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The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA)
homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from
hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the
effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on
liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific
FXR-null mice (FXRLiver−/−) were fed a high-fat diet (HFD) containing XN or the vehicle
formation followed by histological characterization, lipid, BA and gene profiling. HFD
supplemented with XN resulted in amelioration of hepatic steatosis and decreased BA
concentrations in FXRLiver−/− mice, the effect being stronger in male mice. XN induced the
constitutive androstane receptor (CAR), pregnane X receptor (PXR) and glucocorticoid
receptor (GR) gene expression in the liver of FXRLiver−/− mice. These findings suggest that
activation of BA detoxification pathways represents the predominant mechanism for
controlling hydrophobic BA concentrations in FXRLiver−/− mice. Collectively, these data
indicated sex-dependent relationship between FXR, lipids and BAs, and suggest that XN
ameliorates HFD-induced liver dysfunction via FXR-dependent and independent signaling.
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INTRODUCTION

Dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose
intolerance, defined as metabolic syndrome (MetS), which increase the risk to develop type 2
diabetes (T2D) and cardiovascular diseases (Porez et al., 2012). Obesity and T2D are also
associated with nonalcoholic fatty liver disease (NAFLD), a spectrum of chronic liver
abnormalities from simple steatosis to nonalcoholic steatohepatitis (NASH) to liver cirrhosis
(Larter et al., 2010; Chiang, 2013). The growing prevalence of obesity and high-fat diet (HFD)-
induced dyslipidemia represent a public health problem worldwide and the development of drugs
with a combined effect on different risk factors may be more effective than the use of combinatorial
therapy to manage patients’ global risks.
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Before the discovery of statins, hypercholesterolemia was
primarily treated with bile acid (BA) sequestrants, which bind
BAs in the intestine and prevent their reabsorption, thereby
promoting the hepatic synthesis of BAs from cholesterol
(Staels and Kuipers, 2007; Porez et al., 2012). BA synthesis in
hepatocytes occurs largely through the classical pathway initiated
by the rate-limiting enzyme cholesterol 7α-hydroxylase
(CYP7A1). The classical pathway forms the primary BAs,
cholic acid (CA) and chenodeoxycholic acid (CDCA),
following a multistep enzymatic process. In complement,
CYP27A1 initiates an alternative pathway of BA synthesis that
also leads to CDCA synthesis (Garcia et al., 2018). Shortly after
their synthesis, BAs are conjugated to glycine or taurine and
stored into the gallbladder (Chiang, 2013; Garcia et al., 2018).
Besides their involvement in transcriptional regulation of
cholesterol metabolism (Chiang, 2002; Trauner et al., 2010),
BAs regulate hepatic gluconeogenesis, glycogen synthesis and
insulin sensitivity (Ma et al., 2006; Trauner et al., 2010). BAs also
modulate neurotransmission, neuroendocrine responses, and
neurogenesis indicating their importance in neurological
functions (Schubring et al., 2012; McMillin and DeMorrow,
2016). However, BA accumulation causes inflammation,
hepatic injury (Chiang, 2017) and is associated with motor
and cognitive impairments (Huang et al., 2016; McMillin
et al., 2016). A key regulator of maintaining lipid and BA
homeostasis is the farnesoid X receptor (FXR, NR1H4), which
upon activation by BAs, polyunsaturated fatty acids and
farnesylated proteins (Forman et al., 1995; Makishima et al.,
1999; Zhao et al., 2004), regulates the expression of target
genes involved in various physiological processes (Chawla
et al., 2001; Sun et al., 2021). An increase of intracellular BAs
also activates the constitutive androstane receptor (CAR) and
pregnane X receptor (PXR). They modulate transcriptional
regulation of their targets including genes encoding hepatic
BA metabolizing enzymes and BA/organic anion transporters
(Guo et al., 2003; Uppal et al., 2005; Lee et al., 2006).
Subsequently, FXR, CAR and PXR have emerged as promising
targets for the treatment of metabolic disorders associated with
MetS (Gao and Xie, 2012; Porez et al., 2012).

Xanthohumol (XN) is a hop-derived flavonoid, which
mitigates obesity-related metabolic impairments by improving
dysfunctional glucose and lipid metabolism in HFD-fed animals
(Miranda et al., 2016; Miranda et al., 2018). Treatment of HFD-
fed C57BL/6J mice with a diet containing XN decreases their
plasma low-density lipoprotein cholesterol (LDL-c), IL-6,
Homeostatic Model Assessment of Insulin Resistance
(HOMA-IR) and leptin concentrations (Miranda et al., 2016).
XN enhances fatty acid oxidation as a result of mild
mitochondrial uncoupling (Kirkwood et al., 2013) and
decreases adipocyte markers such as PPARγ, C/EBPα and
DGAT1 (Yang et al., 2007). This effect might be at least partly
mediated by FXR, since XN is a ligand of FXR (Yang et al., 2016)
that modulates FXR downstream gene expression in a manner
similar to selective bile acid receptor modulators (SBARM)
(Nozawa, 2005; Paraiso et al., 2020). However, the extent to
which FXR signaling mediates the in vivo effects of XN is
unknown. Both activation of hepatic FXR and inhibition of

intestinal FXR have beneficial effects in obesity-related
metabolic diseases (Sun et al., 2021) due to differential effects
on metabolic regulation (Kim et al., 2007; Schmitt et al., 2015).
These effects are further emphasized by the observation that
intestine-specific FXR knockout mice are resistant to HFD-
induced obesity, while HFD-fed liver-specific FXR knockout
mice develop NAFLD (Li et al., 2013; Schmitt et al., 2015).
Therefore, tissue-specific mouse models are necessary to
dissect the complex effects of FXR on dyslipidemia. In the
current study, we used liver-specific FXR-null mice
(FXRLiver−/−) to investigate the effect of XN on dyslipidemia
and BA accumulation. Our findings demonstrate that XN
ameliorate HFD-induced hepatic injury and dysfunctional lipid
and BAmetabolism inWT and FXRLiver−/−mice. We also provide
evidence that XN induces expression of nuclear receptors (NRs)
including CAR, PXR and the glucocorticoid receptor (GR)
involved in the metabolism of BAs and lipids. These findings
have potentially important implications in the treatment of
metabolic and cholestatic diseases.

