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Abstract
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Introduction

Single‑photon emission computed tomography  (SPECT) 
and positron emission tomography  (PET) are available 
imaging modalities in clinical nuclear medicine. In computed 
tomography  (CT), X‑rays generated in the source  (X‑ray 
tube) are traversed through the object and then received by 
the detector. Conversely, in emission tomography, gamma 
rays emitted from inside the object are detected by the 
camera and then recorded in two‑dimensional (2D) matrices 
named projections. Afterward, the projections acquired over 
several angles or views around the object are used for the 
tomographic reconstruction procedure. Several algorithms 
have been developed for tomographic image reconstruction 
that are commercially available in dedicated software 

platforms in nuclear medicine laboratories. From the physical 
perspective, gamma rays produced from the disintegration of 
radioactive isotopes inside the object undergo an attenuation 
process while traversing the physical media, for example, the 
patient’s body, before being detected by the camera.[1,2] For 
this reason, SPECT and PET images are usually corrected 
for attenuation using computer algorithms, including 
Chang’s method[3,4] or a transmission image obtained by 
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CT component of the SPECT/CT or PET/CT cameras[5,6] to 
provide a more realistic estimate of the true distribution of 
radioactivity in the object.

Forward projection is the first step in CT that provides 
sinograms. This process converts a three‑dimensional 
distribution into a 2D one using the algorithm of Radon 
transformation. Radon transform is a mathematical process 
that is constructed by line integrals of the mathematical 
function representing the intensity distribution of the 
object at different angles spanning the object. Specifically 
in medical imaging involving ionizing radiation, the line 
integrals have to be modified based on physical processes as 
a result of radiation‑matter interaction, including attenuation 
and scatter. The particular modifications for X‑ray 
transmission scanning are well defined, i.e.,  exponential 
or attenuated Radon transform according to Beer–Lambert 
law.[7‑9] However, in emission scanning, as those in nuclear 
medicine, which involves emitting gamma rays from sources 
of activity in the object  (or patient under imaging), the 
profile is to some extent different. The most distinct feature 
is that based on the location of the object, or equivalently 
source‑to‑detector distance, rays traverse tissues with 
different amounts of thickness and attenuation coefficient 
at a particular angle during Radon transform or forward 
projection. This fact is true for rays emanating from a 
specific source in the body when detecting and measuring 
across different angles. More notably, this issue makes the 
angular span of scanning an important factor. Hence, the 
results of 360° and 180° scans are different as a consequence 
of different attenuation profiles. In other words, the data 
in the second half of 360° arc is not redundant. Therefore, 
it requires relevant modification in the equations defining 
the Radon transform. Owing to the stochastic nature of 
the interaction of radiation with matter, the model can be 
grossly described and approximated by a simple equation 
of Beer–Lambert law. Therefore, for the sake of simplicity 
of the simulation experiments and reducing computational 
load, the model can be approximated to an acceptable level 
by a deterministic one.

The algorithm for radiation attenuation‑integrated Radon 
transform, which considers attenuation modeling in 
simulation experiments in nuclear medicine, is not available 
in commercial image processing software packages or image 
processing toolboxes as a built‑in or embedded function 
that can be used for forward projection during tomographic 
reconstruction. In this study, it is intended to propose an 
algorithm to implement radiation attenuation‑integrated 
Radon transform based on Beer–Lambert law during emission 
tomography simulation experiments using a deterministic 
model and also to perform image analysis (including profile 
plotting and curve fitting) to characterize the resulting 
tomographic images. In addition, a new method named 
“attenuation Hadamard matrix”  (AHM) is introduced to 
facilitate the process of radiation attenuation‑integrated Radon 
transform.

Methods

Mathematical formulation and algorithm
Based on Beer–Lambert’s law, gamma photons are attenuated 
by interacting with the absorbent material through several 
physical processes. The attenuation process is modeled 
mathematically as follows:

( )expatt inI = I . xµ− � {Equation 1}

where Iin and Iatt are incidents and attenuated intensities of 
the photons, respectively. The µ and x represent the linear 
attenuation coefficient and the thickness of the absorbent. When 
the µ is not homogeneous, the model can be generalized to:

( ) ( ) ( )( )expout in

L
I s = I s . x, y .dlθ θ µ∫− � {Equation 2}

where µ(x, y) is the function representing the linear attenuation 
coefficient of the object integrated over a line of response. inIθ
and outIθ are input and output intensities at angle 𝜃, respectively. 
Moreover, s is the spatial distance from the center of projection. 
The line of response L is a fixed distance between the X‑ray 
generator and the detector. For modeling emission CT (ECT), 
the above formula is modified as follows:

( ) ( ) ( )( )exp
'

out source '

L
I s = I s . x, y .dlθ θ µ∫− � {Equation 3}

Again, sourceIθ and outIθ are source and output intensities at angle 
𝜃, respectively. The line of response L’ is a varying distance 
between the gamma‑ray source inside the body and the detector.

