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SUMMARY

We discuss the evaluation of subsets of variables for the discriminative evidence they provide in multi-
variate mixture modeling for classification. The novel development of Bayesian classification analysis
presented is partly motivated by problems of design and selection of variables in biomolecular studies,
particularly involving widely used assays of large-scale single-cell data generated using flow cytometry
technology. For such studies and for mixture modeling generally, we define discriminative analysis that
overlays fitted mixture models using a natural measure of concordance between mixture component densi-
ties, and define an effective and computationally feasible method for assessing and prioritizing subsets of
variables according to their roles in discrimination of one or more mixture components. We relate the new
discriminative information measures to Bayesian classification probabilities and error rates, and exem-
plify their use in Bayesian analysis of Dirichlet process mixture models fitted via Markov chain Monte
Carlo methods as well as using a novel Bayesian expectation–maximization algorithm. We present a series
of theoretical and simulated data examples to fix concepts and exhibit the utility of the approach, and
compare with prior approaches. We demonstrate application in the context of automatic classification and
discriminative variable selection in high-throughput systems biology using large flow cytometry datasets.
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1. INTRODUCTION

We are interested in the general question of identifying subsets of variables that play roles in discrimination
of subpopulations in the context of multivariate mixture modeling. We are particularly concerned with
applications of mixture models to increasingly large samples such as arise in single-cell biomolecular
studies typified by current, very widely used flow cytometry technology. In such studies, the samples sizes
are large (hundreds of thousands to several millions) and the numbers of mixture components representing
meaningful subpopulations can run into the several hundreds. Typified by studies of vaccine design and
immune response in multiple areas involving clinical studies of infectious diseases, there is a need for
formal statistical methods to guide identification and prioritization of molecular markers both as end-
points to variable selection studies and for follow-on confirmatory experiments. The challenge to statistical
methodology is that of creating valid, effective, and computationally accessible approaches to variable
subset assessment and prioritization with regard to the ability of each subset to discriminate one or more
subpopulations from the rest.

Routinely applied biological cell assays using flow cytometry generate multiple data sets with sample
sizes (numbers of cells) in the hundreds of thousands or millions and involving 10–20 variables (cell sur-
face markers) allowing interrogation of cell population heterogeneity. Mixture modeling approaches (e.g.,
Boedigheimer and Ferbas, 2008; Lo and others, 2008; Chan and others, 2008; Finak and others, 2009;
Pyne and others, 2009) are now central in studies to automatically identify different cell populations, a
necessary step before applying flow cytometric data to design of new studies, e.g., correlation with pos-
sible clinical outcomes of interest. Automated mixture model fitting overlaid with an effective approach
to discriminative analysis to prioritize subsets of variables can be expected to have a major impact on
advancing statistical work in this area, among others.

This is our setting and challenge: Given a mixture model previously fitted (in our cases, using Bayesian
methods via Bayesian EM and/or Markov chain Monte Carlo methods), formalize and implement an effec-
tive Bayesian/decision analytic approach to prioritizing variables in their ability to discriminate each prac-
tically relevant mixture component from the rest.

Notationally, we consider a p−dimensional, C−component mixture distribution with density function

g(x) ≡ g(x |�) =
C∑

c=1

αc fc(x |θc), (1.1)

where each subpopulation density fc has its own parameters θc and component probability αc,

(c = 1, . . . , C), and � = {C, α1:C , θ1:C } is the full set of parameters. Based on fitting the model to an
observed data set, we address the following questions. For each component c :

1. Which subsets of the p variables, if any, contribute in meaningful ways to discrimination of fc from
the other components?

2. Are there variables that are irrelevant to discrimination of fc?
3. Are there single or small subsets of variables that characterize fc alone and play no roles in discrim-

inating other components?
4. Can we rank subsets of variables by their discriminative ability with respect to fc?

The general questions relate to variable selection in mixtures. We address the discriminative analysis
following model fitting: we assume that the model is available with either plug-in parameter estimates
or Markov chain Monte Carlo based posterior samples, e.g., Lavine and West (1992), West (1992, 1997),
Dellaportas and Papageorgiou (2006), Frühwirth-Schnatter and Pyne (2010) and aim to then interrogate
the model to evaluate the discriminative roles of different subsets of variables. As part of this, we directly
address the issue that very different subsets of variables may play roles in differentiating different mixture
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components. Also, we are keen to define computationally effective approaches so as to enable access and
routine use, and an ability to scale to larger models.

