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Abstract 

Background:  With the growing number of the aged population, the number of Parkinson’s disease (PD) affected 
people is also mounting. Unfortunately, due to insufficient resources and awareness in underdeveloped countries, 
proper and timely PD detection is highly challenged. Besides, all PD patients’ symptoms are neither the same nor they 
all become pronounced at the same stage of the illness. Therefore, this work aims to combine more than one symp-
tom (rest tremor and voice degradation) by collecting data remotely using smartphones and detect PD with the help 
of a cloud-based machine learning system for telemonitoring the PD patients in the developing countries.

Method:  This proposed system receives rest tremor and vowel phonation data acquired by smartphones with 
built-in accelerometer and voice recorder sensors. The data are primarily collected from diagnosed PD patients and 
healthy people for building and optimizing machine learning models that exhibit higher performance. After that, data 
from newly suspected PD patients are collected, and the trained algorithms are evaluated to detect PD. Based on the 
majority-vote from those algorithms, PD-detected patients are connected with a nearby neurologist for consultation. 
Upon receiving patients’ feedback after being diagnosed by the neurologist, the system may update the model by 
retraining using the latest data. Also, the system requests the detected patients periodically to upload new data to 
track their disease progress.

Result:  The highest accuracy in PD detection using offline data was 98.3% from voice data and 98.5% from tremor 
data when used separately. In both cases, k-nearest neighbors (kNN) gave the highest accuracy over support vector 
machine (SVM) and naive Bayes (NB). The application of maximum relevance minimum redundancy (MRMR) feature 
selection method showed that by selecting different feature sets based on the patient’s gender, we could improve 
the detection accuracy. This study’s novelty is the application of ensemble averaging on the combined decisions 
generated from the analysis of voice and tremor data. The average accuracy of PD detection becomes 99.8% when 
ensemble averaging was performed on majority-vote from kNN, SVM, and NB.

Conclusion:  The proposed system can detect PD using a cloud-based system for computation, data preserving, and 
regular monitoring of voice and tremor samples captured by smartphones. Thus, this system can be a solution for 
healthcare authorities to ensure the older population’s accessibility to a better medical diagnosis system in the devel-
oping countries, especially in the pandemic situation like COVID-19, when in-person monitoring is minimal.
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1  Introduction
Parkinson’s disease (PD) is the second most common 
age-related neurodegenerative disorder (after Alzhei-
mer’s), affecting about 7 to 10 million people world-
wide. The disease’s prevalence ranges from 41 people per 
100,000 of age below 40 to more than 1900 people per 
100,000 of age above 80 [1]. The gradual decaying of the 
neurons that produce a chemical called dopamine causes 
abnormal brain activities that result in PD symptoms. 
Therefore, the rate of newly diagnosed cases generally 
increases with age, whereas only 4% of people with PD 
are diagnosed before turning to 50. Studies have found 
that males are 1.5 times more likely to be affected by Par-
kinson’s than females [2], which calls for the necessity of 
a gender-based detection system for better screening.

This disease affects patients’ quality of life, makes 
social interaction more difficult for them, and wors-
ens their financial condition with extravagant medical 
expenses [3]. PD causes several motor and non-motor 
symptoms, which gradually become prominent after dif-
ferent disease progression stages. One of the secondary 
motor symptoms that people with PD may experience is 
the change in their speech quality or difficulty speaking 
in worse cases [4]. However, everyone with PD does not 
experience the same symptoms. Similarly, all the patients 
do not develop changes in their speech at the same stage 
of the disease either [5]. For those who are affected, the 
voice may get softer, breathier, or hoarse over time. The 
voice tone may become monotone, lacking the usual ups 
and downs along with some other problems. As a result 
of this, the patient gradually finds verbal communication 
very difficult, and also, people who listen to them need to 
ask them to repeat the sentences quiet often [6]. In medi-
cal terms, these problems are known as dysarthria, hypo-
phonia, tachyphemia, etc.

Another significant indicator of this disease is the 
tremor [4], which is commonly misdiagnosed as the 
essential tremor (ET). While both ET and PD are neu-
rological disorders, ET is commonly seen in the mid-
dle-aged population; of course, the onset could be 
during the life span. On the other hand, people after 
55–60 years of age are in general affected by PD. The 
distinguishable characteristics between these two are 
shown in Table 1 [7] based on which the features could 
be chosen primarily to detect PD from rest tremor 
analysis. Like voice degradation, this tremor also makes 
the patient’s life miserable as the limbs’ involuntary 
movements hinder them from performing the day-to-
day activities comfortably [8].