In a discrete version as that in digital imaging, the field of 
imaging is considered as a matrix of pixels with small enough 
dimensions. Hence that the formula and the algorithm can be 
accordingly changed to:

expatt in i
i

I = I . .dx µ 
 Σ− � {Equation 4}

( ) ( ) ( )( )exp µM Mout source
im=1 i=m

I l = I m,l . . xθ θ ∆∑ ∑− �{Equation 5}

where ∆x is the dimension of each pixel. For each source in 
each pixel, the µ is multiplied by ∆x and is summed over the 
rows (i) of the matrix at the specific angle of 𝜃. For the source 
in the first row (m = 1) and first column (l = 1), the process is 
done from i from 1 to M (last row) and is multiplied by the 
intensity of the pixels at that location (or I [m, l]). Similarly, for 
the second row (m = 2), the summation is done from i = 2 to M. 
This procedure is repeated for all rows. Finally, the output 
intensity is the sum of intensities from row 1 to M, which is 
the output intensity of a specific column (l) at a specific angle. 
This procedure is done for all columns of the matrix. Then, a 
rotation of 𝜃° is performed, and the process is repeated from 
𝜃 = 0 to 𝜃 = Θ (acquisition arc of 𝜃 � [0,Θ]). The result is placed 
in the first column of the sinogram (a matrix with rows and 
columns equal to the number of columns of the object matrix 
and the number of angular samples).[10,11] The above algorithm 
can be rewritten as below:
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( )
( )

( )exp
M

Mm=1
ii=m

Sinogram l =

Emission m,l . 

Transmission .PixelSize

θ

θ 
 
 
 

∑ ∑−
� {Equation 6}

Finally, the output of Beer–Lambert law or exponential 
radon transform (attenuation modeled sinogram) is inserted 
into the tomographic reconstruction process using a 
filtered back projection algorithm. Each sinogram is 
Fourier‑transformed  (into frequency domain) and then 
is multiplied by the windowed ramp filter (Hanning 
function as a window or a low‑pass filter and ramp filter to 
decrease the blurring effect produced by the back projection 
process) [Figure 1]. After that, the filtered Fourier‑transformed 
sinograms are back‑transformed into the real or spatial domain. 
This procedure is repeated for the sinograms of all phantoms. 
For interpolation during back projection, the “bi‑cubic” method 
is applied.[12]

Phantoms
Two types of phantoms are designed in the present study. 
The first type of phantom (plain‑disk phantom) is a large disk 
filled uniformly with an activity of 5 units of 99mTc isotope 
with gamma rays of 140 keV and a radius of 166.4  mm 
as the emission map. The energy of 140 keV is used for 
attenuation of the gamma rays according to different tissues, 
as demonstrated explicitly in equation 1. Three transmission 
maps are designed in a way that an identical disk with the 
same radius is generated, each with three different values 
linear attenuation coefficients  (µdisk1 = 0.05, µdisk2 = 0.1, and 
µdisk3 = 0.2 cm−1). The second type of phantom (patterned‑disk 

phantom) is a similar disk‑shaped object as the previous 
one but with 13 equally‑spaced smaller disks arranged in a 
square‑shaped pattern, simulating rods. The radii of the large 
and smaller disks are 166.4 mm and 16.6 mm, respectively. The 
large disk is filled with an activity of 5 units and the smaller 
disks have 10 units of activity of 99mTc isotope as an emission 
map  (activity or intensity ratio of 2). Again, similar to the 
plain‑disk phantom, three transmission maps for patterned‑disk 
phantom are created with uniform linear attenuation 
coefficient  (µdisk1 = 0.05, µdisk2 = 0.1, and µdisk3 = 0.2 cm−1). 
This pattern of transmission image represents a phantom of 
heterogeneous composition. Emission and transmission maps 
of the plain‑disk or patterned‑disk phantoms are presented in 
Figure 2. The smaller disks simulated hot spots in the large 
object.

