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Abstract: Outbreaks of life-threatening Rocky Mountain spotted fever in humans and dogs associated
with a canine-tick maintenance cycle constitute an important One Health opportunity. The reality of
the problem has been observed strikingly in Mexico, Brazil, Colombia, and Native American tribal
lands in Arizona. The brown dog tick, Rhipicephalus sanguineus sensu lato, acquires the rickettsia from
bacteremic dogs and can maintain the bacterium transtadially to the next tick stage. The subsequent
adult tick can then transmit infection to a new host, as shown by guinea pig models. These brown
dog ticks maintain spotted fever group rickettsiae transovarially through many generations, thus
serving as both vector and reservoir. Vaccine containing whole-killed R. rickettsii does not stimulate
sufficient immunity. Studies of Rickettsia subunit antigens have demonstrated that conformationally
preserved outer-membrane autotransporter proteins A and B are the leading vaccine candidates. The
possibility of a potentially safe and effective live attenuated vaccine has only begun to be explored as
gene knockout methods are applied to these obligately intracellular pathogens.

Keywords: Rocky Mountain spotted fever; One Health; Rickettsia rickettsii; Rhipicephalus sanguineus;
canine vector-borne disease; subunit vaccine; live attenuated vaccine

1. Introduction

One Health encompasses an integrated unifying approach to balance and optimize the
health of three components: people, animals, and the environment. As cited in the Centers
for Disease Control and Prevention website, “The health of people is closely connected to
the health of animals and the environment”. In the setting of outbreaks of severe Rocky
Mountain spotted fever involving many persons in a particular environment, dogs and
Rhipicephalus sanguineus ticks in homes play critical roles, and control of the zoonotic cycle
involves strategies to interrupt the maintenance and transmission of Rickettsia rickettsii.

2. The Current Status of the One Health Canine-Brown Dog Tick-Rickettsia
rickettsii Threat

Dogs are susceptible to Rocky Mountain spotted fever. The disease can be fatal in
some breeds of dogs, as documented in natural outbreaks [1] and clinical and experimental
studies [2–6]. Epidemiologic studies point to brown dog ticks, Rhipicephalus sanguineus, as
the likely vectors of outbreaks of Rocky Mountain spotted fever in Mexico [7–18] and in
Native American tribal lands in Arizona [19–21].

Vaccination of dogs to prevent their infection with Rickettsia rickettsii has received
little attention. A recent study determined that, although a heat-killed whole R. rickettsii
vaccine prepared from organisms propagated in embryonated chicken eggs and purified
by differential centrifugation given with Montanide adjuvant and boosted once protected
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dogs from death, four of six animals developed a brief fever, one developed a mild rash,
and three had documented rickettsemia [22]. A recombinant peptide vaccine of OmpB
encoded by nucleotides 2638–3822 did not protect dogs [22].

Rickettsia rickettsii vaccines were developed and used in humans. The original vaccine
developed at the Rocky Mountain Laboratory in 1924 from the tissues of infected Dermacen-
tor andersoni ticks reduced the fatality rate of vaccinees but did not prevent illness [23,24].
The subsequent breakthrough discovery that R. rickettsii could be propagated in yolk sac of
embryonated chicken eggs altered the dangerous method of propagating in infected ticks
to chicken egg cultivation of R. rickettsii for vaccine production in 1938 [25]. Subsequent
human infectious R. rickettsii challenge studies demonstrated that neither vaccine prevented
infection [26]. The US Army developed a cell-culture-propagated whole-killed R. rickettsii
vaccine that when tested in human volunteers prevented only 25% of vaccinees from devel-
oping Rocky Mountain spotted fever [27,28]. The use of a whole-killed R. rickettsii vaccine
would not seem to be effective in preventing the transmission of rickettsiae to dogs or
achieve the goal of interrupting the Rh. sanguineus-dog cycle of maintenance of R. rickettsii
in the environment.