MATERIALS AND METHODS

Animal Studies
All animal experiments were performed in accordance with
institutional and National Health and Medical Research
Council guidelines. The experimental protocol was approved
by the Institutional Animal Care and Use Committee at
Oregon State University and the studies were carried out in
accordance with the approved protocol (IACUC 2019-0001).
Nine-week-old WT male and female C57BL/6J mice were
obtained from Jackson Laboratory (Bar Harbor, ME,
United States). FXRLiver−/− mice were generated by crossing
FXRFL/FL mice with mice harboring the Cre recombinase
under the control of the albumin promoter (AlbCre) to
produce the AlbCre:FXRFL/FL or FXRLiver−/− mice (Kong et al.,
2016). All mice were in C57BL/6J genetic background for over 12
generations. Mice were housed in groups of two–3 in ventilated
cages under a 12–12-h light-dark cycle and fed a HFD (Dyets Inc.
Bethlehem, PA, United States) containing 60, 20 and 20% total
calories from fat, carbohydrate and protein, respectively. XN
(purity >99%) from Hopsteiner Inc (New York, NY,
United States) was mixed into the diet as previously described
(Miranda et al., 2018) to deliver a dose of 60 mg/kg body weight/
day. The control diet contained an identical amount of the
vehicle. 15 WT mice (8 females, 7 males) and 18 FXRLiver−/−

mice (10 females, 8 males) were fed a control HFD, while 15 WT
mice and 18 FXRLiver−/−mice were treated with XN for a duration
of 12 weeks. Food intake and body weights were recorded weekly.
At week 10, fasting glucose was measured after 6 h of fasting by
using the One Touch UltraMini glucometer (LifeScan Inc.
Milpitas, CA, United States). At the end of 12 weeks of
feeding, fed-state mice were euthanized by cervical dislocation,
their blood collected, and their liver and hippocampus were
dissected for further analyses. Deletion of FXR in the liver of
FXRLiver−/− mice was confirmed by genotyping at weaning (Kong
et al., 2016). Quantitative PCR after the feeding experiment. FXR

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6438572

Paraiso et al. Xanthohumol ameliorates Diet-Induced Liver Dysfunction

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


mRNA levels were ∼ 3-fold lower in the liver of mutant compared
to WT mice (Supplementary Figure S1).

Histology
Liver biopsies from n � 3male mice per genotype-diet group were
fixed in 4% paraformaldehyde, embedded in OCT and 10 µm-
thick sections were used for histology. Hematoxylin and Eosin
(H&E) and Sudan black staining were performed as previously
described (Chang et al., 2019).

Measurement of Hepatic Transaminase
Activities and Plasma Leptin
Concentrations
To measure ALT and AST enzymatic activities, liver samples (n �
6 per genotype-diet group) were homogenized in 10 ml of
100 mM Tris (pH � 7.8) per Gram of tissue. The homogenates
were centrifuged at 10,000 ×g for 15 min at 4°C. The supernatants
were analyzed for ALT and AST activity using colorimetric assay
kits purchased from Cayman Chemical (Ann Arbor, MI,
United States). Plasma leptin concentrations (n � 5–7 per
genotype-diet group) were measured using the Enzyme
Immunoassay kit from SPI Bio Inc.. (Sherbrooke, QC,
Canada) as per manufacturer’s instructions.

Liver Lipidomics
Mouse liver samples (50 mg, n � 15–18 per genotype-diet group)
were spiked with SPLASH® Lipidomix® internal standards from
Avanti Lipids (Alabaster, AL, United States) and homogenized
with zirconium oxide beads and 1 ml of cold methylene chloride:
isopropanol: methanol (25:10:65, v/v/v) + 0.1% butylated
hydroxytoluene (BHT). The mixture was incubated at –20°C
for 1 h and centrifuged at 13,000 rpm for 10 min 20 µL of the
supernatant was diluted 1/10 in extraction solvent before MS
analysis. UPLC was performed using a 1.7 μm particle, 2.1 mm ×
100, CSH C18 Column (Waters, Milford, MA, United States)
coupled to a quadrupole TOF mass spectrometer (AB SCIEX,
TripleTOF 5600) operated in information-dependent MS/MS
acquisition mode. LC and MS conditions were developed by
our group and described previously by Choi et al. (Choi et al.,
2015) with some adjustments. For positive ion mode LC-QToF-
MS/MS, the mobile phases consisted of (A) 60:40 (v/v)
acetonitrile: water with ammonium formate (10 mM) and
formic acid (0.1%) and (B) 90:10 (v/v) isopropanol:
acetonitrile with ammonium formate (10 mM) and formic acid
(0.1% formic acid). For analyses run in the negative ion mode,
ammonium acetate (10 mM) was used as the modifier.
Quantification of lipid species was performed using
MultiQuant Software version 3.0.2 (SCIEX), after annotation
in PeakView Software Version 1.2 (SCIEX) based on accurate
masses and retention times for each lipid. The library of lipid
profiling for identification was introduced by Cajka et al. (Cajka
et al., 2017).

Bile Acid Analysis
Plasma samples collected post-euthanasia (20 μL, n � 15–18 per
genotype-diet group) were spiked with 0.1 ng of cholic acid-d4

internal standard (Cayman Chemical, Ann Harbor, MI,
United States) per µL of plasma. 1 ml of ice-cold acetonitrile
was added, and the mixture was vortexed and centrifuged at
13,000 rpm for 10 min. The supernatant was evaporated under
vacuum and reconstituted in 50% MeOH.

Liver samples without gallbladder (25 mg, n � 15–18 per
genotype-diet group) were homogenized in 1 ml of solvent
(isopropanol/water, 2:1, v/v with 0.1% formic acid) containing
1.6 ng/ml of cholic acid-d4 internal standard. Samples were
homogenized using a counter-top bullet blender for 5 min and
centrifuged at 13,000 rpm for 5 min. The supernatants were
filtered with OSTRO phospholipid removal plate (Waters,
Milford, MA, United States), evaporated under vacuum and
reconstituted in 50% MeOH.

Left and right hippocampus were pooled, ground in liquid
nitrogen and freeze-dried. The samples were weighed and spiked
with 1 pg of cholic acid-d4 internal standard per mg of
hippocampus. Approximately 8 mg of hippocampus (dry
weight, n � 13–17 per genotype-diet group) were
homogenized with 1:30 μL (m/v) of 50% MeOH using a
counter-top bullet blender for 10 min and centrifuged at
15,000 rpm for 20 min and supernatants used for HPLC analysis.

UPLC was performed using a 1.7 μm particle, 2.1 mm × 100,
CSH C18 column (Waters, Milford, MA, United States) coupled
to a hybrid triple quadrupole linear ion trap mass spectrometer
(AB SCIEX, 4000 QTRAP). LC and MS conditions were
developed by our group and described in the Supplemental
data. BAs were identified by matching their retention time,
isotopic pattern, exact mass of the [M-H]- ion and
fragmentation pattern with those of authentic standards
(IROA Technologies, Sea Girt, NJ, United States). SRM
transitions used for quantification are listed in
(Supplementary Table S1) and additional parameters such as
collision energy are listed in (Supplementary Table S2).

100% of the mice had hepatic and plasma BA above the
detection limit and 82% (52 out of 63 mice) had hippocampal
BA above the detection limit, i.e. 74% of the WT mice vs. 89% of
the FXRLiver−/− mice.