We provide theoretical development and then examples in Bayesian mixture models using standard trun-
cated Dirichlet process mixtures. The analysis is quite general, but this Bayesian normal mixture frame-
work, e.g., Escobar and West (1995), MacEachern and Müller (1998), Ishwaran and James (2001), and
Müller and Quintana (2004) will be familiar to many readers; among other things, it offers an approach to
handling uncertainty about C subject to a specified large upper bound.

Our examples and much applied interest lies in mixture models where each component density fc

may have a non-Gaussian form. One effective approach is to fit an encompassing mixture of Gaussians
and then aggregate subsets of the fitted densities; that is, each fc is itself represented as a mixture of,
typically, a small number of Gaussians, e.g., Chan and others (2008) and Finak and others (2009). Sup-
plementary material available at Biostatistics online summarizes Bayesian computational methods for
Gaussian mixtures and technical details of the subsequent construction of non-Gaussian subpopulation
densities, as well as other technical details. Our computational work also introduces a new Bayesian
expectation–maximization algorithm for truncated Dirichlet process mixtures, while the MCMC analysis
exploits the most effective component relabeling approach Cron and West (2011). Both optimization and
simulation analyses utilize efficient parallel implementations of Bayesian computations for these mixture
models Suchard and others (2010).

2. DISCRIMINATIVE INFORMATION

2.1 Classification

In the mixture model of equation (1.1), focus on one of the component distributions c. For notational clarity
here write fc(x) = fc(x |θc), the dependence on parameters being implicit. The mixture pdf is then

g(x) =
C∑

c=1

αc fc(x) = αc fc(x) + (1 − αc) f−c(x), (2.1)

where f−c(x) is the conditional mixture

f−c(x) = 1

(1 − αc)

∑
a=1:C,a |= c

αa fa(x). (2.2)

We will also interpret this notation as extending to c being a set of components, for contexts when we want
to compare discrimination of a set/collection of clusters—or subpopulations-from the others; the notation
obviously encompasses this.

Now suppose we record an observation at the point x in the sample space with no additional information
about its genesis. The classification probability for component c—the probability that this case in fact
arose from that component (or set of components) — is then simply the posterior probability α∗

c (x) =
αc fc(x)/g(x). Any hard classification rule chooses to classify x as coming from component (group or
cluster) c if α∗

c (x) is large enough, i.e., if α∗
c (x) > τ for some chosen threshold τ. Now note that α∗

c (x) > τ

if any only if, Vc,τ (x) > 0 where

Vc,τ (x) = αc fc(x) − τg(x) = αc(1 − τ) fc(x) − (1 − αc)τ f−c(x). (2.3)

DEFINITION 1 As a function of x for given component c and classification probability threshold τ, Vc,τ (x)

in (2.3) is the classifier for component c, determining classification boundaries/regions in the sample
space.
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2.2 Discriminative information measures of evidence

Cases when x ∼ fc : Assume we know that a specific observation x actually arises from component c,
i.e., x ∼ fc. In such a case, larger values of Vc,τ (x) are desirable to generate high rates of true-positive
classifications. We see that

E(Vc,τ (x)|x ∼ fc) = αc(1 − τ)δc,c − (1 − αc)τδc,−c, (2.4)

where

δa,b =
∫

fa(x) fb(x) dx (2.5)

for any two distributions with pdfs fa, fb. Note that δa,b = Eb[ fa(x)] where the expectation is over
x ∼ fb(·), and the measure is symmetric in a, b. The number δa,b is a natural measure of agreement, over-
lap or concordance between the two distributions. This measure of concordance takes higher values when
fa, fb are closely similar, is maximized when the densities agree exactly, and otherwise decays towards
zero as the densities become more separated. Concordance was discussed as the basis of a similarity dis-
tance between densities by Scott and Szewczyk (2001), for example. In the mixture context, assessing
how different component fc is to the set of remaining components of the mixture, it is therefore intuitively
natural that the concordance δc,−c arises as in (2.4).

Continuing under the true-positive assumption that x ∼ fc, we see that E(Vc,τ (x)|x ∼ fc) > 0 implies
and is implied from (2.4) by

�c <
αc

(1 − αc)

(1 − τ)

τ
, (2.6)

where

�c = δc,−c

δc,c
=

∫
fc(x) f−c(x) dx∫

fc(x)2 dx
. (2.7)

Cases when x ∼ f−c: In the complementary case when x actually generated from f−c, then for any spec-
ified classification probability threshold τ, small values of Vc,τ (x) below zero are desirable in order to
appropriately classify x with a high success rate. In other words, Vc,τ (x) should be large in terms of its
absolute value. A similar argument to that above then yields E(Vc,τ (x)|x ∼ f−c) < 0 if, and only if,

�−c <
(1 − αc)

αc

τ

(1 − τ)
, (2.8)

where �−c is the analogous discriminative information measure of evidence (DIME) for components −c;
that is,

�−c = δc,−c

δ−c,−c
=

∫
fc(x) f−c(x) dx∫

f−c(x)2 dx
. (2.9)

DEFINITION 2 For any component c, the number �c defined in (2.7) is the true-positive discriminative
information measure of evidence (DIME) for component c. The number �−c of (2.9) is the corresponding
true-negative DIME value for component c. In comparing discrimination based on different subsets of
variables, we will modify the notation to make explicit which variables are used. For any subset of variables
h ⊆ {1 : p}, when restricting to the mixture distribution on only the h margin, we denote the DIME values
by �c(h), �−c(h).

The two DIME values for any component c are standardized, directional versions of the basic con-
cordance measure δc,−c. Small values imply good discrimination. Note also that they are measures on a
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likelihood ratio scale, and so are easily interpretable measures of pure discrimination. Specifically for pos-
itive discrimination, (2.6) shows that the DIME value �c is in fact a likelihood ratio, i.e., a Bayes’ factor,
that maps prior odds αc/(1 − αc) on component c to an implied posterior odds ratio of at least τ/(1 − τ)

based on a Bayes’ factor of 1/�c. Similar comments apply to the role and interpretation of �−c.

2.3 DIME and classification performance

Given a mixture, we can directly and simply compute the DIME values �c,�−c as numerical summaries
of discrimination of component c from the rest, with their interpretations as Bayes’ factors (likelihood
ratios). They nicely quantify discrimination between mixture components decoupled completely from prior
probabilities of mixture components and hence from classification rates. Further development now relates
them to classification performance in the context of the overall mixture model now involving the prior
probabilities αc.

Note that classifying any future x value as coming from component c based on α∗
c (x) > τ induces a

classifier Vc,τ (x) whose expectation under fc is positive when, from equations (2.6) and (2.7),

τ < τc+ where τc+ = αc

αc + (1 − αc)�c
. (2.10)

Similarly, the expected classifier is negative under f−c when, from equations (2.8) and (2.9),

τ > τc− where τc− = αc�−c

1 − αc + αc�−c
. (2.11)

The key equations (2.10) and (2.11) map the DIME measures and prior probabilities to easily computable
classification thresholds on the interpretable probability scale. It turns out that we can further interpret
these thresholds in connection with classification performance measured by the theoretical expected pos-
terior classification probabilities, namely

αc+ = E(α∗
c (x)|x ∼ fc) and αc− = E(α∗

c (x)|x ∼ f−c)

where, for all c = 1 : C, α∗
c (x) = αc fc(x)/g(x). Refer to αc+ as the expected true-positive classification

rate, and αc− as the expected false-positive rate1. In simple examples, these rates can be approximately
computed by simulation, e.g., by simple importance sampling. However, computing their values exactly is
impossible and estimating them a standing issue in classification with mixtures.

It turns out that the trivially computed classification probability bounds τc+, τc− are simple, direct
first-order approximations to αc+, αc−, respectively, as follows. For the former, simply note that
αc+ = E[αc fc(x)/g(x)|x ∼ fc], the expectation of the ratio of αc fc(x) to g(x). Using the first-order
approximation given by the ratio of the two corresponding expectations yields

αc+ ≈ E[αc fc(x)|x ∼ fc]

E[g(x)|x ∼ fc]
= αcδc,c

αcδc,c + (1 − αc)δc,−c
= τc+.