Image acquisition
The matrix size for all simulations is considered 
256 × 256 (n = 256) and a field‑of‑view of 500 mm of the 
camera, thus obtaining a pixel size of 1.95  mm  (by the 
following formula: Pixel size  =  field‑of‑view/matrix size). 
Plain‑disk phantoms are scanned with an arc of 360° and the 
patterned‑disk phantoms are scanned twice with acquisition 
arcs of 360° and 180°. An angular sampling of 1° is used for 
image acquisition.

Profile plotting and curve fitting analysis
Tomographic slices generated are visualized in a grayscale 
map. All tomographic images are minimum–maximum 
normalized in a way that the minimum and maximum values 
are set to the interval of 0–1. Intensity profiles of activity 
distribution of each group of phantoms are plotted separately 

Figure 1: Diagram of the windowed ramp filter in the frequency domain. 
The x‑axis indicates the relative frequency  (as a ratio of Nyquist 
Frequency) and the y‑axis indicates the relative amplitude of the frequency 
components in the image

Figure  2:  (a) Emission  (left) and transmission  (right) maps of the 
plain‑disk phantom. Both are scales separately. (b) Emission (left) and 
transmission (right) maps of the patterned‑disk phantom. In the emission 
maps, 13 equally‑spaced smaller disks are arranged in a diamond‑shaped 
pattern, with equal intensity but higher than that of the background. The 
transmission map of the phantom is, in contrast, uniform. No difference 
exists in the attenuation coefficient of small and large objects

b

a
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and are compared. The intensity profiles of the plain‑disk 
phantom with different values of linear attenuation coefficient 
are fitted to a bi‑exponential model using the following 
formula:

( ) bx dxf x = ae +ce � {Equation 7}

Where, a, b, c, and d are the coefficients obtained from the 
optimization process with the method of nonlinear least 
square and the algorithm of Trust‑Region. X  represents 
distance or pixel number and f  (x) is the pixel value or 
intensity. Furthermore, indices of the goodness of fit are 
also calculated. The indices are summed square error (SSE), 
root‑mean‑squared error  (RMSE), R‑squared, and adjusted 
R‑squared. This procedure is repeated for each value of the 
attenuation coefficient.

Attenuation Hadamard matrix
The term, ( )exp ii

. xµ ∆∑−  in Equation 4, plays the role 

of attenuation profile of each point (or pixel) in the object 
when detected by the camera. This term is computed from 
the transmission or µ map obtained from the phantom 
or object. Thus, by calculating this factor, and then 
element‑wise multiplying to the original distribution 
or emission map, the attenuation‑modeled ECT can be 
obtained. For generating sinograms and back‑projected 
tomographic slices, two following equations are used, 
respectively;

( )exp i iM(s, ) =  + . xθ Σ µ ∆ � {Equation 8}

and,

( ) ( )2

=0
AHM x, y = M s,π

θ
θ∑ � {Equation 9}

Here, the inverse of this matrix  (AHM) is multiplied 
point‑by‑point or element‑by‑element to the matrix, 
demonstrating the activity distribution in the object or phantom 
as below. The operator ⊚ denotes the Hadamard product or 
multiplication of two matrices.[13]

1 AHMattenuated sourceI = I  /" � {Equation 10}

To achieve the attenuated Radon transform with less 
computation load. For this experiment, two phantoms are 
created. One is a patterned‑disk phantom the same as above 
and another is a more complex phantom of the human 
thorax  (including the objects of heart, liver, and thoracic 
wall). The image acquisition from emission images is obtained 
as mentioned above. And then, from transmission images, 
AHM image is generated by creating related sinograms and 
tomographic reconstruction using the above algorithm.

Implementation
All the computations for image processing and visualization are 
conducted in the MATLAB software package (The MathWorks 
Inc., version 2021b under Linux). The specifications of the 
computer used are Intel® Core™ i7–10870H (up to 4.5 GHz, 
8 cores, and 16 threads) CPU and 32GB RAM.

