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Abstract: Vitamin D belongs to the group of liposoluble steroids mainly involved in bone metabolism
by modulating calcium and phosphorus absorption or reabsorption at various levels, as well as
parathyroid hormone production. Recent evidence has shown the extra-bone effects of vitamin D, in-
cluding glucose homeostasis, cardiovascular protection, and anti-inflammatory and antiproliferative
effects. This narrative review provides an overall view of vitamin D’s role in different settings, with a
special focus on chronic kidney disease and kidney transplant.
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1. Introduction

The denomination “vitamin D” refers to a group of liposoluble, steroidal compounds
crucial for intestinal absorption and for metabolism regulation of calcium and phos-
phates [1]. The most important isoforms in human physiology are ergocalciferol (vitamin
D2) and cholecalciferol (vitamin D3), also known as calciols; while the first one is only
synthesized in plants and fungi (dietary intake), the second one is both exogenous and
produced endogenously from the photolysis of 7-dehydrocholesterol by UVB radiation in
the skin [2]. Calciols undergo a two-step hydroxylation to turn into the biologically active
form, calcitriol. First, vitamin D 25-hydroxylase in the liver mediates D2/D3 to change
into 25(OH)D (calcidiol), a quantifiable form mostly used to determine vitamin D levels in
serum, and it is defined as a native form. The next step is the hydroxylation on carbon 1 in
the kidney’s proximal tubule to form calcitriol, also referred as 1,25-dihydroxyvitamin D
[1,25(OH)2D]. Serum 1,25(OH)2D provides little information about vitamin D status, and it
is usually normal or even elevated when hyperparathyroidism associates with vitamin D
deficiency [3].

1,25(OH)2D reaches the target organs via a vitamin D-binding protein (VDBP) in
systemic circulation, then binds to the local vitamin D receptor (VDR). It is known that the
VDR belongs to a wide group of ligand-activated nuclear transcription factors, and it can
boast an almost ubiquitous and tissue-dependent expression in nucleated cells [4]. Besides
triggering absorption, output, and mobilization of both calcium and phosphorus, vitamin
D also exerts several non-osteogenic and non-calcemic functions, thus representing a key
player in extraskeletal health [3].

To avoid intoxication, calcidiol and calcitriol are strictly regulated by 25(OH)D 24-
hydroxylase (CYP24A1), which is the primary vitamin D-inactivating enzyme for both
compounds [5]. Moreover, the parathyroid hormone (PTH) and fibroblast growth factor 23
(FGF23) also regulate vitamin D metabolism. PTH is produced by the parathyroid glands
secondarily to low serum calcium levels; it both stimulates bone turnover and upregulates
1,25(OH)2D levels due to the induction of renal expression of the involved cytochrome
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(CYP27B1). FGF23 instead is produced by osteoblasts and osteoclasts in response to
high phosphate and calcitriol serum levels and downregulates calcitriol production by
inhibiting CYP27B1 in the kidney [6,7]. In Figure 1, the main systemic effect of 1,25(OH)2D
are exposed.
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2. Vitamin D in Bone Homeostasis

Vitamin D has direct and indirect control of bone-matrix formation, as its main physio-
logic function is the modulation of calcium and phosphorus absorption or reabsorption
at various levels. In this frame, the kidney has a major involvement: once calcium and
inorganic phosphorus are filtered to preurine, 1,25(OH)2D, together with PTH, regulates
their reabsorption through various channels and transporters in distal, tubular segments [8].
In conditions of normal renal function, about 98% of the filtered calcium is reabsorbed
in the kidney; in proximal tubules, where thiazide diuretics, 1,25(OH)2D, and PTH have
no influence, Na-dependent, paracellular mechanisms mediate the uptake of 50–60% of
the whole load of calcium. The descending loop and the thin, ascending limb of the loop
of Henle play only a minor role in calcium homeostasis. On the other hand, important
percentages of the reuptake of the filtered mineral occur in the thick, ascending limb (20%),
distal tubule (10–15%), and collecting duct (5%), where calcium reabsorption is ATP depen-
dent and mediated by epithelial calcium channels, calbindin, and the plasma membrane
Ca2+ ATPase (ATP2B1) [9–11].

