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Meta-analyses based on systematic literature reviews are commonly used to

obtain a quantitative summary of the available evidence on a given topic.

However, the reliability of any meta-analysis is constrained by that of its con-

stituent studies. One major limitation is the possibility of small-study effects,

when estimates from smaller and larger studies differ systematically. Small-

study effects may result from reporting biases (ie, publication bias), from inad-

equacies of the included studies that are related to study size, or from reasons

unrelated to bias. We propose two estimators based on the median and mode

to increase the reliability of findings in a meta-analysis by mitigating the influ-

ence of small-study effects. By re-examining data from published meta-

analyses and by conducting a simulation study, we show that these estimators

offer robustness to a range of plausible bias mechanisms, without making

explicit modelling assumptions. They are also robust to outlying studies with-

out explicitly removing such studies from the analysis. When meta-analyses

are suspected to be at risk of bias because of small-study effects, we recom-

mend reporting the mean, median and modal pooled estimates.
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1 | INTRODUCTION

Meta-analysis is used to obtain a quantitative summary
of the evidence from multiple studies on a given topic
and is often undertaken as part of a systematic review.1,2

In its archetypal form, meta-analysis provides an overall
effect estimate for a well-defined intervention that has

been assessed across several independent clinical trials,
although it can also be applied to other study designs.
Meta-analyses also provide an opportunity to explore
between-study heterogeneity, which might highlight pos-
sible explanations for variation in treatment effects.1,2

Systematic differences between effect estimates from
different studies may also indicate the presence of bias,
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which we wish to understand if possible and, ultimately,
seek to remove from the analysis. Such differences may be
due to flaws or limitations in the design, conduct or analysis
of the included studies: for example, the failure of some ran-
domized trials to conceal the allocation sequence from those
recruiting participants, or the use of inappropriate imputa-
tion methods for missing endpoint data. The seriousness of
these types of limitations may be associated with the size of
the study, leading to a type of heterogeneity in which esti-
mates from larger and smaller studies differ systematically.

A further threat to the validity of meta-analyses is publi-
cation bias,2 when the probability that results are reported
and published is related to the direction or magnitude of
their findings,3 so that published results are a biased sample
of all results generated. This bias is less likely to affect larger
than smaller studies, due to a combination of pressure to
publish by external funders or collaborators, the greater
inherent publishing appeal of larger studies, and because an
increased sample size raises the likelihood of achieving con-
ventional statistical significance when the true treatment
effect is nonzero.2

It is not necessarily the case that, in the presence of
systematic differences associated with study size, smaller
studies are less reliable than larger ones Systematic differ-
ences between large and small studies may be to reasons
other than bias: for example, if the intervention was
implemented more effectively in the smaller studies.4

Therefore, the phenomenon where the reported treatment
effect is associated with study size in a meta-analysis
encompasses many different mechanisms and is referred
to with the umbrella-term “small-study effects.”5 It is diffi-
cult to identify whether an association between study size
and reported treatment effect is due to true heterogeneity,
biases in the results of individual studies, selective
reporting (or publication), or a combination of these.2,6

Many methods to detect and correct for small-study
effects have been proposed. One of the earliest of such
methods is the funnel plot (where study-specific point esti-
mates are plotted against their precision), which was pro-
posed more than 30 years ago.7 Difficulties in visual
interpretation of funnel plots motivated the development
of tests for funnel plot asymmetry4,8 and approaches that
“correct” for asymmetry, such as regression and trim-and-
fill estimators.9-11 However, these approaches make either
implicit or explicit assumptions about the asymmetry-
generating process so that their performance suffers when
the true bias mechanism differs from that assumed.

Here, we propose two simple estimators that are
robust to small-study effects, while making no assump-
tions about their precise nature. They were originally pro-
posed for causal inference in summary data Mendelian
randomization.12,13 From a statistical perspective, this
technique has strong parallels with meta-analysis.14,15

2 | META-ANALYSIS DATASETS

Before presenting the estimators, we describe four meta-
analysis datasets that will be used throughout the article
to explain the proposed estimators and illustrate their
application. In addition to funnel plots (Figure 1), we
characterize these datasets using the following statistics:
(a) Asymmetry, which we defined as the Egger test's
coefficient (γ), that is, the slope of an inverse variance
weighted linear regression of effect estimates on standard
errors.4 P-values were calculated using t-test with K − 2
degrees of freedom, where K is the number of studies;
and (b) Between-study inconsistency, defined as the con-
ventional I2 statistic. Importantly, the I2 statistic does not
quantify variation in the true effect sizes across studies,
but rather statistical inconsistencies in the results of the
studies.16 For example, for a given data-generating mech-
anism producing a given amount of variation in the true
effect sizes (ie, heterogeneity), increasing the size of the
studies will generally increase I2 (because the study-
specific confidence intervals will get narrower, thus
increasing the statistical power to detect inconsistencies).

• Catheter dataset (Figure 1A): this meta-analysis, origi-
nally conducted by Veenstra et al,17 evaluated 11 trials
comparing chlorhexidine-silver sulfadiazine-impreg-
nated vs nonimpregnated catheters with regard to risk
of catheter-related bloodstream infection. These data
presented a large correlation between effect estimates
and their precision (γ=3.05 [P-value = 0.007]) (which
translates into substantial asymmetry on the funnel
plot), and high between-study inconsistency (I2 = 60%).

• Aspirin dataset (Figure 1B): this meta-analysis, originally
conducted by Edwards et al,18 evaluated 63 trials investi-
gating the effect of a single dose of oral aspirin on pain
relief (50% reduction in pain). Asymmetry was also strong
in magnitude (γ = 2.11 [P-value = 5.2 × 10−9]), but there
was low between-study inconsistency (I2 = 10%).

• Sodium dataset (Figure 1C): this meta-analysis was origi-
nally conducted by Leyvraz et al,19 and assessed the effect
of sodium intake on blood pressure in children and ado-
lescents. We focused on the meta-analysis of 13 experi-
mental studies (three of which were not randomized
trials) of systolic blood pressure. Asymmetry was strong in
magnitude (γ = 2.60), but there was no strong statistical
evidence against the null hypothesis of no asymmetry (P-
value = 0.679). Moreover, there was high between-study
inconsistency (I2 = 99%). As shown in Section 4, both γ
and I2 are substantially attenuated upon removal of two
studies classified as influential by Leyvraz et al.