XN and Metabolites Concentrations in Liver
and Plasma
Liver and plasma extracts (n � 15–17 per genotype-diet group)
were analyzed for XN and metabolites by LC-MS/MS using a
hybrid triple quadrupole linear ion trap mass spectrometer (AB
SCIEX, 4000 QTRAP). Analytes were separated by UPLC carried
out using a 2.1 × 50 mm Agilent Zorbax 300 SB-C8 3.5 μm
column (Agilent, Santa Clara, CA, United States). Each run
lasted 6 min at a flow rate of 0.4 ml/min. The elution gradient
started at 30% solvent B (0.1% formic acid in acetonitrile) in
solvent A (0.1% formic acid in water) and was increased to 60%
solvent over the initial 1.5 min. The gradient was held at 60% for
1 min, increased to 100% B for 0.5 min, held at 100% B from 3.0
to 3.8 min, then dropped to 30% B in 0.1 min. The column was
equilibrated for 2.1 min until 6.0 min. SRM transitions for
quantification were m/z 353 → 119 for XN and
isoxanthohumol (IX), m/z 339 → 219 for 8-prenylnaringenin
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(8 PN), m/z 355→ 249 for α,β-dihydroxanthohumol (DXN), and
m/z 341 → 235 for O-desmethyl-α,β-dihydroxanthohumol
(DDXN).

RNA Sequencing and Analysis
RNA was prepared from liver samples (n � 4-5 per genotype-diet
group) and sequenced as previously described (Singh et al., 2018).
All samples were processed and analyzed in parallel. Sequence
quality was assessed by FastQC. Reads were aligned by Hisat2
(Kim et al., 2019) and Samtools (Li et al., 2009). A gene count
matrix was generated byStringtie (Pertea et al., 2015). Two data
sets, HFD (control) and HFD-XN (treatment) were derived from
the gene count matrix. Each set was analyzed in parallel by
DESeq2 (Love et al., 2014) for differential expression (DE)
calculation. DE was calculated for FXRLiver−/− mutant over
wildtype. PCA plots were generated using the DESeq2
package. Benjamini-Hochberg multiple-test correction was
applied to control for the number of false positives with an
adjusted 5% statistical significance threshold (Benjamini and
Hochberg, 1995). A heatmap was created using the pheatmap
package in R (version 3.6). Functional annotation clustering was
achieved in Network Analyst v3.0 using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database.

Real-Time PCR
RNA samples frommouse liver (n � 4-5 per genotype-diet group) were
reverse-transcribed using the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Waltham, MA,
United States). universal SYBR® Green Supermix (Bio-Rad, Hercules,
CA, United States) was used following the manufacturer’s protocol and
amplifications were performed using the ABI Prism 7300 Real-Time
PCR System (Applied Biosystems, Waltham, MA, United States). Each
sample had two technical replicates. Gene expression was normalized to
levels of Polymerase-II. Relative gene expressionwas calculated using the
2−ddCt method. All primers were purchased from IDT technologies
(Coralville, IA, United States) and are listed in (Supplementary
Table S3).

Statistical Analysis
Statistical data were analyzed in SAS version 9.4 (SAS Ins. Inc.,
Cary, NC). Plasma leptin, AST, and ALT concentrations,
intestinal gene expression, and liver receptor data were not
normally distributed and could not be normalized through
transformation. Therefore, these parameters were analyzed
using the non-parametric Wilcoxon rank sum test after
checking for interactions. We categorized values into elevated
and normal and used Fisher’s exact test to compare treatment
groups. BAs and XN concentrations were not normally
distributed but rather distributed logarithmically to the base
10, where 1 is equal to 10, two is equal to 100, and 3 is equal
to 1000, and were analyzed on that scale. In addition, we
categorized BA values into elevated and normal and compared
treatment groups using Fisher’s exact test. The remaining lipid
data were analyzed without transformation. The effect of XN-
treatment was evaluated separately for WT and FXRLiver−/−

mice using a generalized linear model in PROC GLM with
XN-treatment, sex, and their interaction, because FXRLiver−/−

mice had larger variance estimates than WT mice. The effects
of genotype and sex were evaluated in untreated mice using a
generalized linear model in PROC GLM with genotype, sex, and
their interactions, as XN modified the effect of genotype and sex.
All statistical tests were two-sided. Significance was declared at
p ≤ 0.05. Correlations were tested by calculating non-parametric
Spearman’s correlation coefficient, r.

RESULTS

Sex Influences XN Metabolism in WT and
FXRLiver−/− Mice
During the course of the study, weight gain in HFD-fed WT and
FXRLiver−/− mice were comparable (Table 1). HFD-fed males
gained more body weight than females (Supplementary Figure
S2); this effect was significant in WT mice (p < 0.0001) but not in
FXRLiver−/− mice (p � 0.1). To ensure oral bioavailability of XN in
WT and FXRLiver−/− mice, we measured liver and plasma
concentrations of XN and its metabolites in XN-treated mice.
Oral bioavailability of XN was comparable in both genotypes
(Supplementary Table S4), but IX, a product of XN
isomerization, reached higher concentrations in the liver of WT
mice compared to FXRLiver−/− mice. Moreover, we observed sex-
related differences as females had significantly higher
concentrations of XN and IX than males (Table 2). Since there
was no difference in food intake, this observation is likely a result of
the lower body weight in females compared to males.
α,β-Dihydroxanthohumol (DXN), a bacterial metabolite of XN
(Paraiso et al., 2019) was not affected by sex or genotype, while
8-prenylnaringenin (8PN) hepatic concentrations were elevated in
male FXRLiver−/− mice. These observations suggest an influence of
sex on XN pharmacokinetics, likely due to the differences in weight
and volume of distribution between males and females.

XNAmeliorates HFD-Induced Liver Damage
To assess if the HFD successfully induced NAFLD, we examined
liver sections from three representative male mice per treatment
group. Hematoxylin and eosin (H&E) stained liver sections showed
hepatic steatosis in the form of vacuoles with a clear appearance in
HFD-fedWT and FXRLiver−/− mice (Figures 1A,B). We observed a
reduction in number and size of these vacuoles in both genotypes in
XN-treatedmice (Figures 1C,D). Sections stained with Sudan black
confirmed an increase in lipid vacuoles in FXRLiver−/− mice
compared to WT (Figures 1E,F), which was reversed in XN-
treated mice (Figures 1G,H, Supplementary Figure S3).
Another marker of NAFLD is the proportion of liver weight
(LW) over total body weight (LW%). After 12 weeks on the
HFD, untreated FXRLiver−/− mice exhibited increased LW (p �
0.02) and LW% (p � 0.03) than WT mice (Table 1). In addition,
males had increased LW than females in WT mice (p � 0.001) and
FXRLiver−/− mice (p < 0.0001, Supplementary Figure S4A). Fasting
glucose was also elevated in males compared to females in both
genotypes (Supplementary Figure S4B).