Unfortunately, there is no cure for this disease yet 
but medication to keep the symptoms under control 
[9]. Besides, early detection of PD is essential as the 
treatments such as levodopa/carbidopa are more effec-
tive if administered in the early stages of the disease 
[10]. Besides, non-pharmacologic treatments, such as 
increased exercise, are also easier to perform in the 
early stages of PD, which may help slow down disease 
progression as found by studies. However, this early 
detection is not always feasible, especially for the rural 
population in underdeveloped countries where trained 
neurologists are scarce [11]. In this case, a telem-
onitoring system could address the problem of early 
detection, patient monitoring, and providing proper 
recommendations, including setting up appointments 
with doctors so that people from remote places could 
quickly get access to the healthcare they need [12, 13]. 
To achieve that goal, we have previously proposed a 
cloud-based telemonitoring framework for support-
ing PD patients in receiving healthcare service in low 
resource setting [11]. That system achieved 96.6% accu-
racy by analyzing only the cloud environment’s voice 
samples for detecting PD.

In this work, we have incorporated the rest tremor 
analysis in our cloud-based telemonitoring system to 
increase the detection accuracy since voice degradation 
is not pronounced in the same way for all PD patients 
[5]. Besides, we have used a relatively new feature selec-
tion method based on information theory to investi-
gate the effect of gender-based different voice feature 
sets for male and female patients. The next section will 
review the previous works in this field, followed by the 
proposed method described at full length. Materials 
and methods for the study and the result that followed 
are presented in "Materials and Method" and "Result" 
sections, respectively. Finally, this paper is concluded 
with the analysis of performance, direction of improve-
ment, and our future work in the "Discussion" and 
"Conclusion" sections.

Keywords:  Parkinson’s, Tremor, Accelerometer, Machine-learning, Telemonitoring

Table 1  Distinction between  Parkinson’s tremor (PD) 
and essential tremor (ET)

Factors PD ET

Occurrence Mostly at rest Mostly during action

Frequency Low (4–6Hz) High (and varying)

Amplitude High and consistent Low to high varying

Affected-side Unilateral Bilateral
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2 � Review on the related works
The most common method for the diagnosis of PD symp-
toms is using the Unified PD Rating Scale (UPDRS) [14], 
and the motor examinations are being done on the sub-
scale of 0 (absence) to 4 (marked) that is described in the 
self-explanatory Table 2 for both tremor and speech.

In many studies [15, 16] conducted by researchers, 
acceleration signals for detection of PD has been inves-
tigated for its convenience. Later, some classification sys-
tems were designed to differentiate among different kinds 
of tremors such as PD and ET using machine learning 
(ML) algorithms [17, 18]. Lyons and Pahwa [19] acquired 
the data by wearable device and designed a classification 
system which differentiates essential tremor from Parkin-
son’s tremor.

Although researchers like Palmes et al. [20] investigated 
the electromyographic (EMG) signals instead of accelera-
tion signals to identify a given tremor, the data acquisi-
tion procedure is not a very comfortable one because of 
the electrode setups. In the study of Kotsavasiloglou et al. 
[21] a machine learning model was developed to differ-
entiate healthy subjects and PD patients using the trajec-
tory of horizontal lines drawn by them on a tablet using 
an electronic pen which is, however, not suitable for col-
lecting data from rural areas in developing countries due 
to the lack in technological advancement.

Like tremors, numerous studies were conducted on 
speech analysis of PD patients with a view to the detec-
tion of PD and its severity. Work of M. A. Little [22] is 
one of the most reviewed works which created the data-
base with 22 voice features, which can be found in [23]. 
In this work, we have used the same data set to compare 
the performance with similar works found in [24] and 
[25].

Later, many researchers as like in [26–28] worked on 
different voice data sets to improve the detection accu-
racy by feature engineering or applying different classi-
fiers for developing telemonitoring systems. They also 
investigated different feature selection techniques to 
reduce dimensionality. However, none of them are known 
to investigate gender-based models. Since males are more 
likely to be affected by PD, and the voice features are 

quite different for males and females, it leaves the ques-
tions whether a gender-based detection process would 
increase the accuracy or not.

