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Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is
characterized by immune cell infiltration, fibroblast-like synovial cell hyperproliferation,
and cartilage and bone destruction. To date, numerous studies have demonstrated that
immune cells are one of the key targets for the treatment of RA.N6-methyladenosine (m6A)
is the most common internal modification to eukaryotic mRNA, which is involved in the
splicing, stability, export, and degradation of RNA metabolism. m6A methylated-related
genes are divided into writers, erasers, and readers, and they are critical for the regulation
of cell life. They play a significant role in various biological processes, such as virus
replication and cell differentiation by controlling gene expression. Furthermore, a growing
number of studies have indicated that m6A is associated with the occurrence of numerous
diseases, such as lung cancer, bladder cancer, gastric cancer, acute myeloid leukemia,
and hepatocellular carcinoma. In this review, we summarize the history of m6A research
and recent progress on RA research concerning m6A enzymes. The relationship between
m6A enzymes, immune cells, and RA suggests that m6A modification offers evidence for
the pathogenesis of RA, which will help in the development of new therapies for RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial hyperplasia
and inflammation, progressive joint destruction, and significant disability (1). Initial lesions in RA
include damage to the microvascular system and proliferation of fibroblast-like synovial (FLS) cells
that line the synovial membrane of the joint. As the number of synovial cells increases, the cells
attach to the articular surface at the edge of the joint, which induces further proliferation and
activation of synovial cells. FLS cells are the primary synovial cells, which secrete inflammatory
cytokines, chemokines, and metalloproteinases (1). Furthermore, inflammatory cytokines interact
with immune cells that are related to RA, such as macrophages, natural killer (NK) cells, dendritic
cells (DC), lymphocytes, and mast cells (MCs) (2). Currently, non-steroidal anti-inflammatory
drugs and immunosuppressants are commonly used in clinical practice to alleviate the prevent the
development of RA. Therefore, further innovations in treatments for RA are needed.
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N6-methyladenosine of RNA is a methylation modification of
adenine (A) at the sixth N, catalyzed by methyltransferase from
eukaryotes (3). M6A modification has been discovered in various
types of RNA, including transfer RNA, ribosome RNA, and even
non-coding RNA (4, 5). Through the combination of RNA
immunoprecipitation and the m6A antibody, RNA-sequencing
showed that multiple microRNAs (miRNAs) contained m6A
modifications (6). MiRNAs target regulated m6A-related
enzymes and m6A-affected miRNA transcriptional regulation;
therefore, m6A modification is important for the biogenesis
and stability of at least some miRNAs. For example, methyl
transferase-like 3 (METTL3) affects the binding of DGCR8
to pri-miRNAs, and the absence of METTL3 reduces this
binding capacity (4). M6A has been applied to immune cells
and various immune diseases, with the goal of devising new
therapies. So far, researches on the molecular mechanism and
function of the m6A effectors are abundant (7–10). In this review,
we have focused on the potential relationship between m6A and
RA to explore better methods to treat RA. We highlight several
advances in the research of m6A in RA, cancers, and immune
cells. However, to fully understand the effect of m6A on RA
in vivo and its influence on gene expression, further exploration
is needed.
THE MAJOR ENZYMES IN THE
M6A PATHWAY

Writers
M6A regulators are divided into three types: writers, erasers, and
readers. The classifications differ according to the different roles
they play in RNAmethylation modification, time for discovery, and
function of m6A-related enzymes and proteins, which are shown in
Figure 1 (11–22). The first type is m6A methyltransferase, which
promotes m6A methylation modification to RNA, and its coding
genes are known as writers. The earliest writers discovered are
METTL3, METTL14, and wilms ’ tumