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Objective: To investigate the effects of sport stacking on the overall cognition and

brain function in patients with mild Alzheimer’s disease (AD) and mild cognitive

impairment (MCI).

Methods: A single-blind randomized controlled design was performed using sport

stacking for 30min, 5 days/week for 12 weeks. Forty-eight subjects with mild AD or MCI

were randomly divided into the sport stacking group (T-mAD = 12, T-MCI = 12) and the

active control group (C-mAD = 11, C-MCI = 13). Auditory Verbal Learning Test (AVLT),

Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL),

Geriatric Depression Scale (GDS-30), and Pittsburgh Sleep Quality Index (PSQI) were

performed, the level of amyloid β-protein-40 (Aβ-40), Aβ-42, brain-derived neurotrophic

factor (BDNF), insulin-like growth factor-1(IGF-1), tumor necrosis factor-alpha (TNF-α),

Interleukin-6 (IL-6), and soluble trigger receptor expressed on myeloid cells 2 (sTREM2) in

plasma were tested, and brain functional connectivity in resting state and activation under

finger movement task were analyzed by functional near-infrared spectroscopy (fNIRS).

Results: Thirty-nine patients completed the trial. After 4 weeks, we found a significant

increase in AVLT score in T-MCI (6.36 ± 5.08 vs. −1.11 ± 4.23, p = 0.004), and

T-mAD group (4.60 ± 4.77 vs. −0.11 ± 2.89, p = 0.039). After 12 weeks, there was a

significantly improved in AVLT (9.64± 4.90 vs.−0.33± 6.10, p= 0.002) and ADCS-ADL

(3.36± 3.59 vs.−1.89± 2.71, p= 0.003) in T-MCI. There was a significant improvement

in AVLT (5.30 ± 5.42 vs. 0.44 ± 2.40) in T-mAD (p < 0.05). Plasma levels of BDNF
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were upregulated in both T-MCI and T-mAD, and IGF-1 increased in T-MCI (P < 0.05)

compared to the control groups. The functional connectivity in MCI patients between

DLPFC.R and SCA.R, SMA.L, and SCA.R was decreased. In contrast, in mAD patients,

the brain regional function connection was increased between DLPFC.R and Broca’s.L.

The activation of channel 36 located in the left primary somatosensory cortex was

significantly increased after 12-week training, which was correlated with the improved

AVLT and the increase of BDNF.

Conclusion: Our findings suggested that sport stacking is effective for patients with

MCI and mild AD, possibly through increasing the expression of neuroprotective growth

factors and enhancing neural plasticity to improve neurocognitive performance.

Clinical Trial Registration: https://www.ClinicalTrials.gov, ChiCTR.org.cn,

identifier: ChiCTR-2100045980.

Keywords: sport stacking, AD, MCI, Alzheimer’s disease, mild cognitive impairment, neuropsychological,

neurobiological, fNIRS

INTRODUCTION

Mild cognitive impairment (MCI) is an intermediate state
between normal aging and dementia, with about 15% would
progress to dementia in 2 years (Petersen et al., 2018), and one-
third (32%) develop Alzheimer’s disease (AD) within 5 years
(Ward et al., 2013). As predicted, the number of people with
dementia will reach to 78 million by 2030 (Gauthier et al.,
2021). However, there is still a lack of effective pharmacological
treatment today for AD, the most common cause of dementia.
In recent years, non-pharmacologic treatments have drawn wide
attention by showing their significant role in improving and
maintaining cognitive function, quality of life, and daily function
in patients with different severity of cognitive impairment.
Moreover, a recent review found non-pharmacologic treatments

seemed to be more effective than pharmacologic treatments for
agitation and aggression in people with dementia (Watt et al.,

2019). Aerobic exercise, the mainly studied physical activity
among non-pharmacological treatments, has been shown to

enhance the cognitive function of people with AD, reduce the risk

of AD and other dementia, and delay the onset or progression
(Groot et al., 2016; Hamer et al., 2018; Song et al., 2018). However,

regular aerobic exercise may be difficult for dementia patients to
adhere (Yágüez et al., 2011) for poor interest (Maltais et al., 2019)
and low participation of the elderly (Padala et al., 2017).

Sport stacking is a new sport that began in the early 1980s.
Participants use 12 specialized cups with both hands to make
a pyramid (“up stacking”) and then return the cups into stacks
(“down stacking”). The whole process must be in predetermined
sequences (Hart et al., 2005). Sport stacking could be seen
more suitable for patients with cognitive impairment because
it is combined with the game and physical activity, which can
trigger a high willingness to participate (Park, 2017). Previous
studies showed that sport stacking was beneficial inmany aspects,
such as hand-eye coordination (Hart et al., 2006), reaction time
(Liggins et al., 2007), bilateral coordination (Rhea et al., 2006),
and dual hemispheric brain activity (Hart and Bixby, 2005). Some

studies have applied sport stacking to stroke patients and found
significant improvement in reaction time (Tretriluxana et al.,
2014). Despite its beneficial role for cognitive improvements in
other diseases, there is still a lack of evidence for the effect of sport
stacking on people with dementia.

Growing evidence suggests that AD is a multifactorial disease
that affects the central nervous system and systemic processes
(Morris et al., 2014). More specifically, increased inflammation
and production of reactive oxygen species (ROS) might also
play an essential role in the pathophysiology of MCI and AD
(Gilgun-Sherki et al., 2001; Rosenberg, 2005; Koyama et al.,
2013). Evidence shows that physical activity appears to have
a positive effect on inflammation, oxidation, and neurotrophic
biomarkers by enhancing the antioxidant activity of plasma and
reducing the serum expression of proinflammatory cytokines,
which may affect the destructive effects of oxidative stress and
inflammation in nerve tissue (Stigger et al., 2019). Physical
exercise has been shown to produce an increase in brain-derived
neurotrophic factor (BDNF) and variable response to insulin-
like growth factor-1 (IGF-1) (Anderson-Hanley et al., 2018).
However, the evidence for the effect of sport stacking on these
biomarkers as well as AD biomarkers is unknown.