3. Clinical and Epidemiological Significance of Rocky Mountain Spotted Fever

Rocky Mountain spotted fever (RMSF), caused by Rickettsia rickettsii, is a severe, life-
threatening tick-borne infection. Disease is characterized by fever, headache, myalgia, and
rash [29]. Although prompt administration of tetracycline antibiotics, such as doxycycline,
is quite effective when given during the first 5 days of illness [30], the disease is often
difficult for clinicians to recognize. There is no point-of-care diagnostic test to accurately
diagnose RMSF. Furthermore, signs and symptoms are largely undifferentiated and may be
erroneously attributed to a wide variety of bacterial (e.g., meningococcus, syphilis, endo-
carditis, leptospirosis, typhoid fever), viral (e.g., roseola, measles, rubella, mononucleosis,
acute HIV, dengue fever) and non-infectious syndromes (e.g., drug eruptions, Kawasaki dis-
ease, vasculitides) [31]. When effective empiric therapy is not initiated early in illness, there
is greater likelihood of unfavorable outcomes [32,33]. Examples of severe manifestations
include respiratory failure requiring intubation and ventilatory support [34], acute kidney
injury requiring hemodialysis, gangrenous digits that may require amputation [35,36], and
meningoencephalitis, which can lead to longstanding or permanent neurologic sequelae
(seizures, cognitive dysfunction, behavioral abnormalities, stroke, and coma) [36,37]. In the
preantibiotic era, the case fatality rate in the United States approached 23% [38]. Despite
declines in the fatalities after the availability of chloramphenicol and tetracyclines, the case
fatality rate has been reported to be up to 5% in the postantibiotic era [30], and in tribal
lands of Arizona, the case fatality rate has been reported to be up to 10% [39]. The potential
severity of RMSF highlights its clinical importance.

In the United States, RMSF is classically transmitted by the bite of Dermacentor an-
dersoni ticks in the western mountainous states and D. variabilis in the eastern half of the
country [40]. Sixteen cases of RMSF were reported from rural tribal lands in Arizona in
2005 [19]. Two of these patients, both young children, died [19,41]. Prior to these 16 cases
(diagnosed between 2003 and 2004) there were only 3 cases of RMSF reported in the entire
state of Arizona in the preceding two decades [42,43]. This emergence of RMSF in Arizona
was attributed to R. rickettsii-infected Rhipicephalus sanguineus—the ubiquitous brown dog
tick [19]. Tribal lands of Arizona are now highly endemic [32], and in a study of RMSF
in Native Americans, the Arizona outbreak was shown to affect children at higher rates
than adults and has been associated with greater frequency of hospitalizations compared
to other areas of the U.S. [44]. The outbreak in Arizona highlights the importance of the
brown dog tick to the epidemiology of RMSF and resurfaces aspects of the disease that
have been described in Latin America.

The history of RMSF outbreaks in Mexico is tied closely to dogs and brown dog ticks,
as detailed in a review by Álvarez-Hernández and colleagues [7]. In the 1920s, a fatal
disease that resembled RMSF was described in the state of Sinaloa and was associated with
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Rh. sanguineus-infested dogs. In 1943, Mexican epidemiologists detailed a lethal disease
(fatality rate of 80%) occurring in rural areas of the states of Sinaloa and Sonora, which
would be recognized as RMSF. Again, the association with Rh. sanguineus and dogs was
evident. In addition to infested dogs, the peridomiciliary behavior of these ticks was noted.
Carried into homes by dogs, these ticks were frequently found in earthen walls of homes,
on flooring, and in the bedding of those afflicted with RMSF. Later, in the early 1950s, an
outbreak of RMSF in the La Laguna region of Mexico was attributed to Rh. sanguineus as
the culprit vector [7]. After decades with few cases, a phenomenon hypothesized to be
caused by DDT (dichlorodiphenyltrichoroethane) use [45], RMSF has reemerged in Mexico
during the last two decades [7]. Contemporary outbreaks have again been associated
with tick-infested free roaming dogs and have occurred in La Laguna, Sonora, and Baja
California, where the reported case fatality rate in the latter two regions is 44% and 18%,
respectively [16,46].