To measure the extent to which the steatosis had resulted in
liver tissue damage, we measured aspartate aminotransferase
(AST) and alanine aminotransferase (ALT) enzymatic activities
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in liver homogenates. Absence of hepatic FXR might promote
liver tissue damage as AST levels were increased in untreated
FXRLiver−/− compared to WT mice (p � 0.02, Table 1). XN
reduced AST levels in treated FXRLiver−/− mice (p � 0.03).
Plasma leptin concentrations were elevated in FXRLiver−/− mice
but differences in leptin and food intake among groups were not
significant. These results suggest that HFD-induced NAFLD is
accentuated in absence of hepatic FXR and the severity of the
hepatic steatosis is attenuated by XN supplementation.

XN Ameliorates HFD-Induced Lipid
Accumulation
We annotated and measured the relative abundances of 116
individual hepatic lipids including triglycerides (TG), free
cholesterol, esterified cholesterol (CE), ceramides and
sphingomyelins (SM; Figure 2A). We observed sex, genotype
and XN-dependent effects on lipid composition (Figures 2B–H).

Hepatic TG were increased in female FXRLiver−/− compared to
their WT counterparts, but male FXRLiver−/− mice displayed the most
severe hepatic steatosis. Male FXRLiver−/− mice had elevated hepatic
TG, cholesterol, CE and ceramides compared to female FXRLiver−/−

mice and compared to male WT mice (Figures 2B–E). The
proportion of CE over total cholesterol (%CE) and the proportion

of ceramide over total sphingolipids (%ceramide) was higher in
FXRLiver−/− males compared to WT males (Figures 2G,H). These
data indicate that male mice are more responsive to diet-induced
hepatic steatosis in the absence of FXR signaling in the liver.

In FXRLiver−/− mice, XN had a predominant effect in male
mice, which exhibited the highest hepatic lipid accumulation.
Total CE (p � 0.06), cholesterol (p � 0.07) and ceramides (p �
0.0005) were decreased in XN-treated male FXRLiver−/− mice
compared to the untreated mice. The %ceramide, a measure of
the proportion of ceramides among other sphingolipids,
correlated better with histological improvements than
ceramide abundances. XN treatment decreased %ceramide in
male WT (p � 0.01) and male FXRLiver−/− mice (p � 0.02); both
groups had the most elevated %ceramide among the untreated
groups. SM abundances followed a trend opposite to that of other
lipids and were increased in XN-treated WT males (Figure 2F).
These data suggest that XN regulates lipid metabolism via
pathways independent of hepatic FXR signaling.

XNAmeliorates HFD-Induced Dysfunctional
BA Metabolism
We screened for 34 individual BAs in the plasma, liver and
hippocampus of WT and FXRLiver−/− mice using UPLC-MS/MS.

TABLE 1 | A list of metabolic parameters measured in WT and FXRLiver−/− mice upon 10 weeks (a) or 12°weeks of HFD ± XN.

WT WT XN FXRLiver−/− FXRLiver−/− XN

Initial body weight (g) 22.28 ± 0.9 22.18 ± 0.71 22.57 ± 0.73 22.32 ± 0.52
Body weight gaina (g) 12.22 ± 1.62 11.71 ± 1.73 16.07 ± 1.63 15.72 ± 1.02
Body weight gain (g) 15.25 ± 1.38 14.62 ± 1.45 16.22 ± 1.54 16.24 ± 1.18
Fasting glucosea (mg/dl) 200.73 ± 13.55 198 ± 9.59 200.5 ± 10.82 203.81 ± 6.2
Liver weight (g) 1.11 ± 0.08 1.09 ± 0.12 1.35# ± 0.09 1.23 ± 0.07
% Liver weight (% body weight) 2.95 ± 0.11 2.84 ± 0.17 3.50# ± 0.18 3.41 ± 0.19
AST (U/mL) 0.32 ± 0.09 0.28 ± 0.08 1.46# ± 0.6 0.24* ±0.08
ALT (U/mL) 0.53 ± 0.14 0.38 ± 0.1 0.83 ± 0.39 0.33 ± 0.08
Food intake (g/day) 3.05 ± 0.34 3.40 ± 0.17 2.51 ± 0.05 2.79 ± 0.06
Leptin (ng/ml) 30.14 ± 6.99 29.75 ± 4.03 66.2 ± 15.36 43.38 ± 10.52

Data displayed as mean ± SEM. Significant differences are marked as *p < 0.05, **p < 0.01, ***p < 0.001 for effect of XN treatment, #p < 0.05, ##p < 0.01, ###p < 0.001 for genotype
comparison, &p < 0.05, &&p < 0.01, &&&p < 0.001 for gender comparison.

TABLE 2 | Concentrations of XN and metabolites (IX, 8PN, DXN) in the plasma and liver of females vs. males HFD-fed WT and FXRLiver−/− mice.

Plasma (nM)

Female WT XN Male WT XN Female FXRLiver−/− XN Male FXRLiver−/− XN

XN 22.61 ± 4.4 16.94 ± 3.2 30.45 ± 5.3 14.65& ± 1.8
IX 16.0 ± 4.0 8.73& ± 2.0 13.55 ± 3.2 8.78 ± 1.6
DXN 1.90 ± 0.4 3.02 ± 1.2 1.36 ± 0.45 3.60 ± 1.89

Liver (nmol/g)

Female WT XN Male WT XN Female FXRLiver−/− XN Male FXRLiver−/− XN

XN 0.28 ± 0.05 0.16& ± 0.03 0.23 ± 0.08 0.29& ± 0.05
IX 1.53 ± 0.35 0.68& ± 0.08 0.58## ± 0.09 0.65 ± 0.05
8PN 0.04 ± 0.01 0.05 ± 0.01 0.06 ± 0.03 0.13&,&& ± 0.04

Data displayed as mean ± SEM (n � 7–10 per group). #p < 0.05, ##p < 0.01 for genotype comparison, &p < 0.05, &&p < 0.01 for gender comparison.
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Hippocampal BAs were measured to investigate BA retention in
tissues deficient in BA detoxification and export mechanisms.
Fifteen BAs were detected and quantified in the liver, 12 BAs in
the plasma and 7 BAs in the hippocampus.

FXRLiver−/− had higher BA concentrations in plasma (p < 0.0001,
Figure 3A) and liver (p � 0.01, Figure 3C) thanWTmice, while an
increase in hippocampal BAs was observed in FXRLiver−/− males
only (p � 0.04, Supplementary Figure S5). The most severe BA
accumulation occurred in the plasma of FXRLiver−/− mice, with a 7-
fold increase in total BAs vs. 2-fold increase in the liver. The change
was driven by an increase in primary conjugated BAs (Figures
3A–D). Hippocampal BA retention was more pronounced than
hepatic BA retention as FXRLiver−/− mice exhibited 9-fold increase
in total hippocampal BAs compared to WT (Figures 3E,F)
indicating passage of BAs through a possibly altered blood brain
barrier (BBB). These data suggest that hepatic mechanisms of BA
efflux remained more efficient than cerebral mechanisms of BA
efflux in FXRLiver−/− mice. This is further supported by our
observation that, in FXRLiver−/− mice, plasma BAs were more
strongly correlated to hippocampal BAs (r � 0.90, p < 0.0001)
than to hepatic BAs (r � 0.49, p � 0.005, Figures 3G,H). BA pool

composition was also modified in FXRLiver−/− mice. The percentage
of plasma primary conjugated BAs over total BAs was 50% in WT
mice vs. 85% in FXRLiver−/− mice (Figure 3B). Hepatic conjugation
of BAs improves their hydrophilicity and reduces their toxicity
suggesting that FXRLiver−/− mice developed a metabolic mechanism
to counter BA-mediated toxicity.