• Streptokinase dataset (Figure 1D): this meta-analysis,
originally conducted by Yusuf et al20 and updated by
Egger et al,4 includes 21 trials evaluating the effect of
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streptokinase therapy on mortality risk. These data
presented moderate inconsistency (I2 = 34%), but very
little evidence of asymmetry (γ= − 0.06, P-value
= 0.868). Given that in this dataset there is no strong
indication of small-study effects, these data were used
as a positive control, where all estimators are expected
to give similar answers.

3 | METHODS

We now give a nontechnical explanation of our proposed
estimators to motivate their utility. We then provide a
more technical description of our approach, by first
describing the assumed data generating mechanism and
the proposed estimation procedures.

3.1 | Nontechnical intuition

The standard way to combine studies in a meta-analysis
is via a weighted mean of study-specific results, where
the weight given to each study estimate is the inverse of
its variance (thus reflecting its precision). Under the
assumption that all included studies provide valid esti-
mates of the same underlying treatment effect, this “fixed
effect” approach provides the summary estimate that is
the most efficient, that is, most precise and therefore with
the highest power to detect a nonzero treatment effect.

Skewness affects the utility of the mean as a measure
of central tendency. For example, the distribution of
income is typically positively skewed due to the presence
of a few individuals who are much wealthier than most
of the population. In such cases, statistics such as the
median or the mode are often used instead of the mean

FIGURE 1 Funnel plots of the catheter (panel A), aspirin (panel B), sodium (panel C), and streptokinase (panel D) meta-analyses
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as central tendency measures to quantify “typical”
income, although for some applications the mean will
still be the statistic of interest.

Skewness in individual participant datasets is analo-
gous to funnel plot asymmetry in meta-analyses. Exam-
ples of funnel plot asymmetry are shown in Figure 1A,B.
In the aspirin dataset (Figure 1B), smaller studies have
generally larger point estimates. Given that the mean is
more sensitive to asymmetry than the median and the
mode (and the same for their inverse variance weighted
versions, described in Section 3.3), estimates obtained
using the latter two measures would be closer to the bulk
of evidence in the meta-analysis. In cases where the
strong asymmetry makes it implausible to discard the
possibility of bias, estimators that yield combined esti-
mates closer to the bulk of the funnel plot are likely to be
more reliable.

A second situation where the mean may not be a use-
ful central tendency statistic is when there are outliers.
Using again the example of income, the mean income of
a population will be largely influenced by the extreme
wealth of a tiny proportion of individuals and will not
reflect the typical income of the majority. Again, the
median or the mode provide a central tendency statistic
that is closer to most data points than the mean. The
presence of a few outliers in a large population may not
be problematic in typical studies using individual partici-
pant data because their influence is diluted. However, a
meta-analysis often contains a small number of data
points (study results), increasing the relative influence of
outliers on the combined estimate. For example, in the
sodium dataset (Figure 1C), Leyvraz et al19, using a statis-
tical criterion, classified two studies as outliers. In the
Results section, we show that these two studies have a
substantial influence in the results by pushing the
weighted mean, but neither the median nor the mode,
away from the bulk of the funnel plot.

We now provide a more formal justification for using
the median or mode in the meta-analysis context to
achieve robustness to small-study effects and outlying
studies, focusing on small-study effects. We return to the
topic of outlying studies when analyzing real meta-
analysis datasets.

3.2 | Data generating mechanism

We first define a summary data generating mechanism
with K studies indexed by j (j = 1, 2, …, K) in a form that
allows us to incorporate different types of small-study
effects (Box 1). We assume each study reports an estimated
mean difference between groups (eg, an experimental inter-
vention and a standard intervention) denoted by β̂j, where:

β̂j = β+ bj + σjεj: ð1Þ

Here:

• β is the average effect of the experimental compared
with standard intervention on the outcome;

• bj denotes the bias/heterogeneity parameter for study j;
• σj is the standard error of the mean difference;
• εj~N(0, 1, lj, uj) is drawn from a standard truncated

normal distribution with lower limit lj and upper
limit uj;

• The parameters bj, lj, and uj are all allowed to depend
on the study size, nj.

Box 1. General principles of our small-study
effects models
We use model (1) to explore two types of small-
study effects: bias due to systematic differences
between small and large studies due to study
quality (type (a)), and bias due to the specific
environment of selective reporting and publica-
tion in operation at the time when study j was
conducted (type (b)).

For type (a), we assume that differences
between small and large published studies are
due to fundamental properties of each study that
are correlated with study size (nj). For this, the
fixed bias parameter bj is a function of nj
such that:

0 ≤ bj ≤ bk or 0 ≥ bj ≥ bk, whenever nk ≤ nj.
We will investigate cases where the bias dis-

appears only asymptotically as a study size grows
infinitely large, and cases where the bias disap-
pears beyond a threshold study size, N. That is:

bj ! 0 as nj ! ∞, or bj = 0 if nj ≥ N for some
(large) N.

Type (b) bias is not a fundamental component
of the study itself, but instead the result of selec-
tive reporting and publication (ie, publication
bias). We induce this through the random error
component of model (1), εj, by defining lj or uj as
functions of nj such that, whenever nk ≤ nj:

lj ≤ lk ≤ 0, and therefore 0 ≤ E[εj| nj] ≤ E
[εk| nk]; or

uj ≥ uk ≥ 0, and therefore 0 ≥ E[εj| nj] ≥ E
[εk| nk].

For example, assume that type (b) bias is
always positive, so that and E[εj| nj] ≥ 0. This
corresponds to a situation where the selection
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process favors the publication of studies that
reported positive effect estimates. This could be
achieved defining lj as a nonincreasing function
of nj.

Similar to the type (a) bias model, we will
explore cases where:

lj ! − ∞ and uj ! ∞ ) E[εj| nj] ! 0 as
nj ! ∞; or

lj = − ∞ and uj = ∞ ) E[εj| nj] = 0 if
nj ≥ N for some large N.