RMSF outbreaks have occurred in Brazil, where it is called Brazilian spotted fever,
since the 1920s. Cases decreased in the 1950s and remained low until the 1980s, when
the disease alarmingly reemerged [47]. Most cases are reported in southeastern Brazil
(the highest incidence is in São Paulo state) [48], and the case fatality rate is as high as
40% [49]. The ecology of R. rickettsii in Brazil is complex. Amblyomma species are the
main vectors, and capybaras (a large rodent) serve as an amplifying mammalian reservoir.
Capybaras have encroached on suburban habitats, putting them in close contact with
human populations [48]. When dogs cross the environment in which capybaras live, they
can serve as bridge hosts to facilitate human contact with infected ticks [50]. Indeed, dogs
have been documented to have a relatively high seroprevalence to spotted fever group
rickettsiae in Brazil (up to 70%) [51–53], and as many as 13% of Rh. sanguineus have been
found to be infected with R. rickettsii [51]. Additionally, three dogs belonging to a family
of a child who died of RMSF in São Paulo demonstrated seroreactivity to R. rickettsii. In
addition, R. rickettsii-infected A. aureolatum ticks were detected from one of these dogs [54].
Thus, dogs may play a role in the ecology of R. rickettsii in Brazil.

An outbreak of RMSF occuring in Tobia, Colombia was reported in 1937 and was
remarkable for a 95% case fatality rate [55]. The disease was forgotten until two cases were
identified in 2003 in Villeta, Colombia—a community near Tobia [56]. Although the tick
species associated with these cases is unknown, one of the deaths in Villeta was a pregnant
woman whose family had three dogs with an illness believed to resemble canine RMSF
(two of these dogs died and one recovered with doxycycline therapy) [56]. Outbreaks in
Colombia have been subsequently described in Cordoba and Antioquia [57]. The latter
description was of a patient cluster, which was linked to the presence of Rh. sanguineus and
R. rickettsii seropositive dogs [58].

4. Brown Dog Ticks as Vectors of Rickettsia rickettsii

The brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), is a cos-
mopolitan tick commonly found on dogs. The taxonomy of this group is still unresolved,
but it is considered to be a species group that includes two described lineages—tropical and
temperate—associated with distinct vectorial capacities [59]. Rhipicephalus sanguineus s.l.
ticks are involved in the maintenance and transmission of pathogens of high medical and
veterinary importance such as Rickettsia spp. [60–63].

The association between Rh. sanguineus s.l. and R. rickettsii has been studied mostly in
Latin America, using molecular methods. In Mexico, two studies reported 31% [15] and
26% [64] prevalence rates of R. rickettsii in Rh. sanguineus s.l. ticks collected in Mexicali and
Yucatan state, respectively. In Coahuila state in northern Mexico, pools of ticks were tested
by molecular methods, revealing a minimum infection rate of 3.3%. In Brazil, reported
prevalence rates range from 1.27% in São Paulo [53] to 13.1% in Juiz de Fora [51]. Finally, a
study from Panama City, Panama, reported that 8.7% of Rh. sanguineus s.l. ticks collected in
the vicinity of RMSF cases were positive for R. rickettsii.
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A few studies have been conducted in the United States. In the early 2000s, ticks
were collected in Arizona from the homes of RMSF patients with history of contact with
tick-infested dogs or/and tick bites. Rickettsia rickettsii was detected and isolated from 2.2%
of collected ticks [19]. Finally, during a surveillance study in Riverside County, California,
one Rh. sanguineus s.l. tick collected from the vegetation contained R. rickettsii [65].

Dogs are the preferential host of Rhipicephalus sanguineus ticks [66]. Increased tem-
peratures make these ticks more opportunistic. They will feed on available hosts such as
other domestic animals, small wild mammals, including cats, hedgehogs, and rodents, or
humans. Ticks exposed to 40 ◦C attached much more avidly to human skin than those main-
tained at room temperature, and ticks showed a greater preference for humans at higher
temperatures [67,68]. The low host-specificity of this tick increases the risk of transmission
of vector-borne pathogens.

Very few studies have investigated the role of Rh. sanguineus s.l. in the transmission
of R. rickettsii. Piranda et al. showed that Rh. sanguineus s.l. nymphs and larvae acquire
R. rickettsii from bacteremic dogs and that a third of the ticks maintained the bacterium to
the next stage. Moreover, the subsequent adult ticks are able to infect guinea pigs, which
develop high fever, rickettsiae in splenic samples, and rickettsiae in blood [60]. The role of
Rh. sanguineus s.l. in the transmission of R. rickettsii is further supported by the findings of
Silva Costa et al., who demonstrated that the bacterium invades the tick ovaries during
infection. In their study, R. rickettsii successfully invaded the oocytes of both semi-engorged
and fed-to-repletion female Rh. sanguineus ticks [69]. Migration of pathogens to the salivary
glands and ovaries of arthropod vectors is a crucial step for horizontal and transovarian
transmission, respectively. It is therefore significant that the demonstration of the presence
of live pathogens in these anatomic locations is a strong suggestion that the arthropod
might be a vector, reservoir, and an element in an important zoonotic cycle.