3 � Proposed method
The proposed method jointly uses the rest tremor and 
the vowel phonation of the previously diagnosed patients 
with assigned UPDRS labels and other healthy people 
to train and optimize ML models. The best performing 
models are then applied to predict and inform the sus-
pected PD patients’ disease status. If PD is detected, the 
system then assigns a predicted UPDRS level to those 
patients and recommends them to consult with a trained 
neurologist. Upon receiving feedback from the patients 
after a neurologist re-evaluates their condition, the sys-
tem updates the model by retraining if necessary.

The system also keeps records of the patient’s status for 
future reference and requests the patients periodically 
for uploading new samples for continuous monitoring 
of disease progression. Simultaneously, the system keeps 
records of its performance in predicting PD and assign-
ing UPDRS labels accurately. Figure 1 shows the system’s 
first phase; the data acquisition and pre-processing for 
telemonitoring PD patients.

Table 2  Assigning UPDRS labels based on tremor and speech characteristics

UPDRS Tremor Speech

0 Absent No problem

1 Slight and infrequently present Loss of modulation yet understandable

2 Mild and persistent Loss of modulation with unclear words

3 Moderate and present most of the time Speech is poorly understood

4 Marked and present most of the time Most speech is unintelligible

Voice Recording Bandpass Filtering

Detrend
Signal

Wavelet
Filter

0-3.125 Hz

3.125-6.25 Hz

6.25-12.5Hz

12.5-25 Hz
25-50 Hz

Tremor Recording

Downsampling

a

b

Fig. 1  Tremor and voice data acquisition. a Raw rest tremor data 
acquired by the accelerometer is first passed through a detrend filter 
which is then segmented in different frequency bands using wavelet 
filter-bank. b The vowel phonations captured by the recorder is 
passed through a band-pass filter which is then downsampled before 
feature extraction
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3.1 � Phase 1: acquisition and pre‑processing
3.1.1 � Tremor data
Rest tremor data of diagnosed PD patients (with UPDRS 
level determined by trained neurologists), and healthy 
persons are captured using a smartphone with a built-in 
3-axis accelerometer sensor. The data are recorded in an 
absolute unit ( m/s2 ) and saved in a .txt file, which is then 
transferred to a laptop for signal processing. Data should 
be collected from both hands following the directions 
mentioned in the mobile application (see [29] for details 
of the data acquisition process) and "Material" section 
of this paper. However, data from the hand that shows 
prominent tremors has to be used for classification and 
detection purposes.

The tremor data first goes through a ’detrend’ filter 
since accelerometer data might have an offset due to the 
phone’s orientation, i.e., acceleration due to gravity in 
z-axis data or changing the hand’s position during the 
experiment. This filtering is performed by windowing 

all the channels’ data without overlaps and removing the 
mean acceleration value from the respective windows. 
This DC offset could also be removed during recording 
by using alternate coupling (AC) mode. Figure  2 dis-
plays the raw 3-axis signal and the effect of detrending. 
Figure 2a–c shows the effect of changing the orientation 
of the phone during data recording (see the change in 
the base level in all the channels). However, detrending 
pulls back the acceleration values to zero-base value (see 
Fig. 2d for the detrended data generated from the x-axis) 
from which we will extract features for classification.

Since the rest tremor has intermittent nature, we used 
wavelet filtering to have the time-localized resolving 
capabilities. Furthermore, the frequency ranges of inter-
est (0–3 Hz for healthy people, 3–6 Hz for rest tremor of 
PD patient, and 6–12 Hz for postural tremor if any [29]) 
can be easily separated using the wavelet 3-level filter 
banks (see Fig. 1) when the sampling frequency is 100 Hz 
(which is most common for the available smartphones). 

a

b

c

d

Fig. 2  Raw data and detrended data: a–c x,y and z axis acceleration data with smartphones orientation change during experiment. d Detrended 
x-axis data to remove the effect of DC-offset
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Now the signal at each band is analyzed for target feature 
extraction.