1 It can be easily shown that the expected classification rates are, respectively, equal to the corresponding expected true- and
false-positive classification rates under a uniform prior on threshold τ , i.e.,

αc+ =
∫ 1

0
Pr(α∗

c (x) > τ |x ∼ fc) dτ and αc− =
∫ 1

0
Pr(α∗

c (x) �τ |x ∼ f−c) dτ.

Hence, the true-positive/false-positive terminology—that is typically associated with a test based on thresholding posterior proba-
bilities for given x—is seen to be apt.
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We similarly deduce αc− ≈ τc−, with details left to the reader. Section 5 of Supplementary material avail-
able at Biostatistics online shows high accuracy of the approximation works across practically relevant
contexts.

DEFINITION 3 The quantities τc+ and τc− are referred to as the true- and false-positive discrimina-
tive threshold probabilities for classification into component c of the mixture. As with DIME values
in Definition 2, when comparing discrimination based on different subsets of variables, we will make
explicit in the notation which variables are used. For any subset of variables h ⊆ {1 : p}, when restricting
to the mixture distribution on only the h margin, we denote the discriminative threshold probabilities by
τc+(h), τc−(h).

This represents an advance in practical evaluation of classification performance using mixtures; direct
evaluation of expected classification rates is simply infeasible, while these trivially computed discrimi-
native threshold probabilities are easy to compute based on DIME measures and prior probabilities. In
addition to the bounds they provide for classification, they are seen to also define estimates of expected
classification rates.

3. PRACTICAL DISCRIMINATION

3.1 Overview

The above theoretical and conceptual developments generate advances in terms of efficient computation
of bounds related to classification rates. Our main interest here is in the practical use of this to evaluate
the discriminative information provided by different subsets of variable in connection with one or any of
the mixture components. We can now do this in both relative and absolute senses; DIME measures are
likelihood ratios that provide relative assessments across variable subsets, while the derived discriminative
threshold probabilities provide absolute comparisons on the probability scale. Practically, small values of
�c,�−c are desirable as they will lead to higher sensitivity and specificity in classification of cases as
coming from component c. Correspondingly, high values of τc+ and low values of τc− indicate good dis-
crimination of component c from the rest concerning true-positive and false-positive rates, respectively.
These easily computed bounds that depend naturally on concordance between densities can therefore com-
pare and absolutely quantify discriminative abilities of differing subsets of variables within the same overall
joint mixture model.

Given a specified mixture on the full set of p-variables in x, we will just directly marginalize to the
variable subset h to compute DIME values and discrimination probabilities for each component c = 1 : C.

This way the issue of evaluating discriminative subsets can be carried out for all components and any
selected subsets of variables based on the fitted model, without refitting. By exploring subsets h, we can
automatically generate ranked sets of variables for each component and address the questions above. Notice
that, at an extreme, if one or a subset of variables h is independent of the rest and has the same distribution
over all components, then �c(h) will take the same values when computed in the mixture model analysis
with or without those variables, showing their irrelevance.

3.2 Evaluations on variable subsets

For each component c = 1 : C and a given subset of variables h, consider the quantity

Ac(h) = αcτc+(h) + (1 − αc)(1 − τc−(h)). (3.1)
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This is the natural prior/base-rate weighted average of discriminative threshold probabilities for classifi-
cation into component c, an overall classification rate summary. Note that it is on the absolute probability
scale so differences across different subsets h can be easily interpreted.

DEFINITION 4 For each component c = 1 : C, the quantity Ac(h) in (3.1) is referred to as the aggregate
discriminative accuracy measure for component c in the marginal mixture distribution for variable subset
h ⊆ {1 : p}.

Given the mixture of (1.1) on the full set of p variables, we can directly extract the implied marginal
mixture on any subset of variables h ⊆ {1 : p} for discriminative evaluation of components based on only
that subset (Ac(h)). When p is small, we can directly evaluate all possible 2p variable subsets. For mod-
erate and larger p, this is of course infeasible and some form of guided search over variable subsets is
needed. Forward (Section 7 of Supplementary material available at Biostatistics online) and/or backward
selection methods are obvious first steps. Our examples and application below utilize a first, direct forward
search method as follows. In higher-dimensional problems, it would be natural to utilize ideas of stochastic
search methods as used for exploring variable subsets in regression and for graphical model search (e.g.,
Jones and others, 2005; Hans and others, 2007), but this is beyond our scope here.