Rhipicephalus ticks are associated with several rickettsiae other than R. rickettsii, and
their transmission has been more studied. Rickettsia conorii, for example, is the etiologic
agent of Mediterranean spotted fever (MSF), a rickettsial disease endemic in northern Africa
and Southern Europe [70]. Rhipicephalus sanguineus s.l. ticks were implicated in the trans-
mission of this Rickettsia spp. a century ago when Blanc and Campinopetros demonstrated
in 1932 that patients inoculated with crushed infected ticks contracted MSF [61]. Transovar-
ial transmission of R. conorii was confirmed using naturally infected ticks collected from
dogs in the vicinity of MSF cases. The ticks were maintained under laboratory conditions,
and eggs and larvae were tested after each generation, up to 11 generations. At the eleventh
generation, the bacterium was still detected in all ticks tested and, in this study, R. conorii
was also shown to invade the salivary glands and ovaries of Rh. sanguineus s.l. [71].

Rhipicephalus turanicus is a tick species closely related to Rh. sanguineus s.l, which is
highly similar in terms of morphology and genotypic features. Both species commonly
infest dogs [72,73]. Rickettsia massiliae is a spotted fever group Rickettsia spp. first isolated
in 1990 from Rh. turanicus, near Marseille, France [74]. Transovarial transmission of the
bacterium was further demonstrated by PCR testing and Gimenez staining of rickettsiae in
hemolymph over several generations. High-fidelity transovarial transmission (100%) was
demonstrated as well as the presence of the bacterium in the tick saliva [75].

Although the literature documenting the role of Rh. sanguineus s.l. in the transmis-
sion of R. rickettsii is incomplete, there is enough evidence to support the conclusion
that Rh. sanguineus ticks are efficient vectors and reservoirs of rickettsiae. Targeting their
main host, dogs, would be a highly relevant approach to control vector-borne pathogens
transmitted by these ticks.

Considering the role of dogs in transmitting RMSF to humans, an ideal vaccine against
R. rickettsii in canines would not only be safe but also, probably more importantly, confer
sterile immunity without active bacterial infection in blood.
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5. Potential Vaccine Strategies

Retrospectively, there are three types of vaccines that have been developed against
R. rickettsii: whole-killed bacteria, subunit vaccines and live-attenuated vaccines. Although
whole-killed rickettsiae have not shown apparent toxicity, these inactivated vaccines failed
to provide complete protection against RMSF in either animals or humans [23,28,76].
Compared to inactivated whole-organism vaccines, subunit vaccines generally cause less
adverse reactions, but they are less immunogenic so that adjuvants are often used with
subunit vaccines in order to enhance and modulate the immunogenicity of the antigens.
Of course, adjuvants are also useful for whole organism vaccines. Subunit experimental
vaccines against rickettsioses have been studied previously and shown to only provide
limited or moderate protection against rickettsioses in vivo [77–79]. Some surface cell
antigens (Sca) in rickettsial species have been described to be involved in participating in
adhesion to and invasion of mammalian target cells [80–82]. These antigens, including
OmpA (Sca0), OmpB (Sca5), Sca2, and Sca4, evolved under positive selection and are
present in the genomes of most rickettsial species.

Live-attenuated vaccines usually have the advantages of single dose, rapid onset of
immunity, and durable protection, although these vaccines often cause safety concerns.