XN treatment promoted BA synthesis in WT mice but
attenuated BA accumulation in FXRLiver−/− mice. XN effect on
BA concentrations was independent of sex in WT mice. XN
supplementation of WT mice resulted in increased plasma
primary conjugated BAs (p � 0.03, Figure 3A) and increased
hepatic primary unconjugated BAs (p � 0.02, Figure 3C). These
observations are in accordance with previous reports that XN
induces CYP7A1 and hepatic BA synthesis in WT mice
resulting in increased BA concentrations (Paraiso et al., 2020).
DCA, TCA, β-MCA and FXR antagonists, T-α-MCA and T-β-
MCA, were increased in the liver and/or plasma of XN-treatedWT
mice (Figures 4A,B). By contrast, XN treatment resulted in
decreased BA concentrations in FXRLiver−/− mice. CA and CA-
derived BAs includingDCA, TCA and TDCAwere decreased in the
liver of FXRLiver−/− mice in both sexes, with males exhibiting more
significant changes (Figures 4A–C). CA, DCA and ω-MCA were
decreased in the plasma of XN-treated male FXRLiver−/− mice.

In summary, XN reduced most individual BAs of the classical
pathway in FXRLiver−/− mice and increased BAs from the
alternative pathway of synthesis in WT mice (Figures 4A,B;
Supplementary Figure S6). Since BAs did not reach pathological
concentrations inWTmice, these results suggest an adaptation of
XN mechanism of action to the pathophysiological conditions
and the possible activation of BA receptors independent of FXR.
These observations further support a genotype-specific
differential modulation of metabolism by XN.

XN Ameliorates HFD-Induced Hepatic Gene
Profiles
We analyzed changes in global gene expression profiles in hepatic
tissue of HFD-fed WT and FXRLiver−/− mice. Since a smaller
subset of samples was sequenced, male and female mice RNA
sequencing data were pooled to increase the power of the analysis.
Functional annotation clustering revealed that genes differentially
affected by HFD in WT and FXRLiver−/− mice can be classified
into two main functional groups: genes involved in metabolic
processes vs. genes involved in inflammation and carcinogenic
processes (Supplementary Table S5). The comparison between
XN-treated and untreated FXRLiver−/− mice revealed 243 shared
genes, with 759 features unique to untreated mice and 170
features unique to XN-treated mice (Figure 5A). Within the
shared features, XN supplementation impacted several gene
networks including lipid metabolism (Mgat2, Sptlc2, Smpd3),
ABC transporters involved in BA transport (Abcc4, Abcc3,
Abcb11), metabolism of xenobiotics with genes involved in
phase I and II metabolism (Gsta1, Gstm3, Ugt1a7c, Sult2a7),
PI3K-Akt signaling pathway (Tnc, Tlr2, Spp1, Thbs1, Lamb3),
cytokine-cytokine receptor interactions (Ccl2, Cxcl9/10, Cd9,
Tnfrsf1a) and amino acid metabolism (Sardh, Aadat, Kyat3)
(Figure 5B).

FIGURE 1 | XN prevents HFD-induced hepatic steatosis.
Representative liver histology by H&E (A-D) and Sudan Black (E-H) of male
WT and FXRLiver−/− mice fed HFD ± XN. Arrows indicate vacuoles, a
characteristic structure of hepatic steatosis.
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FIGURE 2 | XN prevents HFD-induced ceramide accumulation (A) Heatmap of hepatic triglycerides (TG), cholesterol esters (CE), free cholesterol (CHOL),
ceramides (CER) and sphingomyelins (SM) in HFD-fed WT and FXRLiver−/− mice untreated or treated with XN. Total relative abundance of (B) TG (C) CE (D) free
cholesterol (E) ceramide and (F) SM in the liver of WT and FXRLiver−/− mice untreated or treated with XN. Proportion of (G) CE and (H) ceramide in the liver of WT and
FXRLiver−/−mice untreated or treated with XN. Values are mean ± SEM (n � 7–10 per group). *p < 0.05, **p < 0.01, ***p < 0.001 for effect of XN treatment; #p < 0.05,
##p < 0.01, ###p < 0.001 for genotype comparison; &p < 0.05, &p < 0.01, &p < 0.001 for gender comparison.
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In WT mice, presence of XN was associated with increased
expression of genes involved in lipid and xenobiotic metabolism
such as Mgat1, Cyp1a1, Ugt1a7c, and decreased expression of
genes involved in energy metabolism (Clock, Rnf146) and
inflammation (Cebpg, Saa1, Saa2) (Figure 5C; Table 3).

CCAAT-enhancer binding proteins (C/EBP) interact with the
proximal promoter of the Saa genes and regulate hepatic
expression of SAA (Ray et al., 1995). The concurrent decrease
in Cebpg and Saa expression suggests that XN-mediated repression
of Saa1 and Saa2 is mediated by inhibition of Cebpg expression.

FIGURE 3 | XN modulates BA composition (A) Total BAs and (B) composition of the BA pool in the plasma of HFD-fed WT and FXRLiver−/− mice (C) Total BAs and
(D) composition of BAs in the liver of HFD-fedWT and FXRLiver−/−mice (E) Total BAs and (F) composition of BAs in the hippocampus of HFD-fedWT and FXRLiver−/−mice
(G) Correlations between liver and plasma BAs in WT and FXRLiver−/− mice (H) Correlations between hippocampus and plasma BAs in WT and FXRLiver−/− mice. Bar
graphs values are mean ± SEM (n � 15–18 per group). *p < 0.05, **p < 0.01, ***p < 0.001 for effect of XN treatment; #p < 0.05, ##p < 0.01, ###p < 0.001 for
genotype comparison. Abbreviations: chenodeoxycholic acid (CDCA), cholic acid (CA), deoxycholic acid (DCA), lithocholic acid (LCA), muricholic acid (MCA),
nordeoxycholic acid (NDCA), taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), tauromuricholic acid (T-MCA), taurodeoxycholic acid (TDCA),
tauroursodeoxycholic acid (TUDCA).
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In FXRLiver−/− mice, XN induced Vsig4, which attenuates
macrophage-mediated hepatic inflammation (Li et al., 2019),
Acvr1, which is involved in activin signaling (Rao et al., 2017),
and Timd4, that controls adaptive immunity by clearing antigen-

specific T-cells (Albacker et al., 2010) (Figure 5D; Table 3).
While XN induced increased expression of Cyp7a1, which is
involved in the classical pathway of BA synthesis, there were no
changes in the expression of genes involved in the alternative
pathway of BA synthesis. RhoGDI2, encoded by Arhgdib, is
involved in the molecular pathogenesis of liver fibrosis
(Utsunomiya et al., 2007) and acts as a positive regulator of
Rac1 (Kardol-Hoefnagel et al., 2020). The decreased expression of
both genes indicated that XN inhibition of Rac1 transcription
might be mediated by repression of Arhgdib in FXRLiver−/− mice
(Table 3). These data show that XN promotes lipid and BA
metabolism and decreases acute inflammation inWTmice, while
XN attenuates inflammation by controlling immune response,
inhibits cell proliferation and liver fibrosis in FXRLiver−/− mice.