Functional Near-Infrared Spectroscopy (fNIRS) is a new
brain mechanism functional imaging technology which can
perform advanced cognition and interactive behavior in natural
situations. It makes up for the limitations of detection tools
such as single-photon emission computed tomography (SPECT),
positron emission tomography (PET), and functional magnetic
resonance imaging (fMRI) (Liu et al., 2011; Yeung and Chan,
2020). fNIRS can evaluate the activation of different brain regions
by observing the changes of oxygenated hemoglobin (Oxy-Hb),
deoxyhemoglobin (Deoxy-Hb), and total hemoglobin (Total-
Hb) concentration curves in different brain regions during the
cognitive process. Hoshi (2011) indicated that monitoring the
changing trend of blood oxygen concentration in the prefrontal
cortex while completing cognitive tasks could objectively reflect
the subjects’ cognitive level. Since the abilities of language

Frontiers in Aging Neuroscience | www.frontiersin.org 2 May 2022 | Volume 14 | Article 910261

https://www.ClinicalTrials.gov
https://ChiCTR.org.cn
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. Effects of Sport Stacking

comprehension, execution of an action, working memory, and
movements are needed in fulfilling sport stacking, the brain
regions of interest (ROI) were selected in corresponding to
these functions. Recent studies have shown that the dorsolateral
prefrontal cortex (DLPFC) is a crucial area for processing various
behavioral tasks, and specifically, the right DLPFC (DLPRC.R)
modulates the direction of these tasks (Xia et al., 2021) and
semantic cognition (Herbet et al., 2018). Broca’s area, a prefrontal
region that was demonstrated to not only be involved in
language production and comprehension but also play a role in
several non-language-related functions such as workingmemory,
execution, and perception of action (Clos et al., 2013; Kepinska
et al., 2018). In addition, the subcentral area (SCA), also known as
the subcentral motor cortex, and left supplementary motor area
(SMA.L) are correlated with hand movements and grip (White
et al., 2013; Auer et al., 2018; Eichert et al., 2021). Therefore, we
select DLPFC.R, SCA.R, SMA.L, and Broca’s area as the ROIs in
this study.

This study aimed to investigate the effects of sport stacking
on the neurocognitive performances, molecular biomarkers, and
brain function performances in patients with mild AD and
MCI. We hypothesized that sport stacking would effectively
improve the cognitive function of patients with mild AD and
MCI, potentially through divergent molecular factors (e.g.,
neuroprotective growth factors and cytokines) and the changes
in activation of brain areas examined by fNIRS.

MATERIALS AND METHODS

Study Design
The current study was designed as a single-blind randomized
controlled trial (RCT) of 12 weeks of sport stacking vs. a
non-exercise and clinic routine management control group.
Participants were included from May 2021 to September 2021.
The Medical Ethics Committee of the First Affiliated Hospital of
Chongqing Medical University approved the research protocol.
The study was conducted in compliance with the Declaration
of Helsinki’s ethical standards (World Medical Association,
2013). It was registered on the Chinese Clinical Trial Registry
(Registration No.: ChiCTR2100045980). Participants all agreed
to participate in the study and gave written informed consent.

Participants
Eligible elderly participants with a clinical diagnosis of dementia
(DSM-IV) or NINCDS-ADRDA Alzheimer’s Criteria would be
recruited from the geriatric memory clinic at the First Affiliated
Hospital of Chongqing Medical University between May 2021
and September 2021. Eligibility criteria for inclusion were:
1) between 60 and 90 years of age; 2) a Clinical Dementia
Rating (CDR) score of 0.5 or 1; 3) at least 3 months of stable
doses if receiving antidementia medication or mood-stabilizing
medication; 4) basic communication skills and normal vision
and hearing; and 5) informed consent. Exclusion criteria were:
1) severe psychiatric illness and the use of antidepressants; 2)
alcohol or drug abuse; 3) participation in exercise more than
twice weekly on a regular basis; and 4) any medical condition

precluding participation in the exercise program (e.g., severe
cardiovascular, musculoskeletal, or neurological disease).

Sample Size
Cognition (ADAS-Cog) was the primary outcome measure.
We calculated that a sample size of 40 participants would
provide 80% power (at a two-tailed α-level of 0.05) for detecting
differences between groups for an effect size of 0.46 in the ADAS-
Cog (Orrell et al., 2012). Assuming a 20% attrition rate, the
study recruited a total of 48 participants (24 per group). Sample
size calculation was performed using G∗Power 3.1.9 (Faul et al.,
2007).

Randomization and Blind
Forty-eight patients who met the inclusion criteria were
randomized 1:1 ratio to receive either the intervention
(sport stacking) or control (clinic routine management) via
a computer-generated randomization sequence by a statistician.
Allocation concealment was ensured since the randomization
was performed by a research assistant who was not involved in
the assessment or intervention. This was a single-blind study in
which study participants were blinded to the group allocation.

Procedure
In the sport stacking group, participants and their caregivers
were taught how to stack the cups in a specific sequence with
the correct technique using the lesson plans recommended in
the Speed Stacks R© instructor guide (Speed Stacks, 2014) by
an experienced instructor at the geriatric clinic or online from
baseline to the 3rd month.

Participants needed a set of stacking tools to practice,
including 12 cups, a timer, and a stacking mat. To facilitate the
self-practice at home, a set of audiovisual videos showing the
skills trained in all lessons was provided as a reminder to guide
the participants’ self-practice. The whole training lessons consist
of 3 patterns, including 3–3–3, 3–6–3, and the Cycle. Because
of the characteristics of elderly participants with dementia, three
lessons were divided into 7 stages, including 3, 3–3–3, 6, 3–6–
3, 3–6–3 & 6–6, 1–10–1, and the Cycle. The difficulty of the
stages increased per level to ensure that the training remained
cognitively challenging. Participants were asked to practice sport
stacking at least 30min a day and at least 5 days a week for a total
of 3 months at home. Meanwhile, the participants were asked to
record each time they finished sport stacking and the duration of
their daily self-practice at home. The caregivers were encouraged
to assist the participants in the practice and compliance recording
process. The participants or their caregivers were asked to video-
tape the participants’ self-practice on the first and last day of each
week to the researcher for collecting feedback. These videos could
be used to check the participants’ mastery of the sport stacking
mode and correct their inaccuracies promptly. Adherence to the
intervention was calculated by the number of pages of the self-
recording logbook and the videos of participants’ self-practice.

In the control group, all participants (MCI andmAD) received
routine management from the Memory Clinic, mainly including
(1) Regular medication; (2) Basic health education (medication,
diet, exercise, etc.).
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Experimental Procedure and
Measurements
The neuropsychological evaluations were administrated at three
timepoints, namely baseline before randomization, immediately
after 4 weeks and after 12 weeks of sport stacking training.
Blood tests and fNIRS measurements were conducted at baseline
and 12 weeks. The assessments were carried out at the
Memory Clinic, Department of Geriatrics, The First Affiliated
Hospital of ChongqingMedical University. Under certain special
circumstances, the neuropsychological evaluations of some of
the participants were carried out online. And trained research
assistants were blind to group allocation.

Neuropsychological Evaluation
The Mini-mental State Examination (MMSE; Folstein et al.,
1975), and the Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-Cog; Mohs et al., 1983) were used to evaluate
the global cognition, behavior, and ability to manage daily life.
The Auditory Verbal Learning Task (AVLT; Arnáiz et al., 2004)
was used to assess their memory. We used the clock drawing
test (CDT; Sunderland et al., 1989) to assess executive functions.
The 30-Geriatric Depression Scale (GDS-30; Yesavage et al.,
1982) was used to rate the severity of depressive symptoms.
The Alzheimer’s Disease Cooperative Study–Activities of Daily
Living scale (ADCS-ADL; Galasko et al., 1997) was used to assess
activities of daily living function of patients with AD and MCI.
The Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989)
was used to measure sleep quality.

