be an insect, and Anncaliia algerae, whose natural

host is a mosquito [38,39]. Tissue specificities can also differ within a host [2]. Of two different
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species of Nematocida that infect Caenorhabditis elegans, N. parisii only infects the intestine,

whereas N. displodere proliferates in several tissues including the muscle and epidermis. Differ-

ences in subcellular localization have also been observed, such as with the related crab-infect-

ing species Hepatospora eriocheir and Enterospora canceri, which infect the cytoplasm and

nuclei, respectively [23].

Although approximately 1,400 microsporidia species have been described, there is likely a

large amount of undiscovered species diversity [7,40]. For example, a study sampling terres-

trial nematodes identified 12 distinct microsporidia species, and C. elegans alone has been

reported to be infected by seven different species [19,31,35]. Additionally, environmental sam-

pling has identified dozens of novel species [41,42]. Based on the wide diversity of known ani-

mal hosts and the specificity of microsporidia species to infect one or several closely related

hosts, it has been suggested that the number of microsporidia species equals the number of

animal species. This has led to estimates of over 100 million microsporidia species [43].

How have microsporidia adapted to their hosts?

Microsporidia use many proteins to directly interact with and manipulate their hosts. These

host-exposed proteins contain targeting signals that direct them for secretion into the host or

to the membrane of the parasite. Microsporidia species are predicted to have approximately

100 to 1,300 host-exposed proteins, which includes lineage-specific, expanded gene families

[6,19]. These large gene families are particularly interesting as they can make up over 10% of a

single microsporidia genome [35]. Although the function of these families is unknown, many

family members contain protein–protein interaction domains, suggesting that they may inter-

act with host proteins [19].

Because canonical microsporidia cannot undergo oxidative phosphorylation, they rely on

their hosts for ATP and other metabolites. The most extensively studied microsporidia protein

that directly interacts with hosts is hexokinase. Microsporidia hexokinases have gained a signal

peptide and were experimentally shown to be secreted in several species [19,44–46]. This

enzyme potentially increases host metabolism to provide nutrients for the developing para-

sites, and consistent with this idea, knockdown of the enzyme reduces microsporidia prolifera-

tion [44]. To obtain ATP from their hosts, microsporidia encode a nucleotide transport

protein that was likely acquired via horizontal gene transfer from bacteria. These proteins

allow for the transport of ATP into the parasite and have been diversified to acquire other sub-

strates [16]. A second family of nucleotide transporters, the major facilitator superfamily, was

recently shown to transport ATP and was found in many eukaryotes and in Rozella and all of

the sequenced microsporidia [47]. Microsporidia can interact with host mitochondria, which

is thought to increase the transport of ATP into the parasite. Recent work identified a protein

from Encephalitozoon hellem, sporoplasm surface protein 1 (SSP1), that is on the sporoplasm

that is involved in both invasion of host cells and association with the host mitochondria [48].

Future perspective

Microsporidia were discovered over 160 years ago, but our understanding of these organisms

has lagged compared to many other eukaryotic parasites of humans [24]. The use of genomic

sequencing technologies has allowed for rapid advances in our understanding of how these

cryptic parasites function and how they have evolved. Many other technologies are now being

successfully applied to microsporidia. The application of whole-genome amplification to single

infected host cells has allowed for the sequencing of species that are challenging to culture [8].

The use of ancestral gene reconstruction has revealed how nucleotide transporter genes

evolved [16]. Proteomic technologies such as mass spectrometry have been used to study the
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localization of microsporidia proteins as well as their translational fidelity [12,14,19]. Cryo-

electron microscopy has been used to determine the structures of microsporidia ribosomes.

This work allowed the identification of a conserved, microsporidia-specific ribosomal protein

(msL1) and also identified two conserved microsporidia dormancy factors, one that is con-

served throughout eukaryotes (MDF1) and the other that was only found in several species of

microsporidia (MDF2) [14]. Although it is currently not possible to genetically modify micro-

sporidia, using RNAi to knockdown genes provides a powerful approach to directly study

microsporidia protein function in the context of infection [44,49]. Finally, the discovery of

microsporidia that infect model organisms such as C. elegans and Drosophila melanogaster
provides easily cultured, genetically tractable hosts for studying how microsporidia function

[2,19,35,50]. Continued use of the technological advances highlighted here is likely to provide

additional insight into the function and evolution of these fascinating pathogens.
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