6. Prospects for an Effective Subunit Vaccine

Potential development of a subunit vaccine requires critical evaluation of candidate
antigens for evidence of efficacy and stimulation of protective immunity. Surface-exposed
proteins such as autotransporters as vaccines for spotted fever group rickettsiae, particu-
larly outer-membrane proteins A (OmpA) and OmpB, which are also known as Sca0 and
Sca5, respectively, have been investigated. A non-purified N-terminal fragment of recom-
binant OmpA that contains conformational epitopes that are reactive with a monoclonal
antibody protected mice from the lethal R. rickettsii toxicity phenomenon, death within 24 h
of intravenous inoculation of an ordinarily lethal dose of rickettsiae [83]. Although this
phenomenon of an undetermined, but likely host-mediated, mechanism does not repre-
sent an infection, it seems to correlate, although imperfectly, with protection from actual
infection [84]. The recombinant OmpA fragment was later shown to also protect guinea
pigs from a lethal dose of R. rickettsii [85]. Subsequently immunization with baculovirus
full-length recombinant R. rickettsii OmpA administered with incomplete Freund’s adjuvant
followed by one booster immunization protected guinea pigs against an ordinarily lethal
R. rickettsii challenge [86]. Studies of other species of Rickettsia offer further information
that is relevant to R. rickettsii vaccine design. Immunization with an N-terminal fragment
of OmpA of a closely related spotted fever group organism, R. conorii, protected guinea
pigs from an R. conorii challenge and partially protected them against R. rickettsii [87]. A
DNA vaccine containing a combination of gene fragments of R. rickettsii sca0 and sca5 and
the corresponding OmpA and OmpB peptides partially protected mice against R. conorii
infection [87]. Although all of the guinea pigs challenged with R. rickettsii survived, eight
of nine animals developed fever and five of them lost weight and developed scrotal lesions
indicative of disseminated infection. It should be noted that the above studies describe
protection, but illnesses often occurred in the animals challenged with virulent organisms.

A critical experiment was immunization of mice with the passenger domain of OmpB
(amino acids 36 to 1344) of R. conorii produced and purified under native conditions
with colonization factor adjuvant and then boosted twice with the same OmpB fragment
administered with incomplete Freund’s adjuvant [79]. Most of the immunized mice became
ill after retroorbital intravenous challenge and 30% died by day 10. All the control mice
including those immunized with denatured OmpB passenger domain died. Although
the R. rickettsii retroorbital inoculation mouse model lacks validation, these data indicate
that native OmpB stimulates some protection and that nonconformational OmpB does
not. Previous studies had demonstrated that the passive transfer of a monoclonal antibody
reactive with OmpA or OmpB was protective against lethal R. conorii challenge in SCID
mice and protected against other spotted fever group rickettsiae in guinea pigs, strongly
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indicating that humoral immunity to OmpA and OmpB is protective [88,89]. Subsequently
vaccination of mice with the passenger domain of R. rickettsii OmpB produced and purified
under native conditions was shown to protect animals from a lethal R. rickettsii challenge but
not an R. conorii challenge [90]. Altogether these experiments demonstrate the importance
of species-specific conformational antigens of OmpA and the passenger domain of OmpB
in stimulating protective immunity against spotted fever group rickettsiae. Furthermore, it
has been demonstrated that OmpB of R. conorii peptide contains antigens that stimulate
CD8 T cells and that both CD8 and CD4 T cells contribute to protective immunity against
R. conorii [91,92].

Interestingly, a recent study showed different results in protection conferred by sub-
unit vaccine using dogs as the experimental model of rickettsial infection compared to
mouse infection [22]. Furthermore, immunization with subunit vaccine, composed of
two immunodominant recombinant antigens including Adr2 and OmpB-4, has been re-
ported to reduce rickettsial infection in murine host challenged with R. rickettsii [93,94].
However, recombinant Adr2 and OmpB-4 did not show potency as vaccine candidates in
dogs because this subunit vaccine failed to show sufficient protection against challenge
with R. rickettsii after immunization.

7. Prospects for a Live Attenuated Vaccine

In association with World War II, the first live-attenuated vaccine against rickettsial
disease, R. prowazekii strain Madrid E, was generated by a serial laboratory passage of
one of the most virulent rickettsiae, R. prowazekii [95]. Only a single nucleotide insertion
in the methyltransferase gene in R. prowazekii turned a highly virulent rickettsial species
to avirulent or low virulence rickettsiae leading to the attempts to utilize R. prowazekii
Madrid E strain as a live-attenuated vaccine against epidemic typhus. However, further
investigations demonstrated the failure of R. prowazekii Madrid E strain as a vaccine due to
reversion of the point mutation leading to restored virulence [96–98].