An important distinction between type
(a) and type (b) bias is their respective effect on
the variance of the study-specific estimates. Type
(a) bias will generally increase their variability,
leading to over-dispersion, or heterogeneity. Type
(b) bias, by contrast, can have the opposite effect
of reducing their variability, because of the trun-
cation in the distribution of εj. That is, in the
presence of this bias, Var[εj| nj] will generally
be less than 1, and Var[εj| nj] ≥ Var[εk| nk]
whenever nk ≤ nj.This phenomenon leads to
under-dispersion across the set of study-specific
estimates constituting the meta-analysis.

Standard meta-analysis models correspond to l = − ∞
and u = ∞, in which case εj denotes random error due to
sampling variation. A conventional fixed-effects model
would correspond to bj = 0 for all studies, and a random-
effects model to bj~N(0, τ

2). This conventional random-
effects distribution allows for between-study differences
due to biases or due to other sources of heterogeneity;
often it is not possible to distinguish one from the other.

Throughout this article we assume a fixed treatment
effect (as assumed by our proposed estimators, which do
not explicitly model between-study heterogeneity), so that
nonzero values of bj occur only due to bias and not to other
sources of heterogeneity. Small-study effects are present if
the biases bj are correlated with study sizes nj. We recog-
nize that not all systematic differences between small and
large studies are due to differential bias. Small-study effects
also arise if bj represents (non-bias-related) treatment effect
heterogeneity that happens to be correlated with nj. Our
methods are not intended to address such situations. We
discuss the practical application of the proposed estimators
in the presence of heterogeneity in Section 5.

Small-study effects may also arise due to selective
reporting and publication, which can be induced in our
model by allowing the truncation limits for εj (ie, lj and
uj) to be correlated with nj. In the sections to follow, we
will use bj and the truncation limits for εj to induce differ-
ent types of small-study effects in the data, as described

in Box 1. A general expression for the expected value of
study j's effect estimate β̂j, based on nj participants is:

E β̂jjnj
h i

= β+ bj + σjE εjjnj
� �

: ð2Þ

3.3 | Robust central tendency statistics
in meta-analysis

We now introduce three estimators for β: the standard
weighted mean plus two novel estimators and discuss
their ability to return consistent estimates under the
assumed data generating mechanism. For the purposes of
clarity only, we will assume throughout the remainder of
Section 3 that bj is the sole source of bias in Equation (1),
that is, that E[εj|nj] = 0.

3.3.1 | The weighted mean

A standard fixed-effect meta-analysis estimates the effect
size parameter β as an inverse-variance weighted average
(or combined mean) of the individual study estimates.
That is:

β̂FE =

PK
j=1

β̂jσ
−2
j

PK
j=1

σ−2
j

: ð3Þ

If even a single study contributes a biased estimate to
the meta-analysis (eg, via a non-zero bj), then the com-
bined mean will also be biased (unless the biases in dif-
ferent studies happen to cancel out). That is, using the
notation of formula (1):

E β̂FE
� � 6¼ β in general, whenever bj 6¼ 0 for at least one

study j in 1, …, K.
For this reason, in the language of robust statistics,

the mean is said to have a 0% “breakdown” level. The
exception would be in a situation where bj is negative for
some studies and positive for other studies such that the

net bias is zero, that is,
PK
j=1

bjσ−2
j =0.

3.3.2 | The weighted median

The weighted median12 estimate is defined as the 50th

percentile of the inverse-variance weighted empirical
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distribution of the study specific estimates, which can be

calculated as follows. Assume that the β̂j s are sorted in

ascending order so that β̂1 ≤ β̂2…≤ β̂K . Let the standard-
ized inverse-variance weight for study j be defined as

wj =
σ−2
jPK

j=1

σ−2
j

and sort them in the same order as the β̂js. Let

sj =
Pj
g=1

wg denote the sum of standardized weights up to

and including the jth study. This means that β̂j is the

qj =100 sj−
wj

2

� �
th percentile of the weighted empirical

distribution of β̂js.

The weighted median estimate is the 50th percentile
of this weighted empirical distribution, so it will be equal
to β̂jif sj = 0.5. In practice, no study lies exactly at the 50th

percentile, so this quantity is estimated by linear interpo-
lation between its neighboring estimates β̂ j* and β̂ j† ,
which correspond to the effect estimates reported by the
studies located immediately before and after the 50% per-

centile, respectively (ie, q j* =max q1,q2,…,q j*

� �
,

q j† =min q j† ,q j† +1,…,qK
� �

, and q j* <0:5< q j† ). In this

case, the weighted median estimate β̂WM is:

β̂WM = β̂ j* + β̂ j† − β̂ j*

� �0:5−q j*

q j† −q j*
: ð4Þ

The weighted median does not require that all β̂js are
consistent estimates for the true effect β. More specifi-
cally, provided that both β̂ j* and β̂ j† are consistent for β,
the β̂WM is consistent. This implies that, as the number of
studies grows indefinitely large, the β̂WM is consistent if
up to (but not including) 50% of the total weight in the
analysis comes from biased studies, that is,PK

j=1I bj >0
� �

wj

� �
<50%. This means that the weighted

median has a breakdown level of 50%. Of note, if bj is
negative for some studies and positive for other studies, it
is possible that both β̂ j* and β̂ j† are consistent for β even
if more than 50% of the weight comes from biased
studies.

3.3.3 | The mode-based estimate

The mode-based estimate (MBE)13 exploits an assump-
tion we refer to as the zero modal bias assumption
(ZEMBA). This states that the most common value of the
bias parameter bj is zero. If ZEMBA holds, the mode of
all β̂j s (hereafter referred to as β̂MBE ) is consistent for β,
even if the majority of β̂js are biased.