3.1.2 � Voice data
Vowel phonations were recorded using a smartphone, 
keeping it about 8cm away from the patients’ mouth. 
They were instructed to pronounce the vowel /α/ using a 
single breath for a maximum of 10 s duration while keep-
ing the intensity as stable as possible (see [22] for details 
of data collection).

The voice samples were first truncated in the time 
domain as the vowel phonation sound gradually 
decreases due to the loss of lung pressure at the end. In 
this way, we maintained the reliability of the signals. Also, 
the sudden utterance seems to have a high-energy input 
at the beginning of each recording. Therefore, we dis-
carded the first second and last three seconds to keep the 
reliable portion of the signal likewise in [22].

Similarly, to remove the noise outside the significant 
frequency range of human speech (which is 50–8 kHz), 
we used a band-pass filter with − 3dB cut-off points at 50 
Hz and 8 kHz (f1 and f2 in Fig. 1b) to remove the low- 
and high-frequency components. The central frequency, 
fc, is the average of f1 and f2.

Finally, the filtered voice signal was passed through 
a down-sampler to reduce the sampling frequency to 
22.05 kHz (X2(ω)) to reduce sample size since the nomi-
nal audio recorder sampling frequency, that is 44.1 kHz 

(X1(ω)) , is much higher than the Nyquist requirement 
(16 kHz) to capture voice signal. As voice signal does 
not have considerable energies in the frequency over 
8 KHz, we under-sampled the data to reduce computa-
tional power while carefully avoiding aliasing by filter-
ing it beforehand (see the effect of downsampling in the 
frequency domain from Fig. 1). Also, the signal was nor-
malized since the maximum amplitude does not carry 
reliable information because the voice intensity could 
vary from person to person [22], which is not related to 
PD.

3.2 � Phase 2: feature extraction and selection
Based on the qualitative and quantitative characteristics 
of the rest tremor at different UPDRS levels, as shown in 
Table  3, we propose some intuitive features in addition 
to those proposed by others in the similar works [29, 30]. 
The features are listed in Table  4 with the objectives in 
mind behind choosing them.

These features are chosen to identify the nature of the 
amplitude of the tremor and the occurrence pattern. 
With a window length of 20 samples with a 25% over-
lap, the features were extracted from all the acceleration 
axes. The mean and variance are taken to convert it into 
the feature vectors. For the voice data, however, we used 
the UCI data repository where all the 22 features were 
extracted, as shown in Table 5 (see [22] for details of the 
features). Although we have developed a fully functional 

Table 3  UPDRS label based on the rest tremor characteristics (qualitative and quantitative)

UPDRS Qualitative Quantitative

Labels Amplitude Consistency Max. amplitude Occurrence in recording

0 Low Absent No tremor No tremor

1 Medium Intermittent < 1 cm ≤ 25%

2 Med. or high Intermittent ≥ 1 cm but < 3 cm > 25% but ≤ 50%

3 Med. or high Continuous ≥ 3 cm but < 10 cm > 50% but ≤ 75%

4 Very high Continuous ≥ 10 cm > 75%

Table 4  List of features, their focus and ranks in analyzing rest tremor for PD detection

Serial Feature name Focusing on Mean Variance

1 Average amplitude Tremor intensity 10 3

2 Peak variation Intermittent nature 13 11

3 Consecutive peak change Intermittent nature 14 9

4 Tremor occurrence percentage Prevalence 7 8

5 Peak location variation Consistency 5 6

6 Zero crossing rate Consistency 2 15

7 Maximum power Energy content 4 1

8 Frequency at max. power Energy content 12 16
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system that can extract these features from any vowel 
phonations, we used this well-known data set for com-
paring the performance of the proposed system with pre-
viously published works.

For feature selection, we used maximum relevance 
minimum redundancy (MRMR) [31] algorithm, which 
is a feature selection method based on information the-
ory. This algorithm ranks the features based on their 
mutual information and correlation. The ranks of the 
tremor and voice features are presented in Tables 4 and 
5, respectively.

3.3 � Phase 3: model training and optimization
After feature selection, we explored different classifiers 
and optimized them for maximum accuracy. From the 
studies of others, it is found that k-nearest neighbors 
(kNN) and support vector machine (SVM) usually pro-
vide the best result in these datasets [24]. Naive Bayes 
is found to perform well when the number of features 
is reduced [11]. Therefore, we primarily investigated 
these three classifiers using the MATLAB ML toolbox 
and extracted the best online evaluation model after 
optimization.