Rickettsia amblyommatis is maintained in a large portion of Amblyomma americanum
ticks, one of the most prevalent and aggressive human-biting ticks in the US. Rickettsia
amblyommatis is proposed to have much less virulence than R. parkeri. However, the actual
pathogenicity of R. amblyommatis has never been investigated in humans. Interestingly, the
geographic distribution of A. americanum ticks infected with R. amblyommatis is associated
with a high prevalence of antibodies to SFGR in healthy people [40]. Rickettsia amblyommatis
infection induces an asymptomatic immune response that protects against lethal challenge
by R. rickettsii in a guinea pig model. Therefore, the potential of R. amblyommatis as a live
attenuated vaccine could be evaluated including its virulence and phenotypic features
of the infection in humans. Rickettsia parkeri is a low virulence rickettsial species of the
spotted fever group, phylogenetically closely related to R. rickettsii. Recently, a Rickettsia
parkeri mutant RPATATE_0245:pLoxHimar (named 3A2) was generated by inserting a
modified pLoxHimar transposon into the gene encoding a phage integrase protein [99].
The safety, immunogenicity and efficacy of this rickettsial mutant was evaluated as a live-
attenuated vaccine candidate. The safety profile of R. parkeri 3A2 was assessed by murine
host responses to immunization followed by challenge. Although it is not clear how a phage
integrase is important for the virulence of a rickettsial species, interruption of the gene
(RPATATE_0245) encoding the phage integrase markedly attenuated the virulence of wild
type R. parkeri phenotypically. More importantly, this proof-of-concept study demonstrated
the feasibility that immunization with one vaccine candidate can confer complete protection
against two experimental murine lethal rickettsial infections.

One of the obstacles to developing a vaccine against canine infection with R. rickettsii
is our gap in understanding of vaccine-induced memory immunity against subsequent
rickettsial infection. Fortunately, in two validated animal models, the key elements of host
immune protection against primary infection have been demonstrated. TLR4, MyD88, ASC
inflammasome, dendritic cells and NK cells have been shown to contribute significantly to a
potent innate immunity and to induce an educated and primed adaptive immune response
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characterized by cytotoxic- and IFN-gamma-producing CD8+ and CD4+ T cells [100–107].
Effector cytokines including IFN-γ, TNF-α, and IL-12 are expected to play a crucial role
in host clearance of rickettsial infection in vivo [108–111]. In line with findings regarding
vaccine-induced immunity against pathogens other than rickettsiae, a robust IgG antibody
response specific against R. rickettsii is indispensable for protection against RMSF. Although
we speculate that an immune response, induced by a successful vaccine and required for
conferring complete protection against severe RMSF, would be consistent with protective
immunity against primary infection, a deeper understanding of vaccine-induced immunity
against R. rickettsii would facilitate the development of a licensed vaccine. The complete
protection against lethal infection with R. parkeri or R. conorii conferred by R. parkeri mutant
3A2 results from both potent Rickettsia-specific antibody response and Th1 effector cytokines
in sera [99].

8. Scope of Rickettsial Mutants for Vaccine Development

Genetic manipulation of rickettsial genomes for generating gene knockouts has been a
challenge owing to their obligately intracellular lifestyle, lack of appropriate plasmids and
protocols of transformation, restrictions on use of antibiotics for selection, and laborious
processes involved in clonal purification of the mutant strains. Despite these bottlenecks,
progress has been made in the field, and a few rickettsial mutants have been generated
using random (transposon mutagenesis) and site directed (homologous recombination,
Targetron and FRAEM methods) mutagenesis approaches (Table 1), and a few of these
mutants were tested in animal models of infection to determine their role in virulence.