Another important function of vitamin D is the enhancement of intestinal calcium and
phosphorus reabsorption. This is indeed demonstrated by the great vitamin D influence
on the amount of enteric calcium uptake: with 25(OH)D insufficiency, only 10–20% of
dietary calcium intake eventually enters into the bloodstream, while adequate levels of the
prohormone improve the absorption to 30–40% [12,13]. Many of the direct effects of vitamin
D on the skeletal tissue are not completely known. However, there is a large amount of
evidence to suggest that vitamin D involvement in bone-tissue deposition and remodeling
is represented not only through the regulation of Ca/P serum levels with the close coordi-
nation of PTH, but also via the direct effect on bone cells expressing VDR, osteoblasts, and
osteoclasts [14]. Despite the fact that the 1α-hydroxylation of 25(OH)D to 1,25(OH)2D in



Int. J. Mol. Sci. 2022, 23, 9135 3 of 13

bone cells was described many years ago, the discovery of its autocrine/paracrine activity
for osteoblast and osteoclast maturation and proliferation is relatively recent [15]. It has
been proven that 1,25(OH)2D promotes the expression of RANKL, osteocalcin, and osteo-
pontin, associated with osteoblast maturation and mineralization. Moreover, 1,25(OH)2D
also controls hyperactive osteoclastic resorptive activity and upregulates the expression of
FGF23 and sclerostin via the VDR [16].

3. Vitamin D in Chronic Kidney Disease and End Stage Renal Disease

Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD)
present more severe vitamin D deficiency and insufficiency compared to the healthy
population. Different definitions of vitamin D deficiency and insufficiency have been
provided over the last years, resulting in heterogeneous guidelines, ranges, and cut-
offs. However, most clinicians refer to the Endocrine Society’s recommendations, where
25(OH)D concentrations < 20 ng/mL are defined as deficiency, concentrations between 21
and 29 ng/mL as insufficiency, and serum levels > 30 ng/mL as normal/sufficiency [16].
Given the serious dietary restrictions in subjects with impaired renal function and the
presence of comorbidities that may influence hospitalization and mobility (leading to
lower sun exposure), CKD patients commonly require vitamin D supplementation, mainly
cholecalciferol and calcifediol-based supplements [17]. Moreover, the 1α-hydroxylation of
25(OH)D is impaired due to damaged kidney tissue. The resulting hypocalcemia and hy-
perphosphoremia, secondary to kidney failure, lead to secondary hyperparathyroidism and
increased serum levels of the hyperphosphaturic, osteocyte-derived fibroblast growth factor
23 (FGF23) [18]. PTH and FGF23 have opposite effects on the regulation of 1α-hydroxylase:
while PTH enhances its expression in order to invert the trend of calcium loss, FGF23,
which is triggered by phosphate retention, inhibits renal 1α-hydroxylase expression [7].
Long-term 25(OH)D and 1,25(OH)2D insufficiency and secondary hyperparathyroidism
result in a broad spectrum of bone damage, commonly found in the CKD/ESRD population
known as chronic kidney disease–mineral and bone disorder (CKD-MBD) [19].

4. Vitamin D and CKD-MBD

Protracted 25(OH)D and 1,25(OH)2D deficiency causes a drop in bone mineral density
and progressive bone loss, thus burdening the patient with a wide range of bone disorders,
a higher risk of pathological fractures, significant morbidity and mortality, and ultimately,
increased healthcare costs [20,21].

In clinical practice, multiple designations are used to indicate CKD-related bone dis-
eases, and they can be summed up in three fundamental, pathological entities: osteoporosis,
CKD-MBD, and renal osteodystrophy [22].

Osteoporosis is defined as a systemic, skeletal disorder, where bone strength and
resistance are compromised, and thus, affected patients have an elevated risk of fracture
due to reduction in bone mass density (BMD, mineral quantity per square centimeter,
expressed as g/cm2) and bone quality (BQ, comprehensive of microarchitecture, mineral-
ization, turnover, and microcrack accumulation) [23–28]. According to the World Health
Organization (WHO), “osteoporosis is defined as a BMD that lies 2.5 standard deviations
or more below the average value for young healthy women (a T-score of < −2.5 SD)”. A
second, higher threshold that lies between −1 and −2.5 SD describes “low bone mass” or
osteopenia [23].

CKD-MBD is a systemic disorder of mineral metabolism, initiated by phosphorus
retention and elevated levels of FGF23 and PTH, resulting in a detrimental rebound on
skeletal integrity. The disease is characterized by alterations of the principal CKD-MBD
biomarkers (calcium, phosphorus, vitamin D, and PTH) associated with anomalies in bone
turnover, mineralization, and volume (TMV); extraskeletal calcifications; and atherosclero-
sis [29]. In Figure 2, pathogenesis of CKD-MBD is schematized.
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Lastly, the denomination “renal osteodystrophy” describes the different morphological
pictures of bone disease that can be diagnosed in CKD through bone biopsy [30], according
to TMV classification. In this case, the cortical bone is of predominant interest [22]. Osteitis
fibrosa cystica is the main one among these skeletal disorders and is characterized by high
bone turnover that triggers the production of fibrous bone instead of resistant, lamellar
bone, resulting from high serum PTH levels [22]. Conversely, in adynamic bone disease,
low bone turnover is common, due to reduced osteoblasts and osteoclasts activity. The
ability of bone to release or store calcium is consequently compromised, resulting in broad
oscillation of calcium levels [24,25].

The physiological concentration of 25(OH)D has inhibitory effects on PTH tran-
scription [28]. In secondary hyperparathyroidism, 25(OH)D has a synergistic effect with
1,25(OH)2D on PTH production [28].

Vitamin D deficiency (both 25(OH)D and 1,25(OH)2D) is highly prevalent in the CKD
population. Previously, a cross-sectional analysis of 825 HD patients showed that 78% of
the cohort had vitamin D (25(OH)D) deficiency (<30 ng/mL) and 18% had severe deficiency
(<10 ng/mL). Moreover, they demonstrated that 25(OH)D deficiency was associated with
increased early mortality [28]. This phenomenon contributes to the development of high
PTH levels and the worsening of secondary hyperparathyroidism.

Some studies have reported the association between free 25(OH)D and serum PTH
decline [31]. Nevertheless, some others have not reached such conclusions [32]. In fact, it is
still uncertain if levels of 25(OH)D may represent the total, biologically active vitamin D.
In fact, supplements of both cholecalciferol and calcifediol are effective in increasing the
total and free 25(OH)D level and are associated with a serum PTH-level decline [33]. In
CKD patients, supplementation with cholecalciferol showed a significant increase in serum
25(OH)D concentration and a decrease in PTH levels when compared with the placebo [34].
More recently, Westerberg reported that high-dose cholecalciferol (8000 IU/day) in patients
with CKD stages 3–4 prevents the development of secondary hyperparathyroidism, with
no increase in the risk of hypercalcemia and hyperphosphatemia [35].

The 2017 KDIGO CKD-MBD Guideline suggests that vitamin D deficiency should be
corrected if CKD stages 3 to 5a, not-yet-dialyzed-patients have a progressive or persistently
high PTH level [19]. Vitamin D administration can be considered the adjuvant therapy
for secondary hyperparathyroidism prevention because of the high prevalence of vitamin
D deficiency in the general population and in CKD patients. Moreover, vitamin D has
multiple pleiotropic and systemic effects, as described above. Although more evidences
support the benefit of initiating vitamin D supplementation to lower the development of
secondary hyperparathyroidism, the efficiency of vitamin D administration for this purpose
still needs more randomized, controlled trials to prove.
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5. Effect of Vitamin D Therapy

Due to the long life of complex 25(OH)D and the vitamin D-binding protein (15 days),
daily, weekly, or monthly administration regimens can be efficient for restoring 25(OH)D
levels [18,36,37].

At present, there is no current evidence to prefer one formulation of nutritional vita-
min D over another in CKD, and no evidence has been found analyzing the benefit that
derives from combining nutritional (ergocalciferol, cholecalciferol, and calcifediol) and
activated vitamin D (VDRAs, calcitriol, and paricalcitol) [14]. The latest reports indicate
that in patients with CKD, nutritional forms of vitamin D have poor PTH-lowering efficacy
and vitamin D supplementation is inferior to VDRAs for hyperparathyroidism treatment,
particularly in dialysis patients [14,27]. However, cholecalciferol supplementation in dialy-
sis patients causes an increase in both 25(OH)D and 1,25(OH)2D levels, suggesting that
extra-renal activity may be significant in these patients [14]. These effects depend on the
vitamin D dosage, the type of vitamin D compounds, the duration of the study, and the
examined population.

Kandula et al. reported that nutritional vitamin D leads to increased 25(OH)D levels
without influencing calcium and phosphorus levels but causes a reduction in the serum
PTH level (41% decrease), mostly in dialysis patients [38–40]. Jean et al. described a positive
effect of systematic 25(OH)D supplementation during the pre-dialysis period to prevent
secondary hyperparathyroidism (SHPT) [41].

Concerning the mineral metabolism, vitamin D has shown multiple effects that involve
renal failure progression and cardiovascular disease. High-dose cholecalciferol adminis-
tration seems to ameliorate cardiovascular and endothelial parameters in children with
CKD, measured through flow-mediated dilatation, arterial stiffness, and plasmatic dosage
of homocysteine and von Willebrand [42]. Nonetheless, Karakas et al. confirmed that the
administration of cholecalciferol improved the percentage of flow-mediated dilatation in
patients under chronic dialysis treatment [43].

In diabetic CKD patients using angiotensin-converting enzyme inhibitors, a decrease
in proteinuria by adding native vitamin D was described [44]. A RCT by Meireless et al.
revealed that cholecalciferol promoted the upregulation of CYP27B1 and VDR expression
in monocytes and decreased serum IL-6 and C-reactive protein levels [45]. In a recent
meta-analysis, Mann et al. lacked finding significant effects of vitamin D supplementation
on mortality [46].

In 2014, a Cochrane analysis showed some evidences that vitamin D may decrease
all-cause mortality and cancer mortality in elderly participants. Elevated urinary calcium ex-
cretion, renal insufficiency, cancer, and cardiovascular, gastrointestinal, psychiatric, or skin
disorders were not statistically significantly influenced by vitamin D supplementation [47].

6. Vitamin D and Kidney Transplantation

In kidney transplant recipients, the underlying causes of the altered metabolism of
vitamin D, referred to as both 25(OH)D deficiency and reduced levels of 1,25(OH)2D,
are still unclear. Although many uremic alterations are recovered by the restored kidney
function, vitamin D metabolism usually remains imbalanced and suboptimal [48].

As observed in CKD/ESRD patients, vitamin D deficiency represents a trigger of
CKD-MBD, and it has been associated with worse clinical outcomes due to the impair-
ment of its pleiotropic effects, especially those involving the renal and cardiovascular
systems [16,37,43]. Vitamin D deficiency is associated with deteriorated kidney function
and worse long-term clinical outcomes [49] that can be due to the higher rates of rejection
episodes and proteinuria onset [50]. Filipov et al. demonstrated that poor vitamin D status
results in higher proteinuria after kidney transplantation [51]. The possible antiprotein-
uric mechanisms of vitamin D are the inhibition of the renin–angiotensin–aldosterone
system (RAAS), nuclear factor κB (NFKB1) inactivation, Wnt/β catenin (WNT1/CTNNB1)
pathway suppression, and upregulation of slit-diaphragm proteins. However, up to
now, there is not strong evidence of a favorable effect of vitamin D therapy as a disease-



Int. J. Mol. Sci. 2022, 23, 9135 6 of 13

modifying factor in terms of proteinuria, interstitial fibrosis/tubular atrophy (IF/TA), or
graft function [48,52].

Lifelong immunosuppressive therapy is mandatory in kidney transplants to prevent
allograft rejection, and it might be one of the culprits of CKD-MBD: many studies have
demonstrated how calcineurin inhibitors and steroids have a negative effect on the vitamin
D system and bone metabolism [53], while sirolimus has been described as a bone-sparing
drug, with no skeletal side effects [54].

Table 1 summarizes the main studies on the effects of 25(OH)D supplementation in
renal patients.

Table 1. Most representative studies on the effects of native vitamin D supplementation in the
nephrology clinical setting.

Authors Vitamin D
Formulation Dosage Study Design Patients Study

Length Results

Kandula et al.
[38]

Ergocalciferol or
cholecalciferol

Observational study
4000 to 50,000 IU daily.

RCTs
rom 20,000 IU weekly to

25,000 IU monthly

Systematic
review and

meta-analysis

CKD:
pre-dialysis,

hemodialysis,
peritoneal

dialysis and KTRs

1966 to
September

2009

No influence on Ca
and P levels

Reduction of PTH

Alvarez et al.
[39] Cholecalciferol

50,000 IU/week for
12 weeks

followed by 50,000 IU
every other week for

40 weeks

Prospective 46 early CKD
(stages 2–3) 1 year

Prevent vitamin D
insufficiency

Improvement of
serum PTH

Cupisti et al.
[40] Cholecalciferol 10,000 IU once-a-week Cohort study 405 CKD patients

(stages 2–4) 12 months Reduction of PTH

Jean et al. [41] Cholecalciferol
and calcifediol

cholecalciferol
100,000 U/month

calcifediol 10–50 µg/d
Prospective

All incident and
prevalent

hemodialysis
patients in a
single center

Three
observation
periods of
1-yr each

Reduction of the
incidence of SHPT

Aytac et al. [42] Cholecalciferol
single dose of

300,000 IU of oral
cholecalciferol

Prospective

41 CKD children
and 24 healthy
subjects free of
any underlying
cardiac or renal

disease

12 weeks

Increase in flow
mediated dilatation,
reduction in arterial

stiffness
Reduction of

plasmatic Hcy and
von Willebrand

factor

Karakas et al.
[43] Cholecalciferol 50,000 units

weekly Prospective
44 hemodialysis

patients and
24 healthy

8 weeks
Increase in

flow-mediated
dilatation

Kim et al. [44] Cholecalciferol
40,000 units weekly for

8 weeks
and then monthly

Prospective
63 patients with

diabetic
nephropathy

4 Months
Decrease in

proteinuria in
addition to ACE-i

Meireless et al.
[45] Cholecalciferol

50,000 IU of
cholecalciferol twice

weekly
Prospective 38 dialysis

patients 12 weeks

Upregulation of
CYP27B1 and VDR

expression in
monocytes

Lower serum IL-6
and CRP levels

Mann et al. [46]

Cholecalciferol,
doxecalciferol,
paracalcitol or

alfacalcidol

0.25 ug per day to
200,000 IU per week

Systematic
review

Adults with CKD
(≤60 mL/min/

1.73 m2),
including dialysis-

dependent
ESRD

3–104 weeks

Lack of significant
effects of vitamin D
supplementation on

mortality

ACE-I, angiotensin-converting enzyme inhibitors; CKD, chronic kidney disease; CRP, C-reactive protein; ESRD,
end stage renal disease; IL-6, interleukin 6; Hcy, homocysteine; PTH, parathyroid hormone; SHPT, secondary
hyperparathyroidism; VDR, vitamin D receptor.
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7. Immunomodulatory Effects of Vitamin D

The classic functions of vitamin D are the regulation of calcium in bone and mineral
homeostasis [55]. In addition, VDR is expressed in immune cells, such as macrophages,
dendritic cells, B and T lymphocytes, and neutrophils. This suggests that vitamin D may
play an important role in the regulation of the immune system [56,57].