XN Induces Gene Expression of
FXR-Independent NRs
RNA sequencing revealed several genes involved in phase II
reactions such as glucuronidation (UGTs), sulfation (SULTs)
and glutathione conjugation (GSTs) were regulated by XN.
Therefore, we performed a quantitative analysis of the hepatic
expression of a panel of NRs known to regulate phase II BA
metabolism including CAR, PXR and GR. BAs interact with CAR
(Moore et al., 2002), PXR (Staudinger et al., 2001), as well as GR
(Tanaka and Makino, 1992), which also regulates biosynthesis
and transport of bile salts (Xiao et al., 2016). XN treatment
resulted in higher CAR expression in all sex and genotype
groups (Figure 6A), although XN effect was stronger in males.
XN also induced gene expression of PXR in both WT and
FXRLiver−/− mice, while an increase in GR transcript levels was
observed in XN-treated FXRLiver−/− mice only (p � 0.009,
Figure 6A).

Changes in these NR expression profiles were linked to hepatic
BA concentrations. Correlation analyses revealed that relative
expression levels of these receptors were negatively correlated
with unconjugated BAs in the liver absence of FXR (Figure 6B).
Additionally, relative expression of GR was negatively correlated
with relative abundances of lipids regulated by XN, i.e. CE (r �
-0.78, p � 0.01), cholesterol (r � -0.67, p � 0.04) and ceramide (r �
-0.68, p � 0.03) in absence of FXR. Collectively, these data suggest
that, in absence of hepatic FXR, induction of CAR, PXR and GR is
involved in XN-mediated decrease of lipid and BA
concentrations.

DISCUSSION

NRs regulate ligand-activated transcriptional activation of a
myriad of genes for the elimination and detoxification of
potentially toxic biliary constituents accumulating in
cholestasis (Halilbasic et al., 2013). FXR controls the
transcriptional activation of several genes involved in the
regulation of glucose and lipid metabolism and maintenance
of BA homeostasis, thereby protecting the host against liver
damage associated with lipid and BA accumulation. BAs act as
signaling molecules through BA receptors such as FXR, TGR5,

FIGURE 4 | XN differentially modulates classical and alternative
pathways of synthesis in WT vs. FXRLiver−/− mice. Heatmaps of individual BA
concentrations in the plasma (A), liver (B) and hippocampus (C) of HFD-fed
WT and FXRLiver−/− mice. *p < 0.05, **p < 0.01, ***p < 0.001 for effect of
XN treatment (n � 7–10 per group). Abbreviations: chenodeoxycholic acid
(CDCA), cholic acid (CA), deoxycholic acid (DCA), lithocholic acid (LCA),
muricholic acid (MCA), nordeoxycholic acid (NDCA), taurochenodeoxycholic
acid (TCDCA), taurocholic acid (TCA), tauromuricholic acid (T-MCA),
taurodeoxycholic acid (TDCA), tauroursodeoxycholic acid (TUDCA).
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PXR and VDR to regulate TG, cholesterol, glucose, and energy
homeostasis (Schaap et al., 2014; Fiorucci and Distrutti, 2015).
BAs inhibit their own synthesis mainly via FXR-mediated
negative feedback of CYP7A1, the rate-limiting enzyme in the
catabolism of cholesterol into BAs (Goodwin et al., 2000). As a
result, FXR knockout mice exhibit dyslipidemia (Sinal et al., 2000;
Kok et al., 2003) and hepatic steatosis that progresses to NASH
(Armstrong and Guo, 2017).

Liver histology revealed lipid vacuoles characteristic of fatty
liver disease in FXRLiver−/− mice and elevated hepatic levels of
triglycerides, free cholesterol, cholesterol esters and ceramides.
The increased liver enzymes indicate liver injury associated with
inflammation and NASH. HFD-induced dyslipidemia was
aggravated by FXR deficiency with sex differences. Risk factors
associated with HFD-induced obesity including fasting glucose
and dyslipidemia were more pronounced in males than females.
This is in accordance with previous report that male western diet-
fed FXR−/− mice had higher hepatic and serum lipids than their
female counterparts (Sheng et al., 2017). In fact, NRs play a
crucial role in the calibration of sex-specific metabolic pathways

and androsterone (Wang et al., 2006) as well as estrogen (Song
et al., 2014) were reported to modulate FXR activity. This suggests
that interactions between the receptor and gonadal hormones
warrant further investigation. The severity of the FXRLiver−/−

phenotype was further aggravated by the accumulation of BAs,
which regulate several signaling pathways independent from
FXR. In our study, elevated BA concentrations in the plasma
of FXRLiver−/− mice were accompanied with higher
concentrations of BAs in the hippocampus indicating passage
of BAs through the BBB. The concentrations measured in HFD-
fed FXRLiver−/− mice are comparable to BA concentrations in the
blood and brain of FXR−/− mice with hepatic enceph-alopathy
(Huang et al., 2015). In fact, in pathological conditions such as
acute liver failure and cholestasis, elevated plasma BAs were
reported to increase permeability of the BBB (Quinn et al.,
2014; McMillin et al., 2016), warranting the investigation of
therapeutic alternatives regulating BA concentrations.

XN anti-hyperlipidemic effect was more accentuated in male
FXRLiver−/− mice that developed severe dyslipidemia. Our
observation that XN and metabolites reached higher

FIGURE 5 | XN alters hepatic gene profiles (A) Venn diagram comparing genes in HFD-fed mice vs. HFD-fed mice treated with XN (B) Relative expression of 106
shared genes classified according to KEGG pathway (Log2FC of FXRLiver−/− ± XN/WT) (C) Genes regulated by XN in WT mice (D) Genes regulated by XN in FXRLiver−/−

mice. Values are mean of n � 4-5 mice (males and females) per group.
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TABLE 3 | Hepatic genes regulated by XN in WT and FXRLiver−/− mice and their roles in metabolic function.