The classification was performed with all the features 
from voice and tremor in the beginning separately. 

Then we reduced the number of features based on 
their ranks generated by the MRMR feature selection 
method to see the effect in the accuracy obtained from 
the mentioned three ML algorithms.

Finally, we created a test dataset by combining the 
voice and tremor features to see if accuracy improves 
from combined decision generated from different 
modalities. To create each synthetic patient, we concat-
enated multiple instances of voice and tremor samples 
of PD positive patients and assigned different name-
tags for them. The same was done to create synthetic 
healthy patients’ dataset. Then this test dataset was 
evaluated by the optimized models. In this process, 
we used the majority-vote for PD detection. If at least 
two of the three models detected PD from a sepa-
rate analysis of a synthetic patient’s voice and tremor 
data, the patient is finally reported as PD positive. In 
case the majority-vote contradicted, for example, PD 
detected from voice but not from tremor, we fed differ-
ent instances from the same patient until a unanimous 
decision is reached from two modalities. A patient 
is declared as non-PD only when both the voice and 
tremor analysis returned negative.

Table 5  Names and  description of  22 voice features with  their ranks calculated from  both  (B), only  male (M) 
and only female (F) data

Serial Feature name and description Rank (B) Rank (M) Rank (F)

1 MDVP: Fo(Hz); Avg. Fundamental Freq. 3 2 5

2 MDVP: Fhi(Hz); Max. Fundamental Freq. 9 13 2

3 MDVP: Flo(Hz); Min. Fundamental Freq. 8 5 21

4 MDVP: Jitter [32]; (%) 17 18 3

5 MDVP: Jitter(abs) [32]; 19 22 10

6 MDVP: RAP [32]; 22 21 16

7 MDVP: PPQ [32]; 13 9 12

8 Jitter: DDP [32]; 21 17 18

9 MDVP: Shimmer [32]; 11 19 19

10 MDVP: Shimmer(db) [32]; 15 10 20

11 Shimmer: APQ3 [32]; 20 16 13

12 Shimmer: APQ5 [32]; 14 1 15

13 MDVP: APQ [32] 7 14 11

14 Shimmer: DDA [32]; 5 20 17

15 NHR; noise-to-harmonics ratio [32] 16 12 14

16 HNR; harmonics-to-noise ratio [32] 18 8 22

17 RPDE; recurrence period density entropy [33] 12 11 6

18 D2; correlation dimension  [34] 2 3 7

19 DFA; detrended fluctuation analysis  [33] 1 7 9

20 Spread1; a non-linear measure [22] 4 4 1

21 Spread2; a non-linear measure [22] 6 6 8

22 PPE; pitch period entropy [22] 10 15 4
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4 � Materials and methods
4.1 � Data acquisition protocol
During recording the rest tremor, the patient should sit 
quietly in a chair, keeping the hands placed on the arms 
of the chair (not in the lap) with the palm facing down. 
The feet must be comfortably supported on the floor. 
The smartphone is to be attached to the hand’s back for 
recording data for 10 s with no other directives. Rest 
tremors should be assessed separately for both hands, 
and only the maximum amplitude that is seen at any time 
during the recording period has to be taken as the final 
amplitude rating. For tremor consistency recording, the 
collection of the data could start from the beginning of 
the patient examination (during interviews and question-
naire filling), so that data of several minutes are at hand 
besides the purposefully recorded 10 s tremor data for 
assessing maximum amplitude. In that case, the body 
part can be kept variously at rest, keeping the smart-
phone attached to the hand, and the hand is placed com-
fortably on support like the thighs or arm of the chair 
(but not both hands in finger locked position).

The smartphone has to be stationed at a distance of 
about 8 cm from the mouth of the patient to collect the 
vowel phonation. The patient has to sit relaxed and take a 
deep breath before uttering the vowel sound. The patient 
must be instructed to keep the intensity as consistent as 
possible during the data recording of 10 s. Patients can 
attempt multiple recordings, but try not to have a break 
in an utterance in the middle of it as data from the begin-
ning and end will be truncated to analyze the middle por-
tion of every recording.