Neurobiological Measurements
A 10-mL blood sample was obtained by a qualified nurse from
the antecubital vein prior to and after the intervention. The
blood samples were drawn to analyze serum amyloid β-protein
(e.g., Aβ-40, Aβ-42), neuroprotective growth factors (e.g., BDNF,
IGF-1), cytokines (e.g., TNF-α, IL-6), and markers of microglia
activation and reactive oxygen species (e.g., sTREM2) levels.
The blood samples were centrifuged at 3,000 rpm for 15min,
and serum was isolated and kept at −80◦C until the next
step. The levels of serum amyloid β-protein, neuroprotective
growth factors, inflammatory cytokines, and plasma sTREM2
were analyzed using the Human ELISA kit (Shanghai Jianglai
Industrial Limited by Share Ltd., Shanghai, China).

fNIRS Tasks, Acquisition and Analysis
Resting State and Finger Movement Task
The 8-min resting state at the sitting position took place in a
sound-attenuated room. During the resting state recording, the
participants were required to stay still and keep their eyes closed
without falling asleep.

The finger movement task refers to a simple finger sequence
(SFS) (Anwar et al., 2016), which requires the participants to
sequentially tap the index, middle, ring, and the fourth finger
against the thumb on both hands simultaneously. A block design
was used in which subjects were asked to perform the finger
movement task (SFS) for 20 s followed by 20 s rest for 6 repeat
times (Figure 1A).

fNIRS Acquisition
In this experiment, the hemoglobin concentrations were
measured using a multi-channel fNIRS system (NirScan,
Danyang Huichuang Medical Equipment Co. Ltd, China). The
sampling frequency was 11Hz, and the wavelengths were 760
and 850 nm, according to the requirements of the internationally-
used 10/20 electrode distribution system. We used the FPz
channel (10/20 international system) as the center of the middle
probe; a total of 31 SD probes (consisting of 15 sources and 16
detectors) with a fixed 3-cm inter-probe distance were placed
to cover each subject’s bilateral prefrontal cortex (PFC) and
temporal cortices, and the lowest probes were positioned along
with the Fp1–Fp2 line (Figures 1B,C). A total of 48 NIRS
channels were established. The channels and the corresponding
brain regions are consistent with a previous study (Liu et al.,
2022).

Pre-processing
We used the NirSpark software package v1.7.3 (Danyang
Huichuang Medical Equipment Co. Ltd, China) to analyze
NIRS data. Data were preprocessed via the following steps.
Motion artifacts were corrected by a moving SD and a cubic
spline interpolation method. All differential path-length factors
(DPF) were set to 6.0. According to previous studies (Li
et al., 2021; Zhang et al., 2021), a bandpass filter with cut-
off frequencies of 0.01–0.20Hz was used to minimize noise,
global trends, and biological signals (e.g., respiration and
cardiac activity). The modified Beer-Lambert law was applied
to convert optical densities into changes in Oxy-Hb and
Deoxy-Hb concentrations. We used Oxy-Hb as our primary
indicator in the following analysis because the Oxy-Hb signal
generally has a better signal-to-noise ratio than Deoxy-Hb
(Strangman et al., 2002).

Block Average
SFS block waveforms were calculated with a pre-baseline range
set of 0–10 s and a block range set of 0–40. We used a 20 s task
period of constructing phrases as the time window to analyze
mean Oxy-Hb during the task and compare 20 s task period
with 20 s rest period to analyze the Oxy-Hb change between task
and baseline.

GLM Analysis
The generalized linear model (GLM) was used to analyze
the Oxy-Hb time series data. The t-test was performed on
the baseline and task state signals for each channel of each
subject. The canonical hemodynamic response function (HRF)
with time and dispersion derivative was selected as the basic
function of the GLM. Through calculating the match between
the experimental HRF value and the designs, the GLM can
derive a value of activation coefficient β value representing the
intensity of activation triggered by the task in the subject’s
cerebral cortex.

Functional Connectivity Analysis
The regions of interest (ROI) were selected as right dorsolateral
prefrontal cortex (DLPFC.R) (channel 26, 28, and 40), left
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FIGURE 1 | Illustration of finger movement task (simple finger sequence) paradigm (A) and positions of 48 channels (B,C) (Informed consent was obtained from the

patient).

Broca’s Area (Broca’s. L) (channel 30, 31, and 32), left
supplementary motor area cortex (SMA.L) (channel 46),
and right subcentral area (SCA.R) (channel 17). For each
resting-state dataset, functional connectivity (FC) was analyzed
by performing Spearman’s correlation between the time series of
each channel-to-channel pair, resulting in a 48 × 48 matrix of
R-values (Supplementary Figure 1).

Statistical Analysis
All statistical analyses were performed by IBM SPSS ver. 26.0
(IBM Corp., Armonk, USA). The NirSpark software package
v1.7.3, GraphPad Prism 9, and Photoshop software were used
to generate figures and graphs. The Shapiro–Wilk test and
the Levene test were used to determine the normality and
homoscedasticity of the data. All data expressed as mean ±

standard deviation (SD). All the (outcome) variables were
analyzed for differences between control and intervention groups
using independent-sample Student’s t-tests and the Mann–
Whitney U-test for continuous variables, and Fisher’s exact tests
for categorical variables. The between-group difference in the
change of score of the continuous variables from baseline to
follow-up at 4 and 12 weeks were analyzed by using delta(1)-
linear mixed models (1 = change from baseline), where “change
from baseline” represents the difference between the baseline
and follow-up groups for each diagnosis, after adjusted for
the premeasurement covariates (age and sex) for primary and
secondary endpoint outcomes. Unpaired t-tests were used to

compare mean and Oxy-Hb changes between mild AD and
MCI cohorts, and paired t-tests were used to compare the R-
values of FC and β-value of task activation between baseline
and 12-week follow-up in T-mAD and T-MCI group. A p <

0.05 was considered statistically significant, and all p-values were
two-tailed. The statistical results were corrected for multiple
comparisons across channels by the false discovery rate (FDR).
Additionally, we calculated the Pearson correlation coefficient
between changes in brain region activation (β-value), BDNF
levels, and neuropsychological performances (AVLT) in the T-
mAD group.

RESULTS

A total of 48 patients participated in the study, and 39 patients
completed the study (21 in the intervention group and 18 in
the control group). During this period, 39 patients completed
neuropsychological assessments, 32 patients gave blood samples,
and 29 completed measurements of fNIRS at baseline and 12-
week follow-up (mAD= 15, MCI= 1 4 ).