Genes Log2FC Definition Function Ref

WT mice (HFD + XN/HFD)

B3gnt2 + 1.64 Beta-1,3-N-acetylglucosaminyltransferase Glycosphingolipid biosynthesis Togayachi et al. (2010)
Mgat1 + 1.12 Monoacylglycerol acyltransferase Triglyceride synthesis Lee and Kim. (2017)
Ugt1a7c + 1.1 Uridine 5′-diphospho-glucuronosyltransferase 1A7c Lipid and xenobiotic metabolism Guillemette. (2003)
Cyp1a1 + 0.96 Cytochrome P450 1A1 Lipid and xenobiotic metabolism Stejskalova and Pavek. (2011)
Sept2 –0.07 Septin 2 Apoptosis and cell proliferation Cao et al. (2015)
Chd2 –0.79 Chromodomain-helicase-DNA-binding protein 2 Epigenetic signature during liver development Lu et al. (2012)
Clock –0.99 Circadian locomotor output cycles kaput protein Energy metabolism and obesity Turek et al. (2005). Vieira et al. (2014)
Saa1 –1.00 Serum amyloid a protein 1 Inflammation and systemic complications of

obesity
Poitou et al. (2005). Jumeau et al.
(2019)Saa2 –0.86 Serum amyloid a protein 2

Tle4 –1.01 Transducin-like enhancer protein 4 Transcriptional corepressor associated with
type 2 diabetes

Ali, (2013)

Oxsm –1.02 3-Oxoacyl-ACP synthase II Fatty acid metabolism Gao et al. (2019)
Rnf146 –1.15 E3 ubiquitin-protein ligase Rnf146 Energy metabolism Matsumoto et al. (2017)
Sfxn2 –1.16 Sideroflexin2 Mitochondrial biogenesis Mon et al. (2019)
Cebpg –1.36 CCAAT/enhancer binding protein gamma Transcriptional regulation of adipogenesis and

inflammation
Ray et al. (1995); Tanaka et al. (1997)

FXRLiver−/− mice (HFD + XN/HFD)

Acvr1 + 1.92 Activin a receptor type 1 TGF-β signaling pathway Rao et al. (2017)
Gypc + 1.29 Glycophorin C Membrane properties of erythrocytes Yiangou et al. (2016)
Timd4 + 1.22 T-cell immunoglobulin and mucin

domain containing 4
Adaptative immunity Albacker et al. (2010). Dai et al.

(2020)
Vsig4 + 1.14 V-set and immunoglobulin domain-containing 4 Macrophage-mediated hepatic inflammation Li et al. (2019)
Cyp7a1 + 1.04 Cholesterol 7 alpha-monooxygenase Cholesterol and bile acid metabolism Chiang, (2009)
Letm2 + 0.92 Leucine zipper and EF-hand containing

transmembrane 2
Mitochondrial ion uptake Waldeck-Weiermair et al. (2011)

Car9 + 0.8 Carbonic anhydrase 9 Hypoxia-inducible Olive et al. (2001)
Fam71e1 + 0.73 Family with sequence similarity 71 member E1
Smim22 + 0.52 Small integral membrane protein 22 Cell proliferation Polycarpou-Schwarz et al. (2018); Li

et al. (2019)
Insig2 –0.68 Insulin induced gene 2 Lipid and glucose metabolism Dong and Tang, (2010)
Slc4a1 –0.74 Solute carrier family 4A1 Efflux transport Hediger et al. (2004)
Slc17a4 –1.03 Solute carrier family 17A4
Rac1 –1.11 Ras-related C3 botulinum toxin substrate 1 Cell proliferation Choi et al. (2006)
Rnf185 –1.13 E3 ubiquitin-protein ligase Rnf185 Autophagy Tang et al. (2011)
0610040J01Rik –1.26 RIKEN cDNA 0610040J01 gene
Arhgdib –1.51 Anti-rho guanosine diphosphate dissociation

inhibitor beta
Liver fibrosis Utsunomiya et al. (2007)
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concentrations in female mice suggests that pharmacodynamic
effect of XN in vivo depends more on the severity of the
phenotype and less on XN concentrations in biological tissues.
Ceramide abundances were heavily influenced by their precursor,
SM. The lipotoxicity of ceramides is well-documented (Summers,
2006; Chaurasia and Summers, 2015), but the role of SM in
NAFLD and NASH is controversial. Several studies report lower
SM levels in NASH patients (Kartsoli et al., 2020). In fact, SM are
important components of biological cell membranes (Slotte and

Ramstedt, 2007) with no demonstrated intrinsic lipotoxicity. The
increase in hepatic SM in XN-treated WT males was
accompanied by an increase in hepatic ceramides that did not
correlate with metabolic improvements. Therefore, we used the
ratio of ceramides over total sphingolipids to estimate ceramide
relative abundances more precisely. This ratio was decreased in
XN-treated WT and FXRLiver−/− mice.

Taken together, XN protected FXRLiver−/− mice from liver
damage, as evaluated by liver transaminase activity, liver

FIGURE 6 | XN induces hepatic expression of FXR-independent NRs (A) Quantitative relative expression of CAR, PXR and GR in the liver of HFD-fed WT and
FXRLiver−/− mice (B) Correlations between relative mRNA expression of CAR, PXR and GR vs. hepatic unconjugated BAs concentrations in FXRLiver−/− mice (C)
Correlations between relative mRNA expression of GR vs. relative abundances of hepatic CE, cholesterol and ceramide in FXRLiver−/−mice. Bar graphs values aremean ±
SEM, n � 4-5 mice (males and females) per group. *p < 0.05, **p < 0.01, ***p < 0.001 for effect of XN treatment.
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histopathology and hepatic expression levels of anti-inflammatory
genes. These observations indicate that XN effect is not exclusively
mediated by hepatic FXR. We hypothesized that the observed XN
effect might also derive from its potential as SBARM and from XN-
dependent modulation of BA composition because BAs regulate
energy expenditure in mice (Chiang, 2002). In WT mice, XN
treatment led to an FXR-dependent increase in the most
hydrophilic BAs among which are T-α-MCA and T-β-MCA.
FXR antagonists, including T-α-MCA and T-β-MCA, have been
reported to improve HFD-induced metabolic dysfunction by
inducing thermogenesis and repressing intestinal FXR-FGF15
signaling (Sayin et al., 2013; Jiang et al., 2015). Intestinal FXR-
FGF15 signaling regulates CYP7A1 gene expression (Kim et al.,
2007). In turn, CYP7A1 regulates T-α-MCA and T-β-MCA
synthesis, while CYP8B1 is required for TCA synthesis (Jiang
et al., 2015; Chiang, 2009; Qi et al., 2015). In accordance with
our results, previous studies have demonstrated that CYP7A1
mRNA levels are induced after XN treatment (Nozawa, 2005;
Paraiso et al., 2020). This resulted in the increase of T-α-MCA
and T-β-MCA, which repress intestinal FXR-FGF15 signaling to
increase hepatic BA synthesis and prevent HFD-induced insulin
resistance and obesity (Li et al., 2013; Sayin et al., 2013; Jiang et al.,
2015; Gonzalez et al., 2016). Contrary to WT mice, XN decreased
hydrophobic BAs such as DCA, CA and their taurine conjugates in
FXRLiver−/− mice. Moreover, XN promoted genes that attenuate

macrophage-mediated inflammation suggesting a shift toward
detoxification in absence of hepatic FXR (Figure 7). Increased
concentrations of hydrophobic BAs impairs phagocytosis activity
of tissue-resident macrophages called Kupffer cells (KCs), induce
neutrophil-mediated inflammation and alter hepatic T-cell
immunity (Zhu et al., 2016). The selective depletion of liver-
resident KCs restores hepatic insulin sensitivity and improves
whole-body and hepatic fat accumulation (Neyrinck et al., 2009;
Huang et al., 2010).