As obligately intracellular pathogens, Rickettsia species enter the host cells via in-
duced phagocytosis, escape from phagosomal vacuoles, and grow in the nutrient-rich
intracytoplasmic environment. Several rickettsial proteins including patatins (pat1 and
pat2), hemolysin C (tlyC), and phospholipase D (pld) were implicated for their roles in
endosomal escape and establishment of infection in the cytosol [112]. To further ascertain
the role of pld, a gene deletion mutant was generated by homologous recombination in
R. prowazekii strain Madrid Evir, and both R. prowazekii pld mutant and wild type parental
strain were evaluated for virulence in a guinea pig infection model. The animals infected
with pld mutant (106 pfu) remained afebrile and gained weight while those infected with
wild type Rickettsia prowazekii developed fever which peaked at day 9–10 p.i., indicating
that pld mutant is attenuated when compared to the wild type organism. Further, challenge
infection of pld mutant (109 pfu)-immunized guinea pigs with virulent R. prowazekii strain
Breinl conferred effective immune protection, and animals remained healthy and gained
weight [113]. Recently, pat1 was shown to have patatin-like phospholipase A2 (PLA2)
enzyme activity required for evasion of autophagy and escape from the vacuole after host
cell invasion. A transposon mutant of R. parkeri pat1 was avirulent when tested in IFN-I
and IFN-Gdouble knockout mice. Although challenged animals lost weight, the majority of
mice infected with pat1::Tn survived for 40 days post-infection while mice infected with
wild type succumbed to infection and died by day 8 p.i. [114]. There was no report of
evaluation of the mutant stimulating immunity to virulent challenge.

Surface exposed outer-membrane proteins and adhesins play a pivotal role in rick-
ettsial adhesion and entry into host cells. Among the well-studied and -characterized
outer-membrane proteins, while OmpB is present in both spotted fever (SFG) and typhus
group (TG) rickettsiae, OmpA is restricted to only SFG species. Although initial studies
implicated a role for OmpA in adhesion of R. rickettsii to host cells [115], targeted dele-
tion of the gene did not impact the internalization of the mutant strain in vitro, and no
significant differences in virulence were observed between the mutant and wild type strain
in vivo [116]. Interestingly, R. parkeri OmpB mutant (ompBSTOP::tn) despite being serum
resistant and able to survive in the blood for 6 h ex vivo was avirulent and could not be
detected in organs at 2 to 72 h.p.i in an animal model of infection, indicating a role for OmpB
in establishment of infection in vivo [117]. A similar observation of reduced infectivity of
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host cells by R. typhi was observed when OmpB protein expression was disrupted using
peptide nucleic acids [118].

Transposon mutagenesis of R. conorii and screening of mutants identified disruption
of two genes (RC0457 and RC0459) belonging to the polysaccharide synthesis operon. Both
the mutant strains exhibited defects in O-antigen synthesis and failed to induce antibody
detected by Weil–Felix serology. The mutants were further investigated for their role in
virulence in vivo, and animals infected with either wild type or RC0459 mutants exhibited
similar levels of weight loss and lethal outcome. However, mice infected with RC0457
mutant did not succumb to infection and remained healthy. Additionally, both mutants
did not elicit IgG antibody responses against LPS as observed during the infection with the
wild-type strain [119].

The intracellular spread of Rickettsia species belonging to the SFG is facilitated by
the activation and recruitment of host actin machinery, and rickettsial RickA and surface
cell antigen 2 (Sca2) proteins have been functionally characterized for their role in actin
polymerization and recruitment of Arp2/3 complex for formation of actin tails and motility.
Interestingly, a transposon mutant of sca2 in R. rickettsii not only failed to recruit actin
and generate actin comet tails in vitro, but also was involved in virulence in vivo. The
sca2::Tn mutant despite replicating sufficiently to cause seroconversion did not cause fever
in infected guinea pigs as was observed in animals infected with the wild type R. rickettsii
strain R [120]. Additionally, sca2 and rickA, though required in actin polymerization, were
not involved in dissemination in ticks [121]. Recently, a negative regulator of actin tail
formation (RoaM) was identified in R. rickettsii by transposon mutagenesis. Deletion of
RoaM drastically increased actin tail formation but did not influence the expression of genes
rickA, sca2 and sca4 that are involved actin recruitment and polymerization. Additionally,
the roaM mutant and wild type strains elicited similar host responses and disease in guinea
pigs, indicating a minimal role, if any, for the deleted gene in virulence [122].