Results

In Figure 3, tomographic slices of plain‑disk and patterned‑disk 
phantoms are shown. The first row belongs to the scan with 
360° arc. In the scan without incorporating the attenuation 

Figure 3: (a) (From left to right) tomographic slice of the phantom without and with incorporation of attenuation for µdisk1 = 0.05, µdisk2 = 0.1, and 
µdisk3 = 0.2 cm−1. The same applies to patterned‑disk phantom imaged with 360° (b) And 180° (c) Acquisition arcs
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model, i.e., using a simple Radon transform, the disk appears 
uniform from periphery to center. However, as can be seen 
in the other three images, the uniform intensity of activity 
in the phantom is converted to disk with progressively 
decreasing intensity from the periphery to the center. As the 
µ of the phantom increases, the periphery‑center gradient 
becomes steeper and steeper. This radial gradient is constant 
circumferentially over all angles. The images in the second row 
demonstrate the 360° scanning of the patterned‑disk phantom. 
The leftmost image is scanning without attenuation and the 
other three ones, as mentioned earlier, belong to scanning 
incorporating attenuation modeling in phantoms with three 
different values of µ. Similarly, the circles positioned more 
centrally appear less intense than those positioned in the 
periphery despite all circles having equal activity. When the 
phantom is scanned in 180° arc, the circles closest to the camera 
are visualized as more intensely and those in more distance, 
even in the periphery of the phantom, are seen as less active.

Normalized intensity profiles of the phantoms and related 
tomographic slices are demonstrated in Figure  4. For 
plain‑disk phantom (a), The profile drawn diametrically is a 
straight line and the profile curve of the nonattenuated slice 

follows closely from the center to the periphery. In contrast, 
the curves of the slices generated by exponential Radon 
transformation, are depicted as U‑shaped. The more the µ 
of the phantom, the deeper the curve in the center. The plot 
of the intensity profile of the patterned‑disk phantom  (b) 
Demonstrates similar findings as in A. Bi‑exponential curve 
fitting for the plain‑disk phantom with different values of µ 
is plotted [Figure 5]. As can be seen, the curve fitted to the 
data of the phantom with µ = 0.05 is less steep compared to 
the phantom with µ = 0.2 that is steeper. Moreover, the curve 
of the phantom with µ = 0.1 is in between.

In Figure 6a, the activity and µ maps of patterned‑disk phantom 
and corresponding sinograms and tomographic slices with 
and without considering radiation attenuation during the 
Radon transform are presented. Similarly, in Figure 6b, the 
emission (activity) and transmission (µ) maps of the thorax 
phantom and corresponding sinograms and tomographic slices 
are provided. Figure  7 demonstrates the images of AHM 
and the inverse of AHM and their corresponding attenuated 
tomographic slices calculated by division and multiplication 
of emission image by inverse of AHM and AHM are provided 
for both patterned‑disk phantom and thorax phantom.

Figure 4: Intensity profile plots of a tomographic slice of plain‑disk phantom (a) And patterned‑disk phantom imaged with 360° (b) And 180° (c) 
Acquisition arcs. The horizontal axis indicates the distance or pixel number across the related images and the vertical axis denotes the normalized 
intensity of pixels (values between 0 and 1)

c
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Discussion

In ECT, radiation emitted from the interior of the object 
undergoes an attenuation process during forward projection 
or Radon transform. Then, by tomographic reconstruction, 
pixels that are distant from the camera or located in objects 
with a higher attenuation coefficient do not demonstrate the 
true intensity or activity uptake. Many significant efforts 
have been made so far to compensate for the effect of 
attenuation by means of various algorithms. However, in 
some circumstances, modeling of this phenomenon (radiation 
attenuation during Radon transform) may be of interest 
during simulation experiments of ECT. Monte Carlo 
simulation, which is based on the randomness and stochastic 
nature of the radiation‑matter interaction and radioactive 

decay process, performs nearly perfectly for this purpose. 
However, it requires a lengthy and cumbersome computation. 
Deterministic modeling of radiation attenuation provides 
acceptable results.[1,2,7‑9]

The incorporation of radiation attenuation as one of the main 
physical processes involved in the interaction of gamma 
photons with the matter based on Beer–Lambert law results 
in the development of more realistic models for quantification 
purposes. Using exponential or attenuation‑modeled Radon 
transform in emission tomography enables researchers 
to evaluate the effect of attenuation in nuclear medicine 
imaging. Modeling the phenomenon of radiation in emission 
tomographic images is different from that of transmission 
tomographic images since the source is inside the object and 
the line integrals or ray sums are different. In this study, we 
designed and developed a phantom with both emission and 
transmission maps. The transmission map is used as the 
image provided by the CT scanner for attenuation modeling 
of gamma rays in the emission image. According to the 
Beer–Lambert law, the ionizing photons are attenuated 
exponentially by matter. In addition to visualization of 
the effect of attenuation tomographic images, we plotted 
the intensity profile of the slices shown in Figure  4 that 
were concordant with the so‑called exponential pattern. 
As can be seen from tomographic slices, by increasing the 
value of µ, the deeper or more central parts of the object 
which are more distant from the camera, are attenuated to 
a higher extent. This pattern is also visible in the images 
of patterned‑disk phantom. More central smaller disks are 
attenuated higher than those that are located more peripheral. 
Another finding which is worth mentioning is the modeling 
of the attenuation in the setting of imaging acquired with 
180° arc. Interestingly, in image acquisition with 180° 
arc, even peripheral small disks that are distant from the 
camera are attenuated profoundly. This finding emphasizes 
that in the radiation attenuation‑modeled Radon transform, 
no redundancy of data exists in the second half of 360° 