Characteristics of the Study Population
A total of 48 eligible patients, 23 with MCI and 25 with mild
AD, were enrolled in the study. Twenty-four were assigned to the
intervention group (IG) and 24 to the control group (CG). Before
the end of the trial, 9 participants withdrew (2 loss of interest; 2
refused to hospital; 2 no time; 1 poor health; 1 unable to contact

Frontiers in Aging Neuroscience | www.frontiersin.org 5 May 2022 | Volume 14 | Article 910261

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. Effects of Sport Stacking

and 1 other reasons), resulting in a drop-out rate of 18.8%.
Thirty-Nine patients [26 female (66.7%); mean (SD) age, 73 (6.9)
years] completed the study at last (IG: n = 21; CG: n = 18).

The Consolidated Standards of Reporting Trials (CONSORT)
flowchart outlining the number of participants from screening
to study completion at 12-week follow-up is shown in Figure 2.

FIGURE 2 | Study flow chart.
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TABLE 1 | Baseline characteristics of the participants (n = 39).

MCI (n = 20) mAD (n = 19)

Control

group (n = 9)

Intervention

group (n = 11)

p-value Control

group (n = 9)

Intervention

group (n = 10)

p-value

Sex distribution (female/male), n (%) 4/5 7/4 0.653c 7/2 8/2 1.000c

Age (years) 72.0 (8.1) 70.5 (5.4) 0.617a 75.9 (8.0) 73.1 (5.2) 0.374a

Education (years) 9.6 (4.9) 9.7 (3.3) 0.766b 9.3 (3.0) 8.8 (3.9) 0.744a

Marital status

Single/divorced/separated/widowed, n (%) 1 (11.1%) 3 (27.3%) 0.591c 3 (33.3%) 3 (30.0%) 1.000c

Married, n (%) 8 (88.9%) 8 (72.7%) 6 (66.7%) 7 (70.0%)

AD medication

Yes 4 (44.4%) 2 (18.8%) 0.336c 9 (100.0%) 10 (100.0%) 1.000c

No 5 (55.6%) 9 (81.2%) 0 (0.0%) 0 (0.0%)

MMSE score 25.4 (2.4) 26.6 (3.0) 0.131b 19.8 (3.2) 17.8 (3.2) 0.156b

ADAS-cog score 12.2 (5.7) 9.8 (8.3) 0.131b 19.4 (9.3) 21.9 (6.0) 0.486a

AVLT immediate recall score 20.1 (7.0) 21.5 (5.2) 0.629a 12.1 (5.7) 11.8 (5.0) 0.657a

AVLT delay recall score 3.8 (3.7) 6.1 (3.6) 0.171a 2.0 (3.0) 1.0 (1.3) 0.661b

CDT score 13.4 (1.8) 13.3 (2.2) 0.941b 9.2 (3.9) 9.1 (2.6) 0.936a

ADCS-ADL score 57.7 (8.1) 61.7 (3.1) 0.331b 53.1 (8.8) 51.4 (9.7) 0.693a

GDS-30 score 8.0 (4.8) 5.5 (4.2) 0.152b 7.1 (2.3) 5.4 (3.0) 0.188a

PSQI score 5.9 (4.3) 6.4 (4.0) 0.801a 6.7 (2.9) 6.1 (3.7) 0.515a

a Independent sample t-test.
bMann–Whitney U-test.
cFisher’s exact test.

MCI, Mild cognitive impairment; mAD, mild Alzheimer’s disease; MMSE, Mini-mental state examination; ADAS-cog, Alzheimer’s Disease Assessment Scale– Cognitive Subscale; AVLT,

Auditory Verbal Learning Test; CDT, Clock Drawing Test; ADCS-ADL, Alzheimer’s Disease Cooperative Study–Activities of Daily Living scale; GDS-30, 30-item Geriatric Depression

Scale; PSQI, Pittsburgh Sleep Quality Index.

There were no significant statistical differences in characteristics
or neuropsychological assessment results between the groups
at baseline. Baseline characteristics of the study population are
shown in Table 1.

Neuropsychological Tests
As shown in Tables 2, 3, after the 4-week intervention, there
was a significant improvement in AVLT in T-MCI (6.36 ± 5.08
vs. −1.11 ± 4.23) and T-mAD (4.60 ± 4.77 vs. −0.11 ± 2.89)
compared with the corresponding control group (P< 0.05). After
the 12-week intervention, there was a significantly improved
AVLT (9.64 ± 4.90 vs. −0.33 ± 6.10) and ADCS-ADL (3.36 ±

3.59 vs. −1.89 ± 2.71) in T-MCI, and there was a significant
improvement in AVLT (5.30 ± 5.42 vs. 0.44 ± 2.40) in T-mAD
compared with the corresponding control group (p < 0.05).

Neurobiological Tests
As shown in Tables 4, 5, most inflammatory markers remained
unchanged after sport stacking. After the 12-week intervention,
there was a significant improvement in BDNF in T-MCI (41.6 ±
24.3 vs.−7.5± 55.2 ng/ml) and T-mAD (29.9± 33.4 vs.−23.5±
25.5 ng/ml), as compared with the corresponding control group
(p < 0.05). We found a significantly increased IGF-1 (2.7 ± 5.3
vs.−4.7± 11.6 ng/ml) and IL-6 (0.5± 0.2 vs. 1.0± 0.2 pg/ml) in
T-MCI compared with the control group (p < 0.05).

Inter-cohort fNIRS Analysis
We firstly compared the mean Oxy-Hb concentration during
the SFS task between mild AD cohort and MCI cohort, as
well as the Oxy-Hb change between task and baseline. As
is presented in Figures 3A,B,D, compared to MCI patients,
significant lower Oxy-Hb concentrations during the task were
exhibited in mild AD patients in channel 2, 4, 8, and 43
[mean with 95% CI, mAD vs. MCI, CH2: −0.0058 (−0.0205,
0.0088) vs. 0.0348 (0.0122, 0.0573), p = 0.006; CH4: −0.0054
(−0.0229, 0.01200) vs. 0.0329 (0.0137, 0.0521), p = 0.019; CH8:
−0.0006 (−0.0142, 0.0129) vs. 0.0408 (0.0235, 0.0581), p= 0.008;
CH43: −0.0053 (−0.0137, 0.0032) vs. 0.0354 (0.0178, 0.0530), p
= 0.0004; all after FDR corrected]. Next, the Oxy-Hb change
(task-rest) during SFS task in mild AD and MCI cohorts were
shown in Figures 3C,E. Compared with MCI subjects, mild
AD patients showed significant lower differences of Oxy-Hb
level between the task and rest in channel 25 and channel 43
[mean with 95% CI, mAD vs. MCI, CH25: −0.0042 (−0.0208,
0.0126) vs. 0.0397 (0.0228, 0.0567), p = 0.0005; CH43: −0.0001
(−0.0101, 0.0098) vs. 0.0287 (0.0156, 0.0418), p= 0.0007; all after
FDR corrected].