A few effector proteins secreted by types I and IV (T4SS) secretions systems have been
identified in Rickettsia species and tested for their roles in virulence. The rickettsial ankyrin
repeat protein 2 (RARP-2) secreted by T4SS and involved in fragmentation of host cell
trans-golgi network encodes 10 ankyrin repeats in the virulent R. rickettsii strain Sheila
Smith (SS) while the avirulent Iowa strain harbors a 588-bp deletion within the coding
gene and contains only three ankyrin repeats. Expression of full-length SS-RARP-2 in
avirulent Iowa strain resulted in restoration of the lytic plaque phenotype typically present
with virulent strains; however, Iowa strain carrying SS-RARP-2 was avirulent in guinea
pigs [123,124]. Though studies with R. parkeri sca4 transposon mutant deciphered the role
for the gene in binding to vinculin and promotion of protrusion engulfment, no in vivo
studies were performed to determine its role in virulence [125].

Himar1 transposon-based mutagenesis of R. parkeri strain Tate’s Hell resulted in the
deletion of a gene (RPATATE_0245) that encodes a phage integrase family protein. The
mutant strain (3A2) despite exhibiting similar levels of growth compared to wild type
organisms, resulted in a small plaque phenotype suggesting a role for the deleted gene in
virulence. The mutant strain was avirulent; mice injected with the mutant did not develop
hepatic necrosis, as observed in mice infected with the wild-type strain. Further, the mutant
strain was barely detectable in the organs of infected mice at 4 days post-infection despite
inducing strong immunogenic type-I cellular and B-cell responses comparable to those
observed in mice infected with the wild-type strain. Most interestingly, mice immunized
with a single dose of the mutant demonstrated complete protection against challenge
inoculations with wild type R. parkeri and R. conorii, thus providing proof of concept for
utilizing live attenuated rickettsial strains/mutants for the development of vaccines against
rickettsioses [99].

However, further studies aimed at functional and immunological characterization of
rickettsial mutants in large animal models such as dogs are necessary to evaluate their role
in virulence and protective immunity.
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Table 1. List of rickettsial genes disrupted (knock-out or knock down) and tested for their role in
virulence and immune protection.

Rickettsia
Species Gene Outcome Immunization

& Protection Reference

R. prowazekii pld Virulence of the mutant was attenuated in vivo Yes [113]

R. rickettsii sca2 Mutant strain did not elicit fever in a guinea pig
model of infection No [120]

R. montanensis rickAa Knock down of RickA was shown to reduce the
infectivity of host cells, in vitro No [118]

R. typhi sca5 a Knock down of Sca5 was shown to reduce the
infectivity of host cells, in vitro No [118]

R. rickettsii sca0 No change in virulence No [116]

R. parkeri sca4 a Sca4 was shown to bind to vinculin and promote
protrusion engulfment, in vitro No [125]

R. parkeri rickA and sca2 b
Both the genes were involved in actin

polymerization but not involved in dissemination
in ticks.

No [121]

R. rickettsii Rickettsia ankyrin repeat
protein 2 (rarp-2) c

The expression of RARP2 from Sheila Smith in
Iowa did not restore virulence. No [123]

R. conorii RC0459 No change in virulence No [119]

R. conorii RC0457 Virulence of the mutant was attenuated in vivo No [119]

R. parkeri sca5 Virulence of the mutant was attenuated in vivo No [117]

R. parkeri Phage integrase family
protein Virulence of the mutant was attenuated in vivo Yes [99]

R. parkeri Patatin-like
phospholipase (pat1)

The pat1 mutant exhibited reduced virulence in
Ifnar1−/− and Ifngr1−/− double knock out mice. No [114]

R. rickettsii
A1G_06520 (RoaM

[regulator of actin-based
motility])

Disruption of the gene increased the number of
actin tails. There was no increase in virulence by

the mutant in guinea pig model.
No [122]

a Only in vitro studies were performed. a The mutants were studied for their functional role in Amblyomma
maculatum ticks. a The full length RARP2 protein from virulent strain (Sheila Smith) was expressed in avirulent
Iowa strain for in vivo studies.

9. Summary

Breaking the zoonotic cycle that maintains R. rickettsii-infected Rh. sanguineus ticks
in homes and results in transmission of Rocky Mountain spotted fever to the human
inhabitants could be accomplished by development of an effective canine vaccine. Two ex-
cellent candidate approaches are vaccines that contain live attenuated R. rickettsii or a
multiplex subunit vaccine containing OmpA and OmpB of R. rickettsii. There are vaccine
platforms for expression of conformational proteins such as recombinant adenovirus and
messenger RNA.
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