Figure 5: Plot of curve fitting analysis of the tomographic images of 
the plain‑disk phantom with three different values of linear attenuation 
coefficient. The data of each one is fitted to a bi‑exponential model. The 
data extracted are the profile of the image of the object from the center 
to the edge of the object. The horizontal axis indicates the distance or 
pixel number across the related image and the vertical axis denotes the 
normalized intensity of pixels (values between 0 and 1)

Figure 6: The activity and µ maps of patterned‑disk phantom and corresponding sinograms and tomographic slices with and without considering 
radiation attenuation during Radon transform for patterned disk (a) and thorax (b) Phantoms

ba



Qutbi: Radiation attenuation‑integrated Radon transform

Journal of Medical Physics  ¦  Volume 48  ¦  Issue 4  ¦  October-December 2023390

acquisition arc in contrast to the general form of the Radon 
transform.

By curve fitting analysis  [Figure 5], the profile plots were 
fitted to a bi‑exponential function by near‑perfect precision. 
The procedures are done for three different linear attenuation 
coefficients. As expected, the higher the value of the 
coefficient, the steeper the exponential curve as the profile 
plot. The indices of the goodness of fit, SSE, and RMSE were 
close to zero and the R‑squared and adjusted R‑squared were 
higher than 99% available in Table 1. By this means, we could 
show that the effect of radiation attenuation in tomographic 
slices can be accurately modeled by a bi‑exponential 
mathematical function. Moreover, the computations required 
for the procedure of exponential Radon transform can be 
performed on a computer with a medium level of hardware 
at a reasonable time.

In this project, a new simple technique for modeling 
radiation attenuation in ECT is proposed and introduced, 
by which the procedure is much less cumbersome. At first, a 
matrix of attenuation profile is constructed by the equations 
8, 9, and 10  (or transmission or µ map), then, the status 

and the extent of attenuation of each pixel are computed. 
After that, by pixel‑by‑pixel multiplication  (Hadamard 
product)[13] of the emission map of the phantom to this 
matrix, the radiation attenuation modeled tomographic 
slices are formed.

Conclusions

Although the nature of the physical attenuation of radiation 
is inherently random or stochastic, the phenomenon can be 
grossly approximated by a deterministic model using the 
formula of Beer–Lambert law. This kind of modeling bears 
a remarkably lower computation load compared to Monte 
Carlo simulations and modeling. Hence, these methods can 
be utilized in image processing tasks, including tomographic 
reconstruction. Despite all these facts, the gold standard 
method is stochastic modeling for such experiments.
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Table 1: The results of curve fitting with bi‑exponential function for plain‑disk phantoms with different values of linear 
attenuation coefficient  (µ)

Plain‑disk phantoms

µ=0.05 µ=0.1 µ=0.2
Coefficients (with 95% CI)

a 0.7339 (0.7305–0.7372) 0.5977 (0.5945–0.6008) 0.4835 (0.4808–0.4861)
b 0.0232 (0.0191–0.0272) 0.0368 (0.0314–0.0422) 0.0457 (0.0393–0.0521)
c 0.0073 (0.0053–0.0094) 0.0042 (0.0029–0.0055) 0.0008 (0.0005–0.0012)
d 1.97 (1.817–2.124) 2.508 (2.336–2.68) 3.505 (3.257–3.753)

Goodness of fit
SSE 0.0014 0.0028 0.0044
RMSE 0.0042 0.0060 0.0075
R2 0.9960 0.9953 0.9924
Adjusted R2 0.9959 0.9951 0.9921

SSE: Summed squared error, RMSE: Root mean squared error, CI: Confidence interval

Figure  7: Images of attenuation Hadamard matrix  (AHM) and the inverse of AHM and their corresponding attenuated tomographic slices for 
patterned‑disk (a) And thorax (b) Phantoms
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