More formally, β̂MBE is consistent if ω0 >max(ω1,ω2,

…,ωv), where ω0 =
PK
j=1

wjI bj =0
� �

denotes the sum of

weights provided by studies with zero bias, and ω1, ω2, and
ωv are the sum of weights provided by studies that have the
smallest, the second smallest, and the largest identical bias
terms, respectively. For example, suppose that there are
10studiesandb1=b2< b3< b4=b5=b6=0< b7=b8=b9< b10.
In this case, ω0 =

P
j∈ 4,5,6f g

wj , ω1 =
P

j∈ 1,2f g
wj, ω2 =

P
w3,

ω3 =
P

j∈ 7,8,9f g
wj, and ω4 =

P
w10.

It is possible to exploit ZEMBA in different ways.
Here, as in Hartwig et al,13 we use the mode of the
smoothed, inverse-variance weighted empirical density
function of all β̂js as the MBE. More specifically, β̂MBE is
the value of x that maximizes f(x) (ie, f β̂M

� �
=max f xð Þ½ �).

f(x) is the normal kernel density function:

f xð Þ= 1

h
ffiffiffiffiffi
2π

p
XK
j=1

wjexp −
1
2

x− β̂j
h

 !2" #
, ð5Þ

where h is the smoothing bandwidth parameter.21 This
parameter regulates a bias-variance trade-off, with
smaller values of h reducing both bias and precision.
Given that the error terms in Equation (1) were drawn
from a standard truncated normal distribution, a normal
kernel is expected to yield adequate density estimates.

Silverman's rule is commonly used with a normal ker-
nel to calculate h. We used the modified Silverman's
bandwidth selection rule proposed by Bickel et al22,
which reduces the influence of outliers compared with
the conventional Silverman's rule:

h=
0:9min sd β̂j

� �
,1:4826mad β̂j

� �� �
L

1
5

, ð6Þ

where sd β̂j

� �
and mad β̂j

� �
, respectively, denote the

standard deviation and the median absolute deviation of
the median of the study-level point treatment effect
estimates.

The exact breakdown level of the MBE depends on
max(ω1, ω2, …, ωv), which is unknown. If all biased studies
estimate exactly the same effect parameter, then ZEMBA
will only be satisfied if up to (but not including) 50% of the
weight comes from biased studies. The upper limit of the
breakdown level is up to (but not including) 100% and cor-
responds to the situation where all biased studies estimate
different effect parameters. Therefore, the breakdown level
of the MBE ranges from 50% to 100%.
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3.3.4 | Standard errors for the weighted
median and the MBE

Standard errors of the weighted median and the MBE can
be calculated using parametric bootstrap, which naturally
incorporates any between-study heterogeneity. More spe-
cifically, suppose that R bootstrap iterations are to be per-
formed. For each iteration r ∈ {1, …, R}, the bootstrapped

point estimate from the jth study (β̂
r
j ) is sampled from the

normal distribution β̂
r
j �N β̂j,σ

2
j

� �
. Then each estimator

is applied to the current set β̂
r
j

n oK

j=1
of resampled point

estimates, generating β̂
r
WM and β̂

r
MBE . Repeating this step

R times yields the sets β̂
r
WM

n oR

r=1
and β̂

r
MBE

n oR

r=1
, which

are empirical sampling distributions of the weighted
median and the MBE, respectively. We used a robust
standard deviation estimator (the median absolute
deviation from the median corrected for asymptotic
normal consistency) to calculate the standard deviation
from each empirical distribution, which is an estimate
of the standard error. Finally, these can be used to cal-
culate confidence intervals based on a normal
approximation.

FIGURE 2 Illustration of the assumptions underlying the weighted mean, weighted median and the mode-based estimate (MBE)

estimators. Studies are assumed to have the same weights in the meta-analysis, and are sorted in ascending order of point estimate. The true

effect is zero. A, No heterogeneity between studies. B, Four out of 10 studies are biased. C, Seven out of 10 studies are biased, but unbiased

studies comprise the largest subgroup of studies that reported the same result. D, Seven out of 10 studies are biased, and biased studies

comprise the largest subgroup of studies that reported the same result
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3.4 | Illustrating the identifying
assumptions of the mean, median,
and mode

Figure 2 illustrates the assumptions underlying the com-
bined mean, median and mode in a hypothetical meta-
analysis of 10 studies, sorted in ascending order of their
βjs. The true effect β is zero. For simplicity, all studies
have the same weight and no sources of heterogeneity
other than bias are present. Chiefly:

• when all 10 studies (ie, 100%) are unbiased (Panel A),
all three estimators identify the true effect (zero);

• when 4 out of 10 studies are biased (Panel B), the
mean is biased, but the median and the mode are
unbiased;

• when 7 out of 10 studies are biased (Panel C), or when-
ever more than 50% of studies are biased in general,
and ZEMBA is satisfied, both the mean and the
median are biased, but not the mode; and

• when more than 50% of the studies are biased (Panel
D) and ZEMBA is violated, all estimators are biased.

An attractive property of the weighted median and
MBE is that they are naturally robust central tendency
statistics, but do not make any specific assumptions
about the bias mechanism at play. Therefore, they are
robust to a range of possible causes of small-study effects.
However, as Figure 2 illustrates, these estimators are not
guaranteed to provide consistent estimates of β, failing to
do so when their identifying assumptions are violated.
Nevertheless, the assumptions they require are weaker
than those of the standard weighted mean.

3.5 | Regression-based extrapolation and
trim-and-fill

We compared the weighted median and the MBE with
two meta-analysis estimators developed to adjust for
small-study effects. The first, described by Moreno et al,11

is extrapolation to the estimated effect of the intervention
in a study of infinite size based on a linear regression
weighted by σ−2

j . This estimator assumes a linear rela-
tionship between the bjs and σjs so that bj = β1σj. Plug-
ging this expression for bj in Equation (1) to the
regression-based extrapolation model yields:

β̂j = β0 + β1σj + σjεj: ð6Þ

In Equation (6), β0 is the estimated effect in a study of
infinite size, obtained by extrapolation based on the

model assumptions. β1 is the parameter that allows
accounting for bias via nonzero bjs so that testing
H0 : β1 = 0 is a test for the presence of small-study effects.
Indeed, this test has been shown5 to be identical to the
test of funnel plot asymmetry proposed by Egger et al.4

For simplicity, Equation (6) shows the fixed-effect
regression-based extrapolation model, which can be
extended into an additive or multiplicative random
effects model23; the latter was used in the simulations
and real data examples described below. This approach is
illustrated in Supplementary Figure 1 (panels A and C).