3.3 Model fitting and estimation of discriminative measures

All of the above theoretical development has assumed a given mixture model—that is, a given set of
values of C and full knowledge of the αc and all model densities fc(x) = fc(x |�c) in (1.1). In practice, we
perform inference on all model parameters and this translates to estimation of the DIME, discriminative
threshold probabilities and discriminative accuracy measures. Our Bayesian analysis in examples here uses
standard truncated Dirichlet process mixtures of multivariate normal distributions. This context involves
fixing a (large) upper bound on the number of normal components in the mixture, and then developing the
posterior over all model parameters, including the effective number of components, based on any given
data set. Summary details and references are given in Supplementary material available at Biostatistics
online.

4. SYNTHETIC DATA EXAMPLE

Two proof-of-principle examples to demonstrate the DIME-based analysis are in Section 8 of Supple-
mentary material available at Biostatistics online. Here, we show one example that strongly illustrates
the ability of DIME-based analysis to dissect component-specific discriminatory variables from the rest,
comparing the analysis with the ridgeline-based separability measure (RSM) of Lee and Li (2012), which
appears to be the most directly related approach to discriminative assessment. RSM, which measures the
pairwise separability between the modes of any two clusters, has been shown to be superior to earlier meth-
ods including the scatter separability criterion (SSC) (Dy and Brodley, 2004). RSM is a global measure
that selects one subset of variables for all components, and it has an explicit analytic expression only in
cases of two component normal mixtures with identity covariance matrices. Logistically, we follow the for-
ward selected strategy and recommendations in Lee and Li (2012), evaluating variables to add to a current
discriminatory subset if the increase in RSM exceeds 0.01 at each step, and stopping otherwise. MCMC
analyses were initialized at the Bayesian EM-based posterior modes, and we generated posterior simula-
tions of size 10,000 following additional burn-in iterates. For most direct comparison, RSM measures were
evaluated using mixture model parameters estimated by MCMC-based posterior means.
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We generated a synthetic sample of 6000 from an 8-dimensional mixture of normals.
The mixture has four components of proportions (0.3, 0.3, 0.3, 0.1) and with mean vectors
(7, 0, 0, 0, 0, 0, 0, 5), (5, 5, 5, 0, 0, 0, 0, 0), (0, 0, 0, 5, 5, 5, 0, 0), and (0, 0, 0, 0, 0, 0, 0, 0). The covari-
ance matrix of component 1 is diag(1, 5, 5, 5, 5, 5, 5, 5); for components 2 and 3, the covariance matrix
entries for the subsets of variables having non-zero means are

⎛
⎝1.5 0.6 0.9

0.6 1 0.3
0.9 0.3 0.8

⎞
⎠ ,

⎛
⎝ 1 0.7 0.9

0.7 1.5 0.3
0.9 0.3 2

⎞
⎠ ,

respectively, the remaining dimensions have zero covariances with any other variables and variances 5.
The covariance matrix for component 4 is 5I. Figure 1 displays standardized data.

The MCMC-based posterior from analysis with a mixture of at most 16 multivariate normals strongly
identifies four effective components; discriminative summaries for the dominant first 3 appear in Table 1.

Fig. 1. Pairwise scatter plots of a randomly selected subset of the n = 6000 observations in the synthetic example.
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Table 1. Accuracy Ac(h), (c = 1 : 3), in the synthetic example, variables are ordered according to the
forward search based on discriminative accuracy Ac(∗) or RSM

Step 1 2 3 4 5 6 7 8

Variable 8∗ 1 3† 2 6 5 4 7
A1(h) 0.956 0.986 0.999 1.000 1.000 1.000 1.000 1.000
τ1+(h) 0.897 0.973 0.999 0.999 1.000 1.000 1.000 1.000
τ1−(h) 0.021 0.009 0.000 0.000 0.000 0.000 0.000 0.000
�1(h) 0.049 0.012 0.000 0.000 0.000 0.000 0.000 0.000
�−1(h) 0.050 0.022 0.001 0.000 0.000 0.000 0.000 0.000