Functional Connectivity Change After
Intervention
In both T-MCI and T-mAD groups, the changes of R-values
among every two ROIs for each subject between baseline and
12-week follow-up were compared by paired t-test and were
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TABLE 2 | Adjusted comparison of neuropsychological outcomes between changes from baseline at 4 and 12 weeks after intervention in patients with MCI (n = 20).

Outcomes Control group (n = 9) Intervention group (n = 11) 4-week adjusted

estimate (95%

CI)a; P-value

12-week

adjusted

estimate (95%

CI)a; P-value

Baseline Change from

baseline at 4

weeks

Change from

baseline at 12

weeks

Baseline Change from

baseline at 4

weeks

Change from

baseline at 12

weeks

MMSE 25.44 (2.35) 0.33 (1.66) −0.11 (1.83) 26.64 (2.98) −0.09 (1.38) −0.09 (1.81) −0.7 (−2.1–0.7);

0.301

−0.02 (−1.9–1.8);

0.982

ADAS-cog 12.23 (5.71) −1.19 (4.45) −1.97 (3.32) 9.83 (8.30) −2.98 (5.08) −3.36 (5.29) −2.0 (−6.9–2.9);

0.398

−1.3 (5.9–3.3);

0.552

AVLT immediate

recall

20.11 (7.01) −1.11 (4.23) −0.33 (6.10) 21.45 (5.22) 6.36 (5.08) 9.64 (4.90) 7.4 (2.7–12.1);

0.004

9.6 (4.0–15.1);

0.002

AVLT delay recall 3.78 (3.67) 1.11 (3.14) 1.56 (2.24) 6.09 (3.56) 1.82 (4.19) 4.00 (3.29) 0.7 (−3.2–4.5);

0.718

2.6 (−0.3–5.6);

0.074

CDT 13.44 (1.81) −2.00 (2.83) −3.22 (3.42) 13.27 (2.24) −0.36 (2.01) −0.18 (2.56) 1.4 (−0.9–3.6);

0.222

2.5 (−0.3–5.3);

0.072

ADCS-ADL 57.67 (8.11) −0.22 (1.92) −1.89 (2.71) 61.73 (3.13) 0.36 (1.69) 3.36 (3.59) 0.4 (−1.3–2.1);

0.661

5.4 (2.2–8.7);

0.003

GDS-30 8.00 (4.80) 0.00 (2.45) 0.22 (2.77) 5.45 (4.16) −0.09 (2.95) −0.82 (3.46) −0.03 (−2.8–2.8);

0.980

−1.1 (−4.3–2.2);

0.497

PSQI 5.89 (4.31) 0.00 (1.87) 0.44 (2.70) 6.36 (3.96) 0.64 (2.66) −1.27 (2.76) 1.1 (−0.9–3.2);

0.266

−1.2 (−3.8–1.3);

0.319

aControlling for age and sex.

MMSE, Mini-mental state examination; ADAS-cog, Alzheimer’s disease assessment scale–cognitive subscale; AVLT, auditory verbal learning test; CDT, clock drawing test; ADCS-ADL, Alzheimer’s disease cooperative study–activities of

daily living scale; GDS-30, 30-item geriatric depression scale; PSQI, Pittsburgh sleep quality index.

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc

ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

8
M
a
y
2
0
2
2
|
V
o
lu
m
e
1
4
|A

rtic
le
9
1
0
2
6
1

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. Effects of Sport Stacking

T
A
B
L
E
3
|
A
d
ju
st
e
d
c
o
m
p
a
ris
o
n
o
f
n
e
u
ro
p
sy
c
h
o
lo
g
ic
a
lo

u
tc
o
m
e
s
b
e
tw

e
e
n
c
h
a
n
g
e
s
fr
o
m

b
a
se

lin
e
a
t
4
a
n
d
1
2
w
e
e
ks

a
ft
e
r
in
te
rv
e
n
tio

n
in

p
a
tie
n
ts

w
ith

m
ild

A
D
(n

=
1
9
).

O
u
tc
o
m
e
s

C
o
n
tr
o
l
g
ro
u
p
(n

=
9
)

In
te
rv
e
n
ti
o
n
g
ro
u
p
(n

=
1
0
)

4
-w

e
e
k
a
d
ju
s
te
d

e
s
ti
m
a
te

(9
5
%

C
I)
a
;

P
-v
a
lu
e

1
2
-w

e
e
k
a
d
ju
s
te
d

e
s
ti
m
a
te

(9
5
%

C
I)
a
;

P
-v
a
lu
e

B
a
s
e
li
n
e

C
h
a
n
g
e
fr
o
m

b
a
s
e
li
n
e
a
t
4

w
e
e
k
s

C
h
a
n
g
e
fr
o
m

b
a
s
e
li
n
e
a
t
1
2

w
e
e
k
s

B
a
s
e
li
n
e

C
h
a
n
g
e
fr
o
m

b
a
s
e
li
n
e
a
t
4

w
e
e
k
s

C
h
a
n
g
e
fr
o
m

b
a
s
e
li
n
e
a
t
1
2

w
e
e
k
s

M
M
S
E

1
9
.7
8
(3
.1
9
)

0
.8
9
(2
.2
6
)

0
.3
3
(2
.4
5
)

1
7
.8
0
(3
.2
2
)

0
.6
0
(2
.9
9
)

1
.4
0
(2
.8
8
)

−
0
.5

(−
3
.3
–2

.3
);
0
.7
0
7

1
.1

(−
1
.7
–4

.0
);
0
.4
2
3

A
D
A
S
-c
o
g

1
9
.3
9
(9
.3
3
)

−
1
.0
7
(6
.6
0
)

−
1
.7
0
(7
.5
1
)

2
1
.9
3
(6
.0
3
)

−
2
.4
4
(4
.7
2
)

−
5
.0
4
(5
.1
7
)

−
0
.7

(−
6
.3
–4

.9
);
0
.7
8
6

−
3
.3

(−
1
0
.1
–3

.5
);

0
.3
1
9

A
V
LT

im
m
e
d
ia
te

re
c
a
ll

1
2
.1
1
(5
.7
3
)

−
0
.1
1
(2
.8
9
)

0
.4
4
(2
.4
0
)

1
1
.8
3
(4
.9
9
)

4
.6
0
(4
.7
7
)

5
.3
0
(5
.4
2
)

4
.3

(0
.3
–8

.4
);
0
.0
3
9

4
.9

(0
.4
–9

.4
);
0
.0
3
5

A
V
LT

d
e
la
y
re
c
a
ll

2
.0
0
(2
.9
6
)

0
.6
7
(1
.4
1
)

1
.0
0
(2
.1
8
)

1
.0
0
(1
.3
3
)

0
.0
0
(1
.4
9
)

1
.8
0
(2
.5
7
)

−
0
.7

(−
2
.2
–0

.8
);
0
.3
4
5

1
.0

(−
1
.3
–3

.3
);
0
.3
8
3

C
D
T

9
.2
2
(3
.9
0
)

0
.2
2
(3
.0
7
)

−
0
.6
7
(3
.8
4
)

9
.1
0
(2
.5
6
)

1
.6
0
(3
.3
4
)

1
.0
0
(2
.9
4
)

0
.8

(−
2
.4
–3

.9
);
0
.6
0
1

1
.2

(−
2
.3
–4

.6
);
0
.4
7
9

A
D
C
S
-A

D
L

5
3
.1
1
(8
.8
1
)

−
0
.1
1
(3
.7
2
)

2
.3
3
(6
.2
4
)

5
1
.4
0
(9
.6
7
)

0
.1
0
(6
.4
0
)

2
.1
0
(8
.6
0
)

0
.1

(−
5
.2
–5

.4
);
0
.9
6
8

−
0
.8

(−
8
.1
–6

.5
);
0
.8
1
7

G
D
S
-3
0

7
.1
1
(2
.3
2
)

1
.4
4
(4
.1
6
)

2
.3
3
(6
.3
8
)

5
.4
0
(3
.0
3
)

0
.1
0
(2
.6
9
)

−
0
.7
0
(2
.4
0
)

−
1
.8

(−
5
.4
–1

.7
);
0
.2
8
0

−
3
.4

(−
8
.4
–1

.5
);
0
.1
5
8

P
S
Q
I

6
.7
3
(2
.8
5
)

1
.3
3
(2
.0
0
)

1
.5
6
(3
.2
4
)

6
.1
0
(3
.6
7
)

−
0
.2

(2
.5
7
)

−
0
.4

(2
.1
2
)

−
1
.8

(−
4
.1
–0

.5
);
0
.1
0
8

−
1
.9

(−
4
.7
–0

.8
);
0
.1
5
8

a
C
o
n
tr
o
lli
n
g
fo
r
a
g
e
a
n
d
s
e
x.

M
M
S
E
,
m
in
i-
m
e
n
ta
ls
ta
te
e
xa
m
in
a
ti
o
n
;
A
D
A
S
-c
o
g
,
A
lz
h
e
im
e
r’
s
d
is
e
a
s
e
a
s
s
e
s
s
m
e
n
t
s
c
a
le
–
c
o
g
n
it
iv
e
s
u
b
s
c
a
le
;
A
V
LT
,
a
u
d
it
o
ry
ve
rb
a
ll
e
a
rn
in
g
te
s
t;
C
D
T,
c
lo
c
k
d
ra
w
in
g
te
s
t;
A
D
C
S
-A
D
L
,
A
lz
h
e
im
e
r’
s
d
is
e
a
s
e
c
o
o
p
e
ra
ti
ve

s
tu
d
y–
a
c
ti
vi
ti
e
s
o
f

d
a
ily
liv
in
g
s
c
a
le
;
G
D
S
-3
0
,
3
0
-i
te
m
g
e
ri
a
tr
ic
d
e
p
re
s
s
io
n
s
c
a
le
;
P
S
Q
I,
P
it
ts
b
u
rg
h
s
le
e
p
q
u
a
lit
y
in
d
e
x.

corrected by FDR. As is shown in Figure 4A, compared to
baseline, patients with MCI (n= 10) showed significant decrease
of FC between SCA.R and SMA.L (mean of R, baseline vs.
follow-up: 0.5040 vs. 0.2744, p = 0.038, FDR corrected), and
between SCA.R and DLPFC.R (mean of R, baseline vs. follow-
up: 0.3454 vs. 0.1786, p = 0.038, FDR corrected) after sport
stacking training for 12 weeks. As for T-mAD group (n=8), a
significant increase of FC was analyzed between DLPFC.R and
Broca’s.L after sport stacking intervention (mean of R, baseline
vs. follow-up: 0.1085 vs. 0.3727, p = 0.024, FDR corrected)
(Figure 4B).

Change of Brain Activation After
Intervention
In SFS task fNIRS analysis, the β value derived from GLM
from each channel represents cortical activation. We compared
the β value of each channel for each T-MCI, T-mAD, C-MCI
and C-mAD subjects between baseline and 12-weeek follow-
up. We only found that in T-mAD group, CH36 area was
significantly activated after sport stacking intervention, which
overlaps cortex of left supramarginal gyrus (SMG.L) [mean
with 95% CI of β, baseline vs. follow-up: 0.0119 (0.0004,
0.02329) vs. 0.0535 (0.03401, 0.0730), p= 0.0003, FDR corrected]
(Figure 5), however, no significant differences between baseline
and follow-up were found in the other three groups. Further,
we correlated the changes of β value in CH36 of T-mAD
subjects with their improved performance of ALVT (difference
value) and changes of BDNF levels by Pearson Correlation
analysis, and we found that the change of β value in CH36
was correlated with BDNF levels (coefficient value r = −0.780,
p = 0.039) and with changes of AVLT scores (r = −0.875,
p = 0.004), and AVLT performance was also correlated with
increasement of BDNF levels (r = 0.763, p = 0.046). No
significant differences were found in T-MCI, C-MCI and C-mAD
groups, and no significant differences were found between T-MCI
and C-MCI groups, and between T-mAD and C-mAD groups
at follow-up.

DISCUSSION

The present study was aimed at investigating the effects of sport
stacking on cognitive performances in individuals with mild AD
and MCI. There was apparent evidence of improved cognitive
function in tests of AVLT and ADCS-ADL. Our results showed
that the intervention effectively improved episodic memory of
patients with mild AD and MCI and improved the activities
of living of patients with MCI. Moreover, this 12-week sport
stacking added to usual care successfully increased the expression
of some neuroprotective growth factors, including BDNF in
both mild AD and MCI patients and IGF-1 in MCI subjects.
More importantly, we found the functional connectivity in
MCI patients between DLPFC.R and SCA.R as well as between
SMA.L and SCA.R decreased after training. In contrast, in
mild AD patients, the brain regional function connection was
increased between DLPFC.R and Broca’s L. In addition, the
activation of channel 36, which was located in the left primary
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TABLE 4 | Adjusted comparison of neurobiological measurements between changes from baseline at 12 weeks after intervention in patients with MCI (n = 16).

