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Linear dynamics of classical spin as 
Möbius transformation
Alexey Galda1,2 & Valerii М. Vinokur   2,3

Though the overwhelming majority of natural processes occur far from the equilibrium, general 
theoretical approaches to non-equilibrium phase transitions remain scarce. Recent breakthroughs 
introduced a description of open dissipative systems in terms of non-Hermitian quantum mechanics 
enabling the identification of a class of non-equilibrium phase transitions associated with the 
loss of combined parity (reflection) and time-reversal symmetries. Here we report that the time 
evolution of a single classical spin (e.g. monodomain ferromagnet) governed by the Landau-Lifshitz-
Gilbert-Slonczewski equation in the absence of magnetic anisotropy terms is described by a Möbius 
transformation in complex stereographic coordinates. We identify the parity-time symmetry-breaking 
phase transition occurring in spin-transfer torque-driven linear spin systems as a transition between 
hyperbolic and loxodromic classes of Möbius transformations, with the critical point of the transition 
corresponding to the parabolic transformation. This establishes the understanding of non-equilibrium 
phase transitions as topological transitions in configuration space.

The interest to dissipative spin-transfer torque (STT)-driven dynamics of a spin, described by 
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation1–3 is two-fold. On the application side, spin controlled by 
the applied spin-polarized current is an elemental unit for a wealth of spintronic applications4–7. On the funda-
mental side, complete quantitative understanding of single-spin dynamics provides the essential tool for predic-
tive description of many complex spin systems.

Analytical studies of nonlinear spin dynamics in nanomagnetic devices and structures have been the focus of 
active research for many decades (see, e.g., refs 8, 9 and references therein). It has recently been shown that 
nonequilibrium classical spin dynamics described by the LLGS equation naturally follows from the 
non-Hermitian extension of Hamiltonian formalism10. Within this framework, the nonconservative effects of 
Gilbert damping and applied Slonczewski STT3 originate from the imaginary part of the system’s Hamiltonian. 
This new technique has enabled important advances in the field of nonlinear spin dynamics, including the discov-
ery of parity-time (PT ) symmetry-breaking in systems with mutually orthogonal applied magnetic field and STT. 
This new type of phase transitions in spin systems is possible due to the invariance of STT action under simulta-
neous operations of time-reversal and reflection with respect to the direction of spin polarization.

Here we find that the PT  symmetry-breaking phase transition occurring in STT-driven linear spin systems 
(i.e. the systems designed to have zero or negligibly small magnetic anisotropy) is a transition between hyperbolic 
and loxodromic classes of Möbius transformations governing the spin dynamics. The critical point of the phase 
transition corresponds to the merging of two fixed points of these Möbius transformations (equilibrium points of 
spin dynamics) into a single fixed point of a parabolic transformation. This establishes that non-equilibrium 
phase transitions associated with PT  symmetry-breaking are topological transitions in configuration space.

We undertake the analytical study of dissipative STT-driven dynamics of a single classical spin described by a 
linear (in spin operators) non-Hermitian Hamiltonian. We show that the combined effect of an external magnetic 
field, Gilbert damping, and applied Slonczewski STT can be incorporated in the effective action of a complex 
magnetic field. We derive an equation of motion in complex stereographic coordinates that assumes the form of 
a Riccati equation. This allows a recasting of the equation of motion into linear form without any approximations 
beyond the initial choice of the non-Hermitian spin Hamiltonian. The equation of motion in stereographic pro-
jection coordinates admits an exact solution in the form of a Möbius transformation of 2. The correspondence 
between different regimes of spin dynamics and classes of Möbius transformations is established and illustrated 
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on the example of the PT  symmetry-breaking phenomenon, which is identified as a transition between elliptic 
and loxodromic Möbius transformations via a parabolic transformation.

The equation of motion can also be recast into the linear form by employing complex homogeneous coordi-
nates. The linear form of the spin dynamics equation provides a solid foundation for the study of nonlinear effects 
in single and coupled spin systems, including chaotic dynamics11, 12, spin-wave instabilities13, and solitons14.

Results and Discussion
We study the most general linear version of the spin Hamiltonian proposed by Galda and Vinokur10,
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where H is the applied magnetic field, the imaginary field ij is responsible for the action of STT, and the phe-
nomenological constant α describes Gilbert damping. The corresponding LLGS equation of spin dynamics reads

γ α
= × + × + × × 

S S
S H S S S j S S1 [ ] , (2)

where γ = gμB/ħ is the absolute value of the gyromagnetic ratio, g 2, and S ≡ |S| is the total spin (constant in 
time). The first two terms in Eq. (2) describe the standard Landau-Lifshitz (LL) torque and dissipation in Gilbert 
form, while the last one is responsible for Slonczewski STT.