Variable 3∗ 2† 1 4 6 8 5 7
A2(h) 0.985 0.999 1.000 1.000 1.000 1.000 1.000 1.000
τ2+(h) 0.970 0.999 1.000 1.000 1.000 1.000 1.000 1.000
τ2−(h) 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000
�2(h) 0.013 0.001 0.001 0.000 0.000 0.000 0.000 0.000
�−2(h) 0.022 0.001 0.001 0.001 0.000 0.000 0.000 0.000

Variable 4∗ 5† 6 1 3 2 8 7
A3(h) 0.980 0.999 0.999 1.000 1.000 1.000 1.000 1.000
τ3+(h) 0.958 0.997 0.999 1.000 1.000 1.000 1.000 1.000
τ3−(h) 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000
�3(h) 0.019 0.001 0.000 0.000 0.000 0.000 0.000 0.000
�−3(h) 0.027 0.002 0.001 0.001 0.000 0.000 0.000 0.000

Variable 1 2 4 8 5 3 6 7
RSM 0.312 0.580 0.618 0.646 0.669 0.681 0.682 0.681

Note. For the former, variables indicated by † would terminate the forward search for discriminatory variables if we choose to do
so based on a minimal change of 0.01 in accuracy. We now also indicate by ∗ the last variable identified to define a minimal set
with absolute accuracy (average classification probability) Ac(h) �0.95, if this is achieved. We underline the index of the last
variable entered using RSM.

For each of the first 3 components, these summaries identify a single but component-specific variable
as being relevant and sufficient to achieve an overall average classification probability at 95% accuracy;
they also indicate the extent to which—on this interpretable scale—additional variables can be expected
to improve this, reaching ∼99% with two variable subsets that are again different across components. In
contrast, RSM selects all the variables except x6, x7 (a union of the DIME selected variables), with no
insights into relative discriminative information of variable subsets across components.

5. DISCRIMINATORY MARKERS IN FLOW CYTOMETRY ANALYSIS

Multi-parameter flow cytometry can measure 15 or more variables—biological phenotypic or functional
markers—on thousands of cells per second; it is a routine biological assay used in basic and clinical
research laboratories worldwide. The primary use of flow cytometry data is in identifying subpopula-
tions within large data sets that represent different regions of the multivariate marker space that relate
to differentiation of cells and their biological function. Multivariate mixture models are increasingly
used (Chan and others, 2008; Lin and others, 2013) and the interest in identifying relevant subsets of mark-
ers, addressing the general questions of discriminative subsets posed in Section 1, is fundamental to both
analysis of experimental results and to the design and selection of marker variables for future studies.

We give an example in which a subset of variables is biologically known to define a scientifically inter-
esting subpopulation. The study is an applied proof-of-concept, but also turns out to be more interesting
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Fig. 2. Scatter plots of standardized flow cytometry levels for 4 of the 12 marker variables, showing a randomly
selected subsample of 10,000 cells. To highlight basic aspects of the mixture model analysis, the scatters are overlaid
with contours of the corresponding two-dimensional margins of the two mixture components with highest estimated
probabilities. Purely for display here, the specific estimate of the pdf is based on the mixture model with plug-in param-
eters defined by the posterior mode computed using the Bayesian EM algorithm, followed by component aggregation
to identify the non-Gaussian subtypes displayed. The area of each contour displayed is approximately proportional to
the corresponding posterior modal estimate of the resulting component probabilities.

biologically as we identify somewhat different marker subsets that have been commonly believed to be key.
In this study, we are interested in regulatory T cells (Tregs), a specialized subtype of T cells that are criti-
cal to the maintenance of immune cell homeostasis and tolerance to self-antigens. We analyzed data from
three replicate samples of peripheral blood mononuclear cells from the same donor to identify the minimal
marker subset needed to discriminate Tregs from all other cellular subtypes. Each data set comprises >1
million observations coming from multiple cellular subtypes of which Treqs are just one subpopulation,
and the p = 12 scatter and fluorescent markers used in the analysis were FSC-A, FSC-H, SSC-A, vAmine
(viability dye), CD3 V500, CD4 PerCP-Cy55, CD45R0 FITC, CD25 ECD, CD127 PE-Cy5, FoxP3 PE,
Helios A647, and CD39 PE-Cy7. While FoxP3 is a master regulator in the development and function of
Tregs and the most specific single Treg marker, it requires intra-nuclear staining to detect and the use of
FoxP3 is not compatible with obtaining viable Tregs for functional studies using fluorescent activated cell
sorting (FACS). Therefore, one major interest is to evaluate the extent to which FoxP3 is indispensable in
identifying Tregs. Aspects of the data in four important marker variable dimensions, in displays that also
illustrate—dimensional projections of some particular non-Gaussian cellular subtypes, appear in Figure 2.