Control group (n = 6) Intervention group (n = 10) Between-group

difference (95%CI)a
P-value

Baseline Change from

baseline at 12

weeks

Baseline Change from

baseline at 12

weeks

Aβ-40 (pg/ml) 263.9 (71.0) −44.8 (23.0) 247.3 (57.2) −69.1 (39.6) −18.7 (−56.8, 19.4) 0.305

Aβ-42 (pg/ml) 61.9 (27.2) 3.5 (48.7) 44.2 (6.9) 8.6 (16.6) 12.6 (−21.4, 46.6) 0.434

Aβ42/Aβ40 0.23 (0.08) 0.1 (0.2) 0.19 (0.06) 0.1 (0.1) 0.1 (−0.1, 0.3) 0.470

BDNF (ng/ml) 159.7 (65.9) −7.5 (55.2) 110.9 (39.3) 41.6 (24.3) 56.6 (12.8, 100.4) 0.016

IGF-1 (ng/ml) 17.2 (9.2) −4.7 (11.6) 10.1 (2.1) 2.7 (5.3) 9.4 (0.5, 18.2) 0.040

TNF-a (pg/ml) 3.7 (1.1) 1.1 (0.5) 4.0 (1.3) 0.7 (0.8) −0.3 (−1.1, 0.5) 0.405

IL-6 (pg/ml) 2.1 (0.3) 1.0 (0.2) 2.4 (0.3) 0.5 (0.2) −0.4 (−0.6, −0.2) 0.001

sTREM-2 (pg/ml) 19.4 (13.3) −4.9 (18.6) 11.3 (2.9) 0.1 (6.6) 7.9 (−5.4, 21.2) 0.220

aControlling for age and sex.

Aβ-40, amyloid β-protein-40; BDNF, brain-derived neurotrophic factor; IGF-1, insulin-like growth factor-1; TNF-α, tumor necrosis factor-alpha; IL-6, Interleukin-6; sTREM2, soluble trigger

receptor expressed on myeloid cells 2.

TABLE 5 | Adjusted comparison of neurobiological measurements between changes from baseline at 12 weeks after intervention in patients with mild AD (n = 16).

Control group (n = 7) Intervention group (n = 9) Between-group

difference (95%CI)a
P-value

Baseline Change from

baseline at 12

weeks

Baseline Change from

baseline at 12

weeks

Aβ-40 (pg/ml) 212.0 (55.9) −29.0 (43.5) 219.4 (49.1) −25.2 (35.7) −1.2 (−47.0, 44.6) 0.954

Aβ-42 (pg/ml) 40.6 (5.2) 5.9 (10.5) 57.9 (30.3) −3.8 (31.0) −8.9 (−38.9, 21.2) 0.531

Aβ42/Aβ40 0.20 (0.02) 0.07 (0.09) 0.26 (0.10) 0.03 (0.16) −0.03 (−0.2, 0.1) 0.696

BDNF (ng/ml) 137.9 (29.1) −23.5 (25.5) 120.1 (25.8) 29.9 (33.4) 50.5 (13.9, 87.0) 0.011

IGF-1 (ng/ml) 10.0 (1.6) −0.03 (3.32) 14.2 (8.2) −1.5 (8.5) −1.2 (−9.3,6.9) 0.752

TNF-a (pg/ml) 3.8 (1.1) 0.8 (0.3) 3.8 (0.6) 0.3 (0.4) −0.4 (−0.9, 0.02) 0.060

IL-6 (pg/ml) 2.3 (0.7) 1.2 (0.7) 2.4 (0.1) 0.7 (0.7) −0.5 (−1.3, 0.4) 0.243

sTREM-2 (pg/ml) 9.7 (1.9) 0.2 (4.6) 18.0 (12.7) −6.1 (13.0) −6.4 (−18.9, 6.2) 0.291

aControlling for age and sex.

Aβ-40, amyloid β-protein-40; BDNF, brain-derived neurotrophic factor; IGF-1, insulin-like growth factor-1; TNF-α, tumor necrosis factor-alpha; IL-6, Interleukin-6; sTREM2, soluble trigger

receptor expressed on myeloid cells 2.

somatosensory cortex, was significantly increased after 12-week
of sport stacking, and this increased activation was correlated
with the improved cognitive function (AVLT) as well as the
increased level of BDNF. These findings support the hypothesis
that sport stacking would improve the cognitive function of
patients with mild AD and MCI and that sport stacking would
have an upregulating effect on anti-inflammatory cytokines and
neuronal plasticity.

Sport stacking, which combines game and exercise, is a new
sport. Our study indicated that a significant increase in the score
of AVLT was measured in the sport stacking group after 12 weeks
which means our training could improve all patients’ episodic
memory. Our results were consistent with that reported in a
randomized controlled study of Hagovska and Nagyova (2017),
which showed that cognitive training combined with physical
training could significantly improve AVLT scores, indicating
greater improvement of the memory in older people with mild

cognitive impairment. A systematic study of Law et al. (2014)
presented similar results in the improvement of general cognitive
functions and memory in older adults after the intervention
of combined exercise and cognitive training. Similar studies
in the literature also found improvements in the previously
mentioned cognitive domains (Phirom et al., 2020). In addition,
there is growing evidence that the combination of physical and
cognitive activities may have synergistic effects (Kraft, 2012;
Gheysen et al., 2018). Although physical exercise contributes to
plasticity, cognitive activities lead to changes in plasticity (Fissler
et al., 2013). This combined benefit from exercise and cognitive
stimulation would be consistent with previous animal research,
which showed that this cognitive benefit had been found to be
from different mechanisms (cell proliferation and cell survival,
respectively, Olson et al., 2006; Fabel et al., 2009). And this
combined-effect hypothesis indicated that simultaneous exercise
and cognitive interventions could further increase cognitive
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FIGURE 3 | fNIRS comparison between mAD and MCI subjects. (A,B) The front and right lateral view of significant channels in mean Oxy-Hb comparison, and the

statistics were presented in (D). (C) The front view of significant channels in diff-Oxy-Hb (task-rest) comparison, and the statistics were presented in (E). *p < 0.05; **p

< 0.01; ***p < 0.001.

benefits. Similarly, in line with previous studies, these findings
showed that when physical exercise was cognitively challenging,
the cognitive benefits were greater than traditional exercise
(Anderson-Hanley et al., 2012).

Besides improvements in cognitive performances, activities
of living of patients with MCI, as assessed with the ADCS-
ADL, ameliorated. Sport stacking is a coordinated exercise of
hands and eyes. Hand movement can improve hand function,
stimulate brain function, reduce the occurrence and development
of brain-related diseases (Geng, 2012), and enhance the learning
ability of students with intellectual disabilities (Qu et al., 2012).
Nyberg et al. found that finger tapping can stimulate the motor
cortex in the brain (Nyberg et al., 2006). Finger exercise can
also maintain or improve the ability of daily living and self-
care and handling tools in patients with dementia (Zhang
et al., 2010). Wang and Kui (2014) also suggested that finger
movement could improve ADL by promoting blood circulation
in the brain and the central nervous system, thereby improving
brain function.