Recently, some studies have shown that 1,25(OH)2D regulates both adaptive and
innate immunity but in opposite directions. In fact, 1,25(OH)2D inhibits the adaptive
immune response and enhances the innate immune response [58].

Previously, some studies have demonstrated vitamin D-dependent, antimicrobial
activity [59]. In particular, calcitriol can reduce the expression of MHC class II molecules,
as well as co-stimulatory molecules (CD80, CD86), which also results in a decline of IL-12
secretion [60].

Chen et al. studied the effect of 25(OH)D administration on innate immune cells. They
found an enhanced production of IL-1beta and IL-8 by both neutrophils and macrophages,
while the phagocytic capacity was suppressed in these cells [61].

Furthermore, the immune-modulating effects of vitamin D and its analogs have been
well-characterized in dendritic cells: these cells are antigen-presenting cells that stimulate
lymphocytes through antigen presentation. Griffin et al., have shown a robust vitamin D-
dependent inhibition of the maturation, differentiation, and survival of dentritics cells [62].
Moreover, in the course of the inflammatory process, vitamin D strongly inhibits the mi-
gration and maturation of dentritics cells, causing a reduction in antigen presentation and
an activation of T cells. Furthermore, Il-2 production decreases while IL-10 expression
increases, leading to the suppression of the T helper 1 (Th1) phenotype. Therefore, by
maintaining dentritic cells in an immature phenotype, vitamin D and its analogs contribute
to an induction of a tolerogenic state [63,64]. In addition, vitamin D suppresses the prolifer-
ation of B cells and immunoglobulin production. It also suppresses the differentiation of B
cells into plasma cells [65,66]. Naïve B cells express very low levels of VDR. However, the
activation of B cells induces VDR expression. Moreover, vitamin D signaling potentiates
apoptosis of activated B cells and inhibits memory B-cell formation and the secretion of
immunoglobulins IgG and IgM in activated B cells [67].

8. Pleiotropic Effects of Vitamin D

Over the last few years, increasing evidence has been revealed about the impact of
vitamin D on cardiovascular health, inflammatory status, cancer, and progression of CKD.
The discovery of the VDR enabled multiple investigations on the association of vitamin D
deficiency with acute and chronic diseases. Due to the wider distribution of the VDR, vita-
min D is associated with several pleiotropic effects: renal-function preservation, regulation
of blood pressure, glycemic control, regulation of cellular proliferation, regulation of the
renin-angiotensin-aldosterone system (RAAS), and immunomodulation properties [68,69].

Vitamin D plays a central role in cardiovascular health, as shown by the expression
of the dedicated signaling apparatus at almost all levels of the cardiovascular system, i.e.,
endothelial cells, cardiomyocytes, and smooth muscle cells of vessels [70–73]. Experimental
studies conducted on VDR-knockout mice highlighted a dramatic increase in cardiovascular
dysfunction in affected animals that developed ventricular hypertrophy, heart failure,
hypertension, and upregulation of RAAS. Evidence suggests that such comorbidities
improve following vitamin D supplementation [4].

It has been found that 25(OH)D deficiency is associated with accelerated arteriosclero-
sis and endothelial dysfunction in ESRD patients, with a subsequent increase in cardiovas-
cular risk. Moreover, a suppression of cardiomyocytes proliferation in case of vitamin D
deficiency has been hypothesized [74].