4.2 � Data source
Tremor data were collected at Hazrat Rasoul Akram 
Hospital of Tehran, under the supervision of expert neu-
rologist [35]. Fifty-two patients volunteered to provide 
data for the study. We used this data set to evaluate our 
system (its feature generation, selection, and detection 
accuracy) for comparative result analysis.

On the other hand, the extracted voice features were 
collected from [23] created with the consent of the 
patients involved in the study. We used this data set for 
evaluating the performance of the proposed system with 
the previously published works. The details of the data 
collection procedure and the description of the features 
can found in [22].

We used the signal processing and machine learning 
toolbox of MATLAB2019b in a laptop computer to per-
form signal processing, analysis, and classification on 
the offline data sets mentioned in this work. Meanwhile, 
a mobile application is developed to acquire tremor and 
vowel phonation data from people at remote places that 

can send those data to the server where a cloud-based 
ML system is created for real-time data analysis.

5 � Result
5.1 � Results on voice data
The MRMR feature selection method’s application 
resulted in ranking the features differently for only males, 
females, and all together. Table 5 shows the names of 22 
voice features, and their ranks for both (B), only males 
(M), and only females (F) training data sets. However, for 
visual aid, Fig.  3 displays the relative weights of each of 
the features in different data sets. Using all the features, 
top 10 and top 5 ranked features separately with different 
classifiers (kNN, SVM, and naive Bayes) at tenfold cross-
validation, the accuracy, sensitivity, and specificity are 
presented in Table 6.

As we have found that for the male data set, the high-
est accuracy using all the features was found in kNN hav-
ing k = 57, Distance metric: ’Correlation’ and distance 
weight: ’squared inverse’ during optimization. SVM used 
a quadratic kernel, and naive Bayes used a Gaussian ker-
nel for maximum accuracy at 22 features. However, as we 
have reduced to the top 10 features for classification, the 
accuracy for kNN decreased while SVM and naive Bayes 
increased (see Table 6). With more dimensionality reduc-
tion, naive Bayes reached its peak while others dropped 
to the least. In this male data set, the highest specificity 
and sensitivity were 89% and 100% , respectively, for kNN.

For female voice samples, accuracy with all 22 fea-
tures decreased in kNN and naive Bayes, but increased 
in SVM compared to male voice samples, as shown in 
Table 6. Parameters for kNN were found as k = 3, ’corre-
lation distance metric with equal weight. SVM and naive 
Bayes used ’quadratic’ kernel and ’Epanechikov’ kernel, 
respectively. Similarly, like before, reducing the number 
of features improved the accuracy for naive Bayes; how-
ever, not up to the mark. On the other hand, accuracy for 
kNN and SVM decreased only slightly, unlike the male 
data set. This time the highest specificity and sensitivity 
were 97% and 99% , respectively, for kNN with the top 10 
features.

Finally, training on both male and female data together 
resulted in lower accuracy in all the classifiers than inde-
pendent learning. kNN was optimized with distance met-
ric ’Minkowski’ with ’inverse’ distance weight and k = 2. 
SVM used ’cubic’ kernel, and naive Bayes used box ker-
nel to reach the result shown in Table 6 using all the fea-
tures. Reducing the features did not change the accuracy 
for kNN and SVM that much; however, the accuracy for 
naive Bayes improved as like before. The highest specific-
ity and sensitivity were 93.7% and 94.6% , respectively, in 
kNN.
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5.2 � Results on tremor data
From the analysis of tremor data, we got a maximum of 
98.5% accuracy in determining PD vs. non-PD (2-level 
classification) using kNN with the top 8 features (see 
Table 7 for the rank of the features). It should be noted 
that each feature category includes three feature val-
ues generated from each of the axes. Therefore, the total 
number of features is 16× 3 or 48 if all the extracted 

features are considered, which is not suitable for practical 
application. Therefore, the top 8 ranked feature catego-
ries (that gives 24 feature values when all three channels 
are combined) identified by the MRMR feature selec-
tion process were used in the final result generation. For 
SVM and naive Bayes, the accuracy was 96.8% and 91.6% , 
respectively, as shown in Table  7. The highest specific-
ity and sensitivity were 100% and 94.0% , respectively, for 
kNN.

However, when we went for 5-level classifications 
(UPDRS labels 0 to 4), the accuracy was found to be 90% 
using kNN while others exhibit below 90% (see Table  7 
for details). The highest specificity and sensitivity were 
found to be 96.0% and 87.5% , respectively, for kNN this 
time.