To show that Hamiltonian (1) yields the above LLGS dynamics equation in the classical limit (S → ∞), it is 
most convenient to consider SU(2) spin-coherent states15, 16 ζ = −ζ +

ˆ
S Se ,S , where = ±±

ˆ ˆ ˆS S iSx y, and ζ ∈  is 
the standard stereographic projection of the spin direction on a unit sphere, ζ = + −s is s( )/(1 )x y z , with the 
south pole (spin-down state) corresponding to ζ = 0.

The Hamiltonian function in spin-coherent states reads
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which gives10 the following compact form of Hamilton’s equation of motion for classical spin:
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where the factor ζ+ S(1 ) /22 2  ensures invariance of measure on a two-sphere. Let us now normalize and rewrite 
the linear non-Hermitian Hamiltonian (1) in terms of dimensionless variables:

 ≡ = ⋅^ ^ ^S h s/ , (5)0

where s ≡ S/S, and the effects of the applied magnetic field, Gilbert damping and Slonczewski STT contributions 
are all incorporated into the complex magnetic field = ∈

~ ~ ~h h hh ( , , )x y z . The equation of motion (4) for the 
linear classical spin Hamiltonian (5) can be rewritten as a linear matrix ordinary differential equation:
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where σk are Pauli matrices, and ζ ξ η≡t t t( ) ( )/ ( ). The pair of complex functions ξ η{ , } are called homogeneous 
coordinates of ζ17, such that each ordered pair {ξ, η} (except {0, 0}) corresponds to a unique stereographic projec-
tion coordinate ζ. The initial conditions for Eq. (6) can be chosen as ξ ζ η= =(0) (0), (0) 1.

The solution in terms of stereographic projection coordinates ζ takes the simple form of a Möbius 
transformation:
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where the normalized (det M = 1) transformation matrix is given by the matrix exponential:

= .M e (9)At

It is important that non-conservative spin dynamics only takes the form of a Möbius transformation for sys-
tems described by linear spin Hamiltonians. Experimentally this corresponds to systems designed to have negligi-
bly small magnetic anisotropies. The inclusion of nonlinear anisotropy terms in the spin Hamiltonian10 inevitably 
leads to other types of spin dynamics equations due to the action of spin-orientation-dependent effective mag-
netic fields on the spin. The equation of motion (6) illustrates that the classical spin dynamics discussed here can 
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be written in linear form despite the nonlinear nature of the LLGS Eq. (2) it reproduces. Understanding this linear 
system and its solutions represents a crucial step in describing nonlinear STT-driven magnetic systems.

Möbius transformation.  We now study the solution of Eq. (4) for linear spin Hamiltonians. Without loss of 
generality, we can take =h 0z  and =hIm( ) 0x  in Eq. (5) by choosing the z axis along × h h[Re ( ) Im ( )] and y axis 
along hIm ( ), while ≡ h hRe( )x x  and ∈hy  can be arbitrary:

 = + .
ˆ ˆ ˆh s h s (10)x x y y0

The equation of motion for this Hamiltonian takes the form of a Riccati equation:
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Equation (13) shows that the time evolution of a classical spin generated by an arbitrary linear non-Hermitian 
Hamiltonian presented in stereographic projection coordinates, is nothing but a Möbius transformation of 2:
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in accordance with Eqs. (7), (9) and (10).

Classification of Möbius transformations based on spin dynamics.  The traditional classification of 
Möbius transformations based on the number and type of fixed points distinguishes three different classes: ellip-
tic, loxodromic (including hyperbolic as a special case) and parabolic transformations, which can be identified by 
calculating tr2M17. Here we show that all Möbius transformations can be obtained from a superposition of only 
two basic transformations, elliptic and hyperbolic, because in spin dynamics these two directly correspond to 
applied real and imaginary magnetic fields. An elliptic Möbius transformation induces a uniform rotation of the 
entire Riemann sphere around a central axis, while a hyperbolic transformation produces antipodal expansion 
and contraction centers, see Fig. 1, where the lines depict invariant geodesics of the corresponding Möbius trans-
formation on the sphere. According to this consideration, every elliptic and hyperbolic transformation is fully 
determined by two parameters: ‘direction’ and ‘amplitude’. Together, these parameters define the direction of 
geodesics, including the location of the fixed points and the displacement of points on the Riemann sphere along 
geodesics upon the transformation. In these terms, the action of a real magnetic field = h h hh ( , , )x y z  leads to 
spin dynamics governed by an elliptic Möbius transformation with the normalized transformation matrix 