Analysis used an upper bound of J = 160 on the number of Gaussian components with the strategy of
identifying subtypes by aggregating components around modes of attraction; see Supplementary material
available at Biostatistics online. We remark that this aggregation strategy is now becoming standard in mix-
ture model analysis in this application area. Repeat posterior mode search via the Bayesian EM algorithm
of Supplementary material available at Biostatistics online identified a highest posterior mode used to
initialize the MCMC, followed by component relabeling and aggregation to define possibly non-normal
components (C = 88, 86, and 123 for the three samples, respectively). From the posterior summaries
resulting, we first identified a component corresponding to the Tregs cellular subtype based on biolog-
ical knowledge; Tregs are defined as having high values in FoxP3, CD25, CD3 and CD4, and low values
in vAmine and CD127. We use c = T to denote the Treg subpopulation and evaluate markers for their
ability to discriminate Treg cells from the remaining components– some of which are identifiable cellular
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Fig. 3. Summary discriminative measures for selected marker variable subsets in the analysis of Tregs flow cytometry
data. The number of markers is decreased one at a time from left to right, with the best discriminative subsets indicated
by different colors/symbols for each of the three data sets. The corresponding accuracy measures—plotted on the log
scale—are shown at the top. The loss in accuracy when deleting FoxP3 is also shown—plotted, simply for convenience,
at 1.5 on the horizontal axis.

subtypes– represented by the posterior. We computed MCMC-based posterior means of the probabilistic
classification accuracy measures AT (h) for all possible subsets h ⊆ 1 : 12; Figure 3 reports a summary
selection, including the most discriminative subset of k markers for each k = 1, . . . , 12.

Very good discrimination of Tregs is obtained using as few as four markers, with only modest increases
in accuracy as markers are added; this is relevant for future studies to isolate only Treg cells with a reduced
set of markers. The smallest subset of markers to identify Tregs in the absence of FoxP3 is CD39 and
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Helios with an accuracy ∼0.99. CD39 and Helios markers are known to characterize functionally active
and thymic-derived Tregs, respectively (Borsellino and others, 2007; Thornton and others, 2010), and so
constitute the dominant Treg population in these samples. However, as shown in Figure 3, dropping FOXP3
results in a small but significant decrease in accuracy, confirming that FOXP3 is an important marker
characterizing Tregs.

6. ADDITIONAL COMMENTS

The utility and effectiveness of the discriminative information and probabilistic classification measures
introduced here are clear in both the synthetic and real data examples. Based on discrimination of mixture
components via measures of concordance, the approach is intuitive and natural; the ties to misclassification
rates provides additional theoretical insights and a map to the intuitive probability scale for evaluating and
comparing variable subsets.

Coupled with existing approaches and software tools for posterior mode search and posterior simulation
in multivariate mixtures, the approach extends the toolbox of statistical discrimination and classification
for studies aiming to dissect the roles played by variables, both individually and in association with other
variables, in the determination of discrimination of mixture subpopulations. In contrast to variable selection
approaches (e.g., Raftery and Dean, 2006; Kim and others, 2006), this new method overlays an existing
mixture model analysis to explore and quantify the roles of subsets of variables, and so can be applied
easily and routinely across analysis. Our examples show how it relates to and improves upon existing
approaches. Further in comparison, the current approach is computationally accessible and scalable. The
dissection of roles of variables cuts deeper than other methods in evaluating local discriminative roles of
variables; that is, assessing subsets of variables for their roles on each subpopulation, rather than aiming to
select one set of variables for all components. This is key in applications such as the flow cytometry study
illustrated here, where different, generally small subsets of variables can characterize subpopulations, with
some variables being irrelevant for discrimination of many components but critically relevant for others.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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