5.3 � Results on combined data
Creating a combined data set by associating the tremor 
and voice data of the PD patients and the healthy per-
sons, we found that the combined accuracy of detection 
(PD and Non-PD) becomes 99.8% , which is obtained by 
applying the ensemble averaging on the majority-vote for 
decision-making regarding patient status.

For this investigation, the tremors analysis’ selected 
features were concatenated with the voice features, and 
patient profiles were created with multiple samples/
instances for each patient. This group was assessed by 
the optimized algorithms using voice and tremor sam-
ples separately. A patient was reported to have PD only 
when 2 out of 3 algorithms returned PD positive results 
from both modalities. In case both of the modalities did 
not agree for a particular PD patient, the system assessed 
other samples corresponding to that patient until a deci-
sive result is obtained from the majority vote. Each time 
the patient was given a score out of three based on the 
number of models which returned PD positive result. 
A patient is finally reported as PD positive if the aver-
age score from the tests on all the instances exceeded 
the threshold value of 60% (since 2/3 would have been 
the threshold for majority-vote in this case, we chose 
this value as the common threshold whether contraction 
occurred or not). Otherwise, the person was reported as 
PD negative.

6 � Discussion
As a pilot project, the offline datasets’ results support the 
proposed system’s effectiveness in a pandemic situation 
like COVID-19 that we are currently facing. The remote 
monitoring of PD patients can be performed by analyz-
ing their vowel phonations and tremor data collected 
by smartphones. We will soon begin the clinical trial to 
assess the system in a real-life situation.
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Fig. 3  Relative weights of all 22 features in detection of PD for both 
and only male and female cases
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From what we have found by analyzing the voice 
data is very much interesting since the accuracy varied 
from male to female because of choosing different fea-
ture sets based on gender influence. Some of the fea-
tures introduced by Max A. Little [22] seemed to have 
higher ranks than the conventional ones, as we found 
in the case of standard data (both male and female). 
Tsanas [25] later investigated the same with the help of 
correlation coefficients for identifying more informa-
tive features. However, some conventional features 
even performed better in the gender-based analysis 
(see Fig.  3 for relative weight after feature ranking) as 
some intrinsic properties of the voice vary differently 
from male to female PD. The result obtained in [24] is 
almost the same as what we found in this work while 
using both male and female data set without distinc-
tion, which supports the assertion of accuracy improve-
ment by using separate feature sets for male and female 
data sets.

Moreover, for the female data set, the reduction of 
features did not affect the accuracy much compared to 
the male data set. On the other hand, the male data set 
showed the highest accuracy using conventional features. 
Therefore, the scope of more than one classifier is evident 
in the detection system if the patients are willing to share 
the gender information. The study of different age groups 
might come with similar insight, which will be included 
in our future work. In that case, multiple models will be 

trained, and the better-performing ones will be used for 
testing patients of different age groups if necessary.

As for the accuracy obtained using the tremor data in 
this study, 2-level classification results are very much 
appreciable from the practical point of view. However, 
the accuracy degrades for 5-level classification since the 
difference between UPDRS levels 1 and 2 and UPDRS 
levels 3 and 4 is very subtle (see Table  3 for clarity). 
Although it was shown in [35] that the result could be 
improved by taking smaller feature sets and using the 
naive Bayes algorithm, this holds for small data sets only 
with fewer outliers. As our system is designed to receive 
data recorded by the patients’ family members, mostly 
from remote locations, we focused on a relatively more 
robust system. Therefore, kNN and SVM, which perform 
better in large data sets, were our primary interest. How-
ever in this study, UPDRS levels were not determined 
from the combined data set as the patients were differ-
ent, and they were not assessed with compatible labe-
ling schemes. For the system developed in this work, we 
have adopted the labeling scheme of Movement Disorder 
Society (MDS-UPDRS) for voice disorder and rest trem-
ors (details can be found in [36]). When the system is 
evaluated in a clinical trial, the neurologists will be fol-
lowing this labeling protocol.