σ= ∑ =( )M hexp i
k x y z k k2 , , . Similarly, an imaginary applied magnetic field produces spin dynamics associated with 

a hyperbolic transformation, with the matrix of the transformation containing purely imaginary coefficients hk in 
the exponent. Given that any complex matrix M, such that det M = 1, can be uniquely represented as a matrix 
exponential of the form σ= ∑ =

~( )M hexp i
k x y z k k2 , , , where ∈hk , it follows that any Möbius transformation is a 

superposition of an elliptic and a hyperbolic transformations.
A general loxodromic transformation has two fixed points, an attractive and repulsive nodes, which in spin 

dynamics correspond to the stable and unstable equilibrium states. The transformation (14) is loxodromic when 
both of the following two conditions are met: (a) β ≡ ≠hIm 0y  and (b) ≡ ≠h hRe 0y y  if hx ≠ 0, which follows 
from the condition ∈  Mtr \[0, 4]2 17. Let us now consider a superposition of mutually orthogonal elliptic (con-
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servative spin dynamics in real magnetic field, see Fig. 1a) and hyperbolic (spin saturation in the direction of 
imaginary magnetic field, see Fig. 1b) transformations. For the Möbius transformation (14) this corresponds to 
hx ≠ 0, hy = 0, and β ≠ 0. Depending on the ratio ε β≡ h/ x , the transformation (14) can be elliptic (ε < 1), loxo-
dromic (ε > 1) or parabolic (ε = 1). As ε approaches 1 from below, the two fixed points of the elliptic transforma-
tion, which describes a steady state spin dynamics, move toward one another (see Fig. 2a) until they eventually 
coalesce into the single fixed point of a parabolic transformation at ε = 1, as shown in Fig. 2b. As ε is increased 
further, the fixed point splits into the attractive and repulsive centers of the hyperbolic transformation (see 
Fig. 2c), which corresponds to exponentially fast saturation of spin. The described transition plays an important 
role in spin dynamics: it is associated with the transition between regimes of unbroken and broken PT  
symmetry10.

Expectation values of the spin Hamiltonian (1) evaluated at the fixed points, Eq. (12), = ± + E h hx y1,2
2 2 , are 

directly related to the eigenvalues of the corresponding Möbius transformation matrix, Eq. (12), λ = ei
1,2

E t1,2
2 . They 

fully determine the types of the fixed points and the type of the transformation. The standard classification17 uses 
multipliers of the transformation

κ λ≡ =− −e , (15)iE t
1,2 1,2

2 1,2

such that |κ1,2| = 1 κ = ≠θ±( e 1)i
1,2  for elliptic transformations, κ1,2 = 1 for parabolic transformations, and 

κ1,2 ≠ 1 for loxodromic transformations (with real κ1,2 ≠ 1 in the special case of hyperbolic transformations). In 
the language of classical spin dynamics, this outcome fully accords with the above considerations.

Conclusions
We have shown that the time evolution of linear classical single-spin systems has a simple interpretation in terms 
of Möbius transformations of 2, provided magnetic anisotropies are negligibly small. The PT  
symmetry-breaking phase transition in such systems can be identified as a transition between elliptic and hyper-
bolic (via parabolic) classes of Möbius transformations appearing as solutions of the corresponding spin dynam-
ics equations in complex stereographic coordinates. The established correspondence between linear spin 
dynamics and Möbius transformations reveals that any Möbius transformation can be produced by a unique 
superposition of an elliptic and hyperbolic transformations, corresponding to real and imaginary applied mag-
netic fields, respectively. We have demonstrated that the nonlinear LLGS equation describing dissipative 

Figure 1.  Geodesics of an elliptic (a), hyperbolic (b), and loxodromic (c) Möbius transformation, 
corresponding in spin dynamics to the applied real magnetic field along the x axis (a), imaginary magnetic field 
along the y axis (b), and complex magnetic field along the y axis (c).

Figure 2.  Transition between elliptic (a) and loxodromic (c) Möbius transformations by increasing ε past the 
critical value 1, at which one obtains the parabolic transformation (b). In classical spin dynamics this transition 
corresponds to PT  symmetry-breaking.
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STT-driven dynamics of a linear single-spin system can be written in a linear form, illustrating that such dynam-
ics cannot produce any nonlinear effects, e.g. chaotic dynamic, for which additional time-dependent perturbation 
are necessary11, 12. The nonconservative effect of Slonczewski STT on spin systems, equivalent to the action of 
imaginary magnetic field, promises a unique tool for studying Lee-Yang zeros18 in ferromagnetic Ising and 
Heisenberg models.
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