The second estimator is trim-and-fill, a nonparamet-
ric data augmentation method that estimates the number
of missing studies (eg, due to publication bias) by
suppressing (or “trimming”) the most extreme studies
from one side of the funnel plot. Then, the data are aug-
mented so that the funnel plot is more symmetric. The
augmented data are then used to calculate the combined
effect.10 In our simulations and real data examples, we
used a random effects model throughout the trim-and-fill
process (sometimes referred to as random-random effects
trim-and-fill) and the L0 estimator to estimate the num-
ber of missing studies. This approach is illustrated in Sup-
plementary Figure 1 (panels B and D).

4 | REANALYSIS OF PUBLISHED
META-ANALYSES

To illustrate the application of the proposed meta-
analysis estimators and compare them with existing
approaches, we reanalyzed the four meta-analysis
datasets described in Section 2 (Table 1).

In our reanalysis of the catheter dataset (for which both
γ and I2 were high), the weighted mean yielded an odds
ratio of bloodstream infection of 0.47 (95% CI: 0.38; 0.58),
while the weighted median and the MBE yielded the same
smaller (in magnitude) estimate of 0.57 (95% CI: 0.44; 0.75).
Trim-and-fill yielded 0.45 (95% CI: 0.31; 0.65), similar to
the weighted mean results. Regression-based extrapolation
yielded a qualitatively different estimate of 1.27 (95% CI:
0.70; 2.31). This is likely an over-correction, especially given
that the individual-study odds ratio estimates in the data
ranged from 0.09 to 0.83 (Supplementary Figure 1B).

For the aspirin dataset (which presented low I2 and
marked asymmetry), the combined odds ratio estimates
of at least 50% of pain relief comparing active treatment
to placebo were 3.43 (95% CI: 2.96; 3.98) for the weighted
mean, 2.99 (95% CI: 2.41; 3.73) for the weighted median,
and 2.55 (95% CI: 1.78; 3.63) for the MBE. Trim-and-fill
yielded an odds ratio of 2.87 (95% CI: 2.38; 3.47),
which was closer to the weighted median and the MBE
results than to the weighted mean. Regression-based
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extrapolation yielded an odds ratio of 1.03 (95% CI: 0.71;
1.48), suggesting no effect of aspirin whatsoever (and
again likely over-corrected—Supplementary Figure 1D).

For the sodium dataset, removing the outlying study
(as classified by Leyvraz et al19) with the largest weight
reduced between-study inconsistency (I2 = 87%). Remov-
ing both studies eliminates between-study inconsistency
(I2 = 0%). Removing these studies also substantially atten-
uates asymmetry (γ= − 0.22 and γ = 0.68, respectively).
This suggests that, unlike the previous examples, between-
study inconsistency and asymmetry mostly stemmed from
two studies (out of 13). Without removing any studies, the
weighted mean, regression-based extrapolation, and trim-
and-fill estimators suggested an average decrease in sys-
tolic blood pressure due to sodium intake-lowering inter-
ventions of 1.48 (95% CI: 1.39; 1.57), 1.24 (95% CI: −0.72;
3.21), and 2.62 (95% CI: 0.99; 4.26) mmHg, respectively.
All these results are higher than the bulk of the funnel plot
(Figure 1C). Conversely, the weighted median and the
MBE yielded combined estimates of 0.62 (95% CI: 0.52;
0.72) and 0.61 (95% CI: 0.51; 0.70), respectively, which is in
line with the majority of the studies and located within the
bulk of the plot. Indeed, these results are similar to those
obtained by Leyvraz et al19 after they explicitly excluded
these two studies from the meta-analysis.

For the streptokinase dataset (which was used as a
positive control), the combined risk ratio estimate com-
paring treatment and control groups was 0.82 (95% CI:
0.76; 0.88) using the weighted mean. Results from the
other four estimators ranged from 0.81 to 0.83. Given that
the largest trial24 corresponded to a substantial propor-
tion of the total weight in the meta-analysis, the observed
consistency between the estimators could simply be that
they were all driven by this large study. However, in a
sensitivity analysis where this study was removed, there

was no material effect on the results. Therefore, the
observed consistency between the approaches in this
example was likely due to the symmetry of the data
rather than to the influence of a single large trial.

The results above indicate that the weighted median
and the MBE are less influenced by outlying studies com-
pared to the weighted mean, regression-based extrapola-
tion, and trim-and-fill. This is a useful property at least for
sensitivity analysis purposes, especially for meta-analyses
with a small number of datapoints (and thus more sensitive
to outliers). The proposed estimators appeared more robust
to the presence of small-study effects than the weighted
mean. In a dataset with substantial asymmetry but low
between-study inconsistency (the aspirin dataset), the
weighted median and the MBE gave similar results to the
trim-and-fill estimator. In a dataset with substantial asym-
metry and between-study inconsistency (the catheter
dataset), the proposed estimators were less influenced by
the left skew in the funnel plot than the trim-and-fill,
which gave very similar results to the weighted mean. This
suggests that presence of between-study inconsistency has
a more limited effect on the robustness of the proposed esti-
mators to small-study effects than on trim-and-fill (in the
simulations, these estimators are compared in scenarios
with varying degrees of between-study inconsistency). In
the datasets with asymmetry, regression-based extrapola-
tion yielded results that were likely overcorrected.