It is well-known that SVM takes care of the outliers 
better than kNN. Outliers could be a challenging issue 
when this system is implemented practically for two 

Table 6  Accuracy, specificity and sensitivity from kNN, SVM and naive Bayes using voice features

ML Feat. Male Female Both

Algo. No. Accu. Spec. Sens. Accu. Spec. Sens. Accu. Spec. Sens.

kNN 22 98.3 89.0 100 95.9 93.0 98.0 93.7 93.7 94.6

10 93.0 83.0 96.0 94.6 97.6 99.6 92.1 87.5 93.6

5 93.9 89.0 96.0 94.6 93.0 95.0 93.1 86.4 94.6

SVM 22 92.3 88.0 96.4 95.9 93.3 97.7 89.9 85.0 93.0

10 93.9 88.0 97.0 94.6 93.3 95.5 90.5 89.5 93.6

5 84.3 82.0 90.0 94.6 92.0 96.0 90.5 89.0 94.0

Naive Bayes 22 87.2 84.0 92.0 77.0 73.3 77.3 74.6 72.5 75.0

10 90.4 87.0 94.0 86.5 83.3 90.0 80.1 77.0 87.0

5 94.8 88.0 96.5 87.8 85.0 92.0 81.0 80.5 89.5

Table 7  Classification accuracy, specificity and sensitivity for the rest tremor analysis

Used 2-level classification 5-level classification

Classifier Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

kNN 98.5 100 94.0 90.5 96.0 87.5

SVM 96.8 98.0 92.0 87.0 91.0 86.5

Naive Bayes 91.6 95.5 89.5 77.0 72.0 81.5
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reasons. Firstly, untrained professionals could collect the 
data to send to the cloud system while a trained neurolo-
gist might assess the PD status. Secondly, the UPDRS 
level assignment criteria may vary for adopting differ-
ent guidelines. On the other hand, kNN outperforms 
SVM when the data set is much larger than the number 
of features, which is also true for the proposed system as 
the number of old populations and the PD patients are 
overgrowing in developing countries. With the continu-
ally growing training data, the system will need to update 
the models periodically to improve its performance. For 
these reasons, the majority-vote process was utilized 
before reporting the patient’s status in the proposed 
system.

The inaccuracy in the detection of PD might have some 
possible reasons that include the variability in the sever-
ity of PD across patients, the sensor’s intrinsic uncer-
tainty, and the fact that some patients may consciously 
or subconsciously suppress their tremors during the 
experiment. In previous studies, [37] and [38], PD tremor 
is considered and reported as a single frequency signal, 
and the fundamental frequency ranges between 4 to 12 
Hz. However, the results in [30] showed that PD tremor 
consists of several harmonics. Therefore the classification 
accuracy might be improved by incorporating the third 
stage detailed signal into consideration.

7 � Conclusion
This paper presents a study on the prospect of combining 
the tremor and voice data analysis for detecting PD in the 
remote/underdeveloped areas where trained neurologists 
are not readily available. Our focus was on utilizing the 
availability of the latest smartphones with built-in accel-
erometer and voice recorder sensors from which the col-
lected data can be easily transferred to the cloud-based 
signal processing and machine learning units. We used 
the wavelet filter banks to preserve the tremor signals’ 
time-localized transient nature and extracted useful fea-
tures for distinguishing different UPDRS levels. On the 
other hand, we used an information theory-based feature 
selection method to narrow down the conventional voice 
features from which easily implementable models are 
trained. Besides, we have shown the advantage of select-
ing gender-based different sets of features from voice 
data to improve detection accuracy.

As for future work, we will incorporate some image 
processing-based symptoms analysis. For example, palm 
opening–closing and finger tapping can be analyzed from 
the video data captured by the same smartphone used for 
tremor and voice data collection. Also, the accelerometer 
sensor can be utilized for collecting the gait information 
during walking of the patient, and gait analysis may offer 
more reliability in PD detection.

Nevertheless, the result obtained from combining the 
tremor and voice data in this work implies that this system 
can identify PD and its stage more reliably than a single-
modality detection system. Besides, it can provide recom-
mendations to the patients while updating the patient files 
with the latest disease progression stage. This collected 
database can be used upon their consent for population 
studies on the incidence of Parkinson’s, which are essen-
tial to scientists’ understanding of its history, progression, 
and risk factors. In this way, this system can help healthcare 
experts design strategies to meet patients’ needs, especially 
for rural areas where access to a neurologist is minimal.
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