However, we did not find significant mAD results in the
intervention group for ADL and other cognitive domains,
probably due to the short duration of our intervention, while
the overall score of patients with mild AD is changing in the

direction of improvement. There is evidence that the severity of
neurocognitive impairment can regulate the cognitive effect of
combined cognitive and sports training (Bamidis et al., 2015).
The increase in the severity of neurocognitive impairment may
decrease the effect of the intervention (Bamidis et al., 2015). This
can be explained by a reduction in the structural brain capacity of
participants with more severe neurocognitive impairment (e.g.,
reduced number of neurons and synapses), which may result in
limited resources for training-induced benefits (Bamidis et al.,
2015). As a result, it may be more difficult to induce cognitive
benefits in people with dementia than in people with MCI or
healthy older people.

Our results indicate that the concentration of BDNF in
peripheral blood increased significantly in all patients who
participated in 12-week sport stacking, and the concentration
of IGF-1 in peripheral blood only increased significantly in
patients with MCI. Consistent with the results of our study,
previous research has suggested that multicomponent exercise
could increase BDNF concentrations (Wang et al., 2020), and
physical exercise has been shown to increase IGF-1 levels
in patients with MCI (Baker et al., 2010). Exercise-related
upregulation of BDNF and IGF-1 may help to offset the age-
related decline in synaptogenesis, neurogenesis, angiogenesis,
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FIGURE 4 | Functional connectivity change after intervention. (A) The functional connectivity change in T-MCI (n = 10) after sport stacking training for 12 weeks.

(B) The functional connectivity change in T-mAD (n = 8) after sport stacking training for 12 weeks. Each dot represents the FC value of each channel in T-MCI and

T-mAD participants at baseline and at follow-up. *p < 0.05. No significant differences between intervention groups and control groups were found. **p < 0.01.

synaptic plasticity, and learning and memory, thus making the
brain more flexible in dealing with age-related structural and
functional neurodegeneration (Cotman and Berchtold, 2002,
2007). Together, these findings suggest that the production of
BDNF and IGF-1 may be a mechanism responsible for cognitive
improvement after sport stacking. In addition, our results show
that non-strenuous exercise games such as sport stacking can
improve BDNF and IGF-1 levels, which is of great significance

for the exercise program of the elderly because the health status
of the elderly is often unable to do strenuous exercise and hard to
stick to.

Regarding IL-6, our results indicate that the change of IL-
6 concentration in blood serum increased in both intervention
groups, whereas only changes from the MCI group became
statistically significant. Consistent with the results of our study,
Behrendt et al. showed that both open and closed skill exercises
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FIGURE 5 | Change of brain activation after intervention in T-mAD subjects. CH36 area was significantly activated after sport stacking intervention (left) and statistical

results (right). ***p < 0.001. Each dot represents the individual β value of T-mAD participants in CH36 at baseline and at follow-up. No significant brain activation

differences in T-MCI subjects were found, and no significant differences between intervention groups and control groups were found.

were equally efficient in acutely increasing the IL-6 serum levels
in healthy older adults (Behrendt et al., 2021). However, Forti
et al. (2014) showed results, contrary to ours, that IL-6 levels
significantly decreased after 12 weeks of strength training in 20
older adults. It is reported that peripheral IL-6 concentration
increases sharply during physical exercise and returns to the
baseline level within 24 h (Fischer, 2006). In this case, IL-6 is
considered to have anti-inflammatory effects and may be a factor
in reducing the risk of chronic inflammation and neurological
diseases by exercising regularly (Funk et al., 2011; Smart et al.,
2011). As IL-6 plays multiple roles in a variety of biological
processes of the human body (Norman et al., 2018; Ellingsgaard
et al., 2019), further research is needed to better understand
the relationship between IL-6 and exercise and its impact on
neurocognitive processes.

In this study, the differences of mean and difference of Oxy-
Hb concentration between mild AD and MCI subjects indicated
that the cortical blood flow and neuronal activity in mAD
patients were significantly reduced, consistent with previous
studies (Herrmann et al., 2008; Haberstumpf et al., 2022). One of
the important findings of this study is the different outcomes of
FC analysis in T-mAD and T-MCI during resting state, compared
with baseline and 12-week follow-up. There was a decrease of
FC between DLPFC.R and other ROIs in MCI, while an increase
was displayed in subjects with mild AD. The DLPFC is an
associative cortical region that is often described as a functional
hub enabling a host of higher-order processes, including working
memory (McKendrick et al., 2014), mentalizing, attention, and
response inhibition (Rodrigo et al., 2014). In functional studies

of healthy participants, faster processing speeds have been related
to reduced directed functional connectivity and activation of the
DLPFC (Motes et al., 2018). Based on these studies and our
results, we speculated that the decrease of FC in between ROIs in
MCI patients may correlate with the neuronal plasticity changes
after sport stacking. Although DLPFC activation is commonly
observed to increase in a parametric manner with workload
(Ayaz et al., 2012), increased DLPFC activation may also occur
as a compensatory mechanism to reductions in available neural
resources (Stuss and Knight, 2002) or alternatively, inefficient
utilization of neural resources (Neubauer and Fink, 2009). which
may indicate that patients with MCI may have higher FC
values between these ROIs at baseline because of functional
compensation in these brain areas, but after sport stacking
intervention, the neural remodeling, while improving cognitive
function, also regulated the compensation of brain regions and
thus reduced FC between ROIs were found. Our study also
found the increased activation in CH36, overlapping the cortex
of SMG.L, in mild AD subjects under the SFS task and was
correlated with increased cognitive performance and upregulated
level of BDNF. A previous study has demonstrated that SMG.L
is involved in goal orientated cognition (Smallwood et al.,
2021). This may prove that sport stacking may arouse a multi-
system effect to improve cognition through enhancing neuronal
plasticity and boosting the production of BDNF.

The present study has some limitations. Firstly, the sample size
in our study is small and it might lead to statistical errors. In order
to explore the further impact of sport stacking on the elderly
with dementia and avoid statistical errors in the process of data

Frontiers in Aging Neuroscience | www.frontiersin.org 13 May 2022 | Volume 14 | Article 910261

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Yang et al. Effects of Sport Stacking

analysis, future studies should expand the sample size; secondly,
the period of our intervention was only 12 weeks, and we
did not see any significant improvement in outcome indicators
other than episodic memory in all patients, probably because
the intervention time was relatively short; thirdly, although sport
stacking was confirmed to be effective for individuals with MCI
and AD, larger trials comparing sport stacking with other active
control interventions such as aerobic exercise need to confirm or
refute our findings. Finally, our results are restricted to patients
with mild AD and MCI and cannot be generalized to those with
more dementia types.

Although our study had these limitations, results still
suggested the effectiveness of sport stacking and its benefits
on participants’ memory and activities of daily living, possibly
via upregulation of BDNF and IGF-1. What’s more, our study
provides a new method for non-pharmaceutical treatment for
patients with early stages of cognitive impairment.

CONCLUSION

Our findings suggested that sport stacking is effective
for patients with MCI and mild AD, possibly through
increasing the expression of neuroprotective growth
factors and enhancing neural plasticity to improve
neurocognitive performance.
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