5 | SIMULATION STUDY

5.1 | Brief description

We performed a simulation study to evaluate the
performance of the weighted mean, regression-based

TABLE 1 Combined estimates with 95% confidence intervals for different meta-analysis datasets and estimators

Estimator

Dataset

Cathetera Aspirina Sodiumb Streptokinasec

I2 = 60% I2 = 10% I2 = 99%d I2 = 34%

γ = − 3.05 (P = 0.007) γ = 2.11 (P = 5.2 × 10−9) γ = 2.60 (P = 0.679)d γ = − 0.06 (P = 0.868)

Weighted mean 0.47 (0.38; 0.58) 3.43 (2.96; 3.98) 1.48 (1.39; 1.57) 0.82 (0.76; 0.88)

Regression-based extrapolation 1.27 (0.70; 2.31) 1.03 (0.71; 1.48) 1.24 (−0.72; 3.21) 0.83 (0.72; 0.94)

Trim-and-fill 0.45 (0.31; 0.65) 2.87 (2.38; 3.47) 2.62 (0.99; 4.26) 0.81 (0.71; 0.93)

Weighted median 0.57 (0.43; 0.75) 2.99 (2.41; 3.72) 0.62 (0.52; 0.72) 0.83 (0.75; 0.91)

Weighted mode 0.57 (0.44; 0.75) 2.55 (1.82; 3.56) 0.61 (0.51; 0.70) 0.83 (0.75; 0.90)

aOdds ratio.
bMean difference.
cRisk ratio.
dRemoving outlying studies substantially attenuates both γ and I2 (see Section 4).
Notes: I2: between-study inconsistency. γ: Egger test's coefficient (ie, slope in inverse variance weighted linear regression of effect estimates on SEs).
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extrapolation, trim-and-fill, weighted median and MBE.
Summary data were generated using Equation (1). We
assume that each study measured a binary exposure vari-
able X~Bernoulli(0.5) (eg, an intervention: yes = 1, no = 0)
and a continuous outcome variable Y with variance equal
to one. Therefore, the standard error of the mean differ-
ence is one for all values of j, and σj =

ffiffiffiffiffiffiffiffiffi
4=nj

p
. We assume

that studies range in size from n1 to n2 uniformly, so that
nj~Uniform(n1, n2).

Data were generated to contain two forms of bias (see
Box 1 for their general principles). Type (a) bias is a funda-
mental property of each study (eg, bias due to lack of
intervention allocation concealment, or residual con-
founding in the case of meta-analyses of observational
studies). For simulations under type (a) bias, the propor-
tion of biased studies is dictated by the parameter
δ ∈ [0, 1]. Among biased studies, bj varies linearly with nj.

Type (b) bias is the result of publication bias, not a
property of each study. For simulations under type
(b) bias, we assumed (in common with most publication
bias models) that results achieving conventional levels of
statistical significance are more likely to be published.
Therefore, lj was defined to correspond to the maximum
one-sided P-value (null hypothesis: true mean differen-
ce ≤ 0) allowed for publication for a given study size (pj),
up to N. That is, for nj ≥ N, then there are no P-value
requirements for publication, that is, pj = 1 for all values
of j (because the study size is sufficient for publication
regardless of its results). For nj < N, larger studies are
more likely to be published than smaller studies, where
pj is a nondecreasing function of nj. Therefore, N is the
minimal study size required for the P-value to have no
influence on the publication probability, which can be
used to increase (if N is larger) or decrease (if N is
smaller) the degree of type (b) bias. We evaluated four
distinct functions: linear, square root, quadratic, and step
function. The relationship between pj and nj in each one
of these four type (b) bias mechanisms is illustrated in
Supplementary Figure 2.

In all simulations, K was set to 5, 10, 30, or 50. In Sce-
narios 1-6, β = 0. In Scenario 1, there is neither type
(a) nor type (b) bias. Scenario 2 evaluated type (a), but
not type (b), bias. Scenarios 3-6 evaluated type (b) bias
(but not type (a) bias), where pj was a linear, square root,
quadratic, or step function (respectively) of nj, up to N.
Scenario 7 was identical to Scenario 1, except that
β = 0.02. Table 2 describes the main characteristics and
aims of each scenario.

The functional relationship between the bias (ie,

E½β̂j nj
		 �−β= bj + σjE εjjnj

� �
) and nj, and between stan-

dard error (ie, σj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var εjjnj
� �q

) and nj, in scenarios 1-7 is

illustrated in Figure 3.

The data generating mechanism and simulation
parameters are described in more detail in the Supple-
ment. Mean combined effect estimates, standard
errors, coverage, and rejection rates of 95% confidence
intervals were computed for the weighted mean,
weighted median, MBE, regression-based extrapola-
tion, and trim-and-fill estimators across 10 000 simu-
lated datasets. All analyses were performed using R.25

We used the “metafor” package to calculate the I2 sta-
tistic and to perform the weighted mean and trim-and-
fill estimators.26 The “truncnorm” package was used to
generate random draws from the standard truncated

TABLE 2 Brief description of the simulation scenarios

Scenario βa
Bias
type Aim

1 0 None Assess bias and FRRb under
neither treatment effect nor
small-study effects, for various
numbers of studies included in
the meta-analysis.

2 0 Type
(a)

Assess bias and FRRb in the
presence of type (a) bias, for
various numbers of studies
included in the meta-analysis.

3 0 Type
(b)

Asses bias and FRRb in the
presence of type (b) bias, for
various numbers of studies
included in the meta-analysis.

In scenario 3, the minimum P-
value required for publication
is a linear function of
study size.

4 0 Type
(b)

Same as scenario 3, except that
the minimum P-value required
for publication is a square root
function of study size.

5 0 Type
(b)

Same as scenario 3, except that
the minimum P-value required
for publication is a quadratic
function of study size.

6 0 Type
(b)

Same as scenario 3, except that
the minimum P-value required
for publication is a step
function of study size.

7 0.02 None Assess power to detect a non-
zero treatment effect in the
absence of small-study effects,
for various numbers of studies
included in the meta-analysis.

Abbreviation: FRR, false-rejection rate.
aTreatment effect.
bSince β = 0 in scenarios 1-6, the FRR under small-study effects is simply
the overall rejection rate.
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normal distribution.27 The “doParallel” package was
used for parallel computing.28

5.2 | Simulation study results

Simulation scenario 1 showed that confidence intervals
for the weighted mean, weighted median, and MBE are
valid under the null in the sense that they all achieve at
least 95% coverage when β = 0 and in absence of small-
study effects, although only the weighted mean had exact
95% coverage (Supplementary Figure 3 and Supplemen-
tary Table 1). Regression-based extrapolation showed
under-coverage when the number of studies was small,
but this attenuated as the number of studies increased.
Conversely, trim-and-fill showed under-coverage that
increased with number of studies, indicating that its confi-
dence intervals are invalid (at least in our implementation
of the estimator). The weighted mean had the smallest
standard errors, followed by trim-and-fill, which was
slightly more precise than the weighted median. The MBE
was less precise than the latter, but substantially more pre-
cise than regression-based extrapolation.