The major mechanisms underlying XN-mediated attenuation of
liver damage in FXRLiver−/− mice are the reduction of BA
concentrations and the mitigation of hepatic inflammation due
the activation of NRs CAR/PXR/GR. FXR, PXR and CAR have
complementary roles in the protection against BA toxicity (Guo et al.,
2003). RNA sequencing revealed that several genes involved in
metabolism of xenobiotics such as CYPs, UGTs, SULTs and GSTs
were regulated by XN in FXRLiver−/− mice. Conjugation of
hydrophilic groups by UGTs, SULTs, and GSTs increases the
water solubility of BAs and xenobiotics to facilitate their renal
elimination (Garcia et al., 2018). Hepatic xenobiotic-sensing
receptors CAR and PXR mediate phase I and II BA metabolism
by regulating CYP450s, UGTs, SULTs and GSTs that catalyze
synthesis, oxidation, sulfonation and glucuronidation of BAs
(Keppler, 2011; Garcia et al., 2018; Lv and Huang, 2020). Phase
III clearance of BA is also regulated by FXR, PXR and CAR. Once
BAs are transformed into more hydrophilic metabolites in the liver,
they are pumped into the bile via efflux transporters BSEP andMRP2
as a route for fecal elimination (Wagner et al., 2005; Garcia et al.,
2018). Moreover, GR enhances CAR/PXR-mediated transcriptional
regulation of target genes such as UGT1A1 (Sugatani et al., 2005).
CAR, PXR and GR are activated by unconjugated BAs such as LCA,
CA, DCA and UDCA (Tanaka and Makino, 1992; Staudinger et al.,
2001; Moore et al., 2002; Carazo et al., 2017). The strong correlations
between these NRs and hepatic unconjugated BA concentrations
suggest that BA metabolism in XN-treated FXRLiver−/− mice was
primarily regulated by the activation of CAR, PXR and GR. Since the
expression levels of these receptors were exclusively correlated with
unconjugated BAs, it is conceivable that endogenous BAs might also
play a role in the activation of these NRs in vivo. Consistent with our
observations in FXRLiver−/− mice, taurine conjugated BA species such
as TCA are increased in the liver of NASHpatients (Lake et al., 2013).
The decreased concentrations of hepatic TCA by XN also indicated a
normalization of BA metabolism independent from FXR. Due to the
affinity of TCA to FXR, it has been hypothesized that TCA is elevated
as a compensatory effect to activate the receptor and normalize
metabolism (Sheng et al., 2017). GR activation by XN in FXRLiver−/−

mice is involved in the lipid-lowering effect of the flavonoid. Partial
agonism of GR reverses NAFLD by preventing hepatic TG and
cholesterol accumulation (Koorneef et al., 2018). Moreover, the anti-
inflammatory effects of GR activation have a positive impact on
hepatic lipid accumulation (Rando andWahli, 2011; Scheschowitsch
et al., 2017).

Our results support the hypothesis of a compensatory
interaction between FXR, CAR and PXR. XN-mediated
induction of CAR and PXR was not FXR-dependent. In the
absence of FXR, the complementary regulation by CAR, PXR
and GR might be involved in XN-mediated decrease of BAs

FIGURE 7 | Working hypothesis on XN mechanism of control of BA
synthesis and detoxification in WT and FXRLiver−/− mice. XN promotes BA
synthesis in WT mice and increases FXR antagonists in the liver and plasma.
This results in downstream expression of enzymes involved in BA
synthesis, CYP7A1 and CYP8B1. Negative feedback on BA synthesis is
exerted by BAs agonists of FXR, PXR and CAR. Compared to WT mice,
FXRLiver−/− mice had increased BA synthesis, bigger BA pool sizes and
increased passage of BAs through the BBB. In FXRLiver−/− mice, BAs such as
CA and DCA impair hepatic Kupffer cells (KCs) activity, which XN might
attenuate by decreasing CA and DCA concentrations. XN-mediated activation
of PXR and CAR, and GR slows down de novo BA synthesis by inhibition of
CYP7A1 and induces metabolizing enzymes to stimulate BA excretion.
Abbreviations: EHC (Enterohepatic circulation), KC (Kupffer cell).
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concentrations. Chronic BA overload and prolonged activation of
detoxification pathways may lead to the desensitization of BA-
sensing receptors, which would contribute to the chronicity of BA-
mediated damage. By improving the efficiency of phase II
metabolism and phase III hepatic clearance of BAs, XN
alleviated the sustained activation of detoxification pathways,
improved BA signaling, lipid metabolism and relieved
inflammation. Future studies assessing the pharmacodynamic
activity of XN metabolites and quantifying glucuronidated and
sulfated BA metabolites are necessary to evaluate XN effect more
accurately.

Functional annotation clustering revealed that hepatic genes
involved in inflammation and neoplastic processes were altered in
FXRLiver−/− mice. Hydrophobic BAs are well-known for their
cancer-promoting effects and promote carcinogenesis in several
tumor models, including hepatocellular carcinoma, colon cancer,
and breast cancer (Nagengast et al., 1995; Debruyne et al., 2001;
Kim et al., 2006). Our research sheds new light on the
chemopreventive potential of XN and highlights the potential of
XN as adjuvant therapy in cancers associated with accumulation of
BAs such as bile duct cancer and hepatocellular carcinoma.

CONCLUSION

BA synthesis and transport are tightly regulated by BA and
xenobiotic-sensing NRs, which regulate genes in synthesis,
metabolism and clearance of BAs and play a critical role in BA
detoxification. Our current study extends previous research and shows
the novel findings that 1) XNamelioratesHFD-induced inflammation
and tissue damage in FXRLiver−/−mice; 2) XN improves HFD-induced
dysfunctional lipid and BA metabolism via FXR-dependent and
independent signaling, including the induction of CAR, PXR and
GR. To the best of our knowledge, the potential of XN as adjuvant
therapy in the management of cholestatic diseases has not been
reported and merits further investigation.
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