Several prospective observational studies investigated 25(OH)D levels and the risk of
CVD, and the clinical endpoints were various myocardial infarction, combined cardiovas-
cular disease, stroke, and cardiovascular mortality [75]. The Framingham Offspring Study
recruited 1739 participants free of CVD at the baseline. Over an average follow-up time of
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5 years, lower 25(OH)D levels were associated with a risk of cardiovascular events that was
1.62 times higher [72]. Similarly, the Health Professionals Follow-up Study revealed that
the incidence of acute myocardial infarction was 2.42 times higher in men with 25(OH)D
levels < 15 ng/mL, compared to those with levels above 30 ng/mL [76]. On the other hand,
the NHANES III study, which included data from more than 13,300 participants followed
for 8.7 years, showed only a trend towards an increased risk in the lowest (<17.8 ng/mL)
compared with the highest 1,25(OH)2D [77]. In a prospective cohort study, as the subset
of the MrOS study, no significant association was found between 25(OH)D deficiency
(<15 ng/mL) and cardiovascular incidence (coronary heart disease and cerebrovascular
attack) compared with vitamin D sufficiency (>30 ng/mL) [78].

Several studies evaluated not only have changes in cardiovascular risk with low
25(OH)D levels, but also with the contribution of higher levels. Most of these suggest
that risk does not decrease with levels >30 ng/mL [79,80]. Some others even suggested a
possible U-shaped relation, with a possible increase in cardiovascular disease risk at high
25(OH)D D levels (>60 ng/mL) [81]. Finally, if the observational data provided evidence of
the association between low 25(OH)D levels and increased cardiovascular risk, evidences
are still limited to support the view that higher levels of 25(OH)D are linked with a similar
decrease in risk.

Regarding the control of the inflammatory status, accumulating data indicate that
vitamin D exerts anti-inflammatory effects through many ways, namely by inhibition of
the prostaglandin pathway, proinflammatory cytokines, and NFKB. Moreover, it provides
antioxidant defense against ROS, thus avoiding the perpetuation of pro-inflammatory
responses and DNA damage [82].

Another function attributed to vitamin D is the ability to promote the differentiation
of monocytes into macrophages, lymphocytes, and dendritic cells, which are the first line
of defense of the innate immune system and infection control [83].

Several studies have also highlighted an association between sufficient vitamin D
status and cancer prevention in several malignancies, namely prostate, breast, and colon
cancer. This protective role can be explained by vitamin D-mediated upregulation of the
cyclin-dependent kinase inhibitors p21 and p27 and inhibition of the TGF-α/EGFR growth
pathway [84].

Furthermore, many studies focused on nephropathies reported that active vitamin D
protects the kidneys through its anti-inflammatory and antifibrotic effects. Calcitriol has
proven to have inhibitory effects on renal interstitial myofibroblasts, thus decelerating the
progression to renal interstitial fibrosis. Experimental studies involving knockout mice
lacking active vitamin D receptors revealed elevated levels of renin and angiotensin II in
the mice’s blood, which caused a significant rise in blood pressure and subsequent cardiac
hypertrophy [85–88]. Figure 3 is a schematic representation of the main pleiotropic systemic
effects of vitamin D.
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9. Conclusions

Recently, the function of vitamin D has been extensively investigated. The discovery of
the VDR can lead to a better understanding of the relationship of acute and chronic diseases
with vitamin D deficiency. Results of vitamin D trials vary for the general population and
renal patients. The discrepancies may be due to differences in the baseline serum 25(OH)D
levels, vitamin D doses and treatment periods, adherence to supplementation, and VDR
genetic polymorphisms [89].

Therefore, the application of vitamin D in disease treatment and prevention is far from
been achieved. Further investigation is required to pursue this aim. Regarding vitamin
D reference values, there is so far still no univocal consensus on the reference values of
vitamin D’s status. The optimal serum concentration of 25(OH)D has been considered to
not lead to a PTH elevation [90]. Such a view seems to be obsolete, and it is the result of
partial knowledge of the biological activity of vitamin D. Moreover, the bioaccessibility of
vitamin D in foods must be considered. There is, however, a lack of kinetic data that allows
for the prediction of vitamin D’s stability under industrial processing conditions [91].
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