Supplementary Table 2 shows that scenario 2 leads to
high values of I2 and γ. Under this scenario, the weighted
median was less biased than the weighted mean, and the
MBE was the least biased among all approaches
(Figure 4). Those differences became more apparent as
the number of studies increased. Trim-and-fill was more
biased than the standard weighted mean, and regression-
based extrapolation substantially overcorrected for
the bias.

Scenario 3 leads to high asymmetry, but not a sub-
stantial inflation of I2 (Supplementary Table 3), and the
bias in the combined estimates was much smaller than in

scenario 2. Again, regression-based extrapolation sub-
stantially overcorrected for small-study effects, and the
weighted median and MBE were less biased than the
weighted mean (Figure 5). However, the performance of
trim-and-fill relative to the weighted median and the
MBE was substantially different than in scenario 2: if the
number of studies is low (K = 5), trim-and-fill performed
similarly to the weighted median, but was more biased
than the MBE; for K = 10, it outperformed the weighted
median and performed similarly to the MBE; for larger
values of K, trim-and-fill was generally less biased than
the other estimators, unless all studies were affected by
small-study effects (in this case, N = 6000). However, as
the number of studies increased, trim-and-fill over-
corrected for small-study effects when N = 1500. In gen-
eral, the differences between the weighted median, the
MBE and trim-and-fill were much less marked in sce-
nario 3 than in scenario 2; indeed, the coverage of the
weighted median and trim-and-fill was similar for all
values of K.

In scenario 4, small-study effects resulted in less mar-
ked asymmetry than for scenario 3 and in reduced I2, that
is, under-dispersion (Supplementary Table 4). In general,
results were similar to scenario 3 (see Supplementary
Figure 4), with two main differences. First, the weighted
median had better coverage than trim-and-fill, unless
K = 50 and N = 4500. Second, the overcorrection showed
by trim-and-fill in scenario 3 was more apparent, espe-
cially for larger values of K. Scenario 5 was in between
scenarios 2 and 3 regarding γ and I2 (Supplementary
Table 5). In this scenario, trim-and-fill was more biased
than the weighted median and the MBE when the num-
ber of studies was low (K = 5 or K = 10), and in between
them when there were more studies (K = 30 or K = 50).
The difference between the weighted median and the

FIGURE 3 Illustration of

the relationship between bias

and nj (panel A), and between

standard error and nj (panel B),

induced by different models of

small-study effects [Colour

figure can be viewed at

wileyonlinelibrary.com]
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MBE was small regardless of the number of studies
(Supplementary Figure 5). In scenario 6, there was more
between-study inconsistency compared with the last sce-
nario, but less than in scenario 2 (Supplementary
Table 6). The weighted median and the MBE performed
substantially better than the other estimators (as shown
in Supplementary Figure 6), with the MBE being close to
unbiased in all cases when the number of studies was
large (K = 30 or K = 50).

Supplementary Table 7 and Supplementary Figure 7
display the performance of the estimators in detecting an
effect in the absence of small-study effects (scenario 7).
The weighted mean was the estimator with the highest
power to detect a nonzero treatment effect, followed by
trim-and-fill and the weighted median. Importantly,
trim-and-fill was slightly more precise than the weighted

median, but had substantially more power due to its
under-coverage (which increased with number of studies
and study size). The MBE was substantially more precise
than regression-based extrapolation, but had lower power
due to under-coverage of the latter when the number of
studies was low.

Our simulation study corroborated the well-known
notion that the weighted mean is biased in the presence
of small-study effects (either type (a) and type (b)). In
all small-study effects mechanisms, regression-based
extrapolation overcorrected the treatment effect (this is
discussed in more detail in the Supplementary Text).
Trim-and-fill was more biased in the presence of type
(a) bias (which lead to substantial between-study incon-
sistency) than the weighted mean. Trim-and-fill was less
affected by type (b) than type (a) bias, thus highlighting

FIGURE 4 Bias (solid lines) and coverage (dashed lines) of the weighted mean (black), regression-based extrapolation (red), trim-and-

fill (green), weighted median (dark blue), and mode-based estimate (light blue) under scenario 2: zero true effect (ie, β = 0), small-study

effects through the bias term bj, and study sizes uniformly ranging from 100 to 5000 individuals. The grey line indicates zero bias. The

dashed grey line indicates 95% coverage [Colour figure can be viewed at wileyonlinelibrary.com]
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the dependence of this estimator to the underlying data
generating mechanism. Moreover, for most variations
of type (b) bias, this estimator presented more bias than
the weighted median and the MBE, as well as under-
coverage in the absence of any small-study effects.
Conversely, the weighted median and the MBE had con-
fidence intervals with coverage ≥95% in the absence of
small-study effects and were relatively robust to both type
(a) and type (b) bias.

6 | DISCUSSION

We have proposed the weighted median and the MBE for
meta-analysis as approaches that are robust to the presence

of small-study effects and outliers. Application to a series of
examples indicates that both approaches give sensible esti-
mates of the intervention effect in real meta-analyses where
small-study effects are suspected, even when regression-
based extrapolation or trim-and-fill do not. They also give
similar results to the weighted mean and other meta-
analysis approaches in absence of funnel plot asymmetry.
Our real data examples also illustrated the robustness of the
proposed estimators to outliers. Our comprehensive simula-
tion study confirmed these findings, and showed that these
estimators are less influenced by small-study effects than
the conventional weighted mean and previously proposed
approaches to estimate intervention effects in the presence
of small-study effects. Software for their implementation is
provided in the Supplementary Material.

FIGURE 5 Bias (solid lines) and coverage (dashed lines) of the weighted mean (black), regression-based extrapolation (red), trim-and-

fill (green), weighted median (dark blue), and mode-based estimate (light blue) under scenario 3: zero true effect (ie, β = 0), small-study

effects through publication bias (assuming a linear relationship between pj and nj), and study sizes uniformly ranging from 100 to 5000

individuals. pj: maximum P-value allowed for publication for a study with nj participants. N: study size threshold, with studies larger than or

equally sized to N not being affected by small-study effects. The grey line indicates zero bias. The dashed grey line indicates 95% coverage

[Colour figure can be viewed at wileyonlinelibrary.com]
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There are several strategies to investigate the presence
and degree of small-study effects in meta-analysis, all of
which have limitations.6,29 If, after careful examination,
small-study effects are suspected, we recommend that
investigators apply the weighted median and the MBE in
addition to standard estimators as sensitivity analyses.
These estimators reduce the influence of small and/or
outlying studies without excluding them formally from
the meta-analysis. Exclusion often involves arbitrary
study size cut-offs and artificially reduces the heterogene-
ity in the data.

When applying the weighted median and the MBE, it
is important not to rely entirely on “statistical
significance”, especially given that they are less precise
than the weighted mean. Instead, meta-analysis authors
should examine confidence intervals for the different esti-
mators and assess their consistency with standard meta-
analysis estimates. In general, the weighted median and
the MBE will be robust when studies that provide consis-
tent effect estimates receive most of the weight in the
fixed-effect meta-analysis. This might occur in a meta-
analysis with just one or two large studies providing con-
sistent estimates, despite the inclusion of many other
biased, smaller studies. Conversely, the weighted median
and the MBE will give misleading results when the
majority of the weight in the analysis stems from biased
studies and, in the case of the MBE, the magnitude of the
individual study biases are very similar (as illustrated in
Figure 2D). The Cochrane tool for assessing risk of bias
in randomized trials30 could be used as a guide to the
likely proportion of biased studies in a given meta-analy-
sis, and to the value of applying these techniques. As
such the proposed estimators are a natural extension of
exploring between study heterogeneity due to perceived
risk of bias.30

We have presented the weighted median and the
MBE assuming treatment effect homogeneity. Under this
assumption, any heterogeneity between effect estimates
is indicative of bias. By supplementing this assumption
with additional assumptions (such as the 50% rule for the
weighted median or ZEMBA for the MBE) then allows
consistent estimation of the treatment effect even in the
presence of (some forms of) small-study effects. In the
absence of bias and in the presence of heterogeneous
treatment effects, the weighted mean, weighted median,
and MBE estimate the inverse-variance weighted aver-
age, median, and modal treatment effects (in the case of
unique treatment effects for each study, the latter would
simply be the most precise effect estimate). However, in
this case, a more sensible approach would be to perform
a random effects meta-analysis to estimate the average
treatment effect. But doing so requires the assumption
that there is no form of bias in any of the studies included

in the meta-analysis (because all studies have non-zero
weight in the meta-analysis), which may itself not be
warranted at least in some applications. This illustrates
the more general notion that relaxing one assumption
often requires more contrived versions of one or more
other assumptions. In this case, assuming absence of bias
allows interpreting systematic differences between studies
as being solely due to treatment effect heterogeneity (and
thus a random effects weighted mean can be used to esti-
mate the average treatment effect), while assuming treat-
ment effect homogeneity allows interpreting such
differences as being solely due to bias (and thus estimators
such as the weighted median and the MBE can be used to
estimate the treatment effect under some forms of bias).

Importantly, the estimators proposed here cannot be
regarded as providing a general “correction” for funnel
plot asymmetry or heterogeneity between studies. Het-
erogeneity between studies should be expected in real
meta-analyses,31 and exploring whether it is explained by
measured study characteristics (eg, via subgroup analyses
and meta-regression) may yield important insights
regarding treatment effect modification and/or potential
sources of bias. Such insights cannot be achieved by sim-
ply applying the proposed estimators, nor any other
approach that yields a single point estimate. This is espe-
cially relevant for the MBE estimator, which assumes
that there is a subset of homogeneous studies that yield
consistent estimates of the treatment effect. Therefore,
ideally the proposed estimators would be applied if plausi-
ble effect modifiers do not account for observed heteroge-
neity between studies, or if there is residual heterogeneity
within subgroups (although in this case the number of
studies per subgroup may be prohibitive for meaningful
comparisons between different estimators). Otherwise, the
MBE can be used as a sensitivity analysis and interpreted
as a test of the sharp null hypothesis (ie, the hypothesis
that the intervention has no effect whatsoever on anyone
in the population). Supplementation with further assump-
tions would allow some learning about the average treat-
ment effect. For example, if the true treatment effect can
be assumed to be monotonic (ie, in the same direction for
all studies), then the MBE can be interpreted as a test of
the direction of the treatment effect.

As mentioned in Section 3.3.3, the MBE is just one
way of exploiting the ZEMBA assumption to mitigate the
influence of small-study effects in meta-analysis. There
are many other ways of estimating the mode of continu-
ous data, such as the half-sample mode method,21

Grenander's estimators,32 model-averaging,33 and explicit
selection34 methods. Even restricting to only kernel-based
methods such as the MBE, there are many available
choices of bandwidths and kernels. It is therefore possible
that there are estimators more adequate than the MBE to

410 HARTWIG ET AL.



exploit the ZEMBA assumption in meta-analysis, a topic
that remains to be investigated. The goal of the present
study was to present ZEMBA as an alternative identifica-
tion assumption, and compare the performance of one
estimator that relies on this assumption (the MBE)
against established meta-analysis estimators.

In summary, many systematic reviews and meta-
analyses contain studies that are methodologically flawed
and likely biased.35 We have proposed new weighted
median and mode-based estimators that provide infer-
ences that are robust to small-study effects under a vari-
ety of reasonable simulation scenarios. Their application
in real datasets supports their likely utility as a sensitivity
analysis in comparison to standard mean-based meta-
analytic estimates. We hope that these estimators will be
used to strengthen the conclusions of systematic reviews
and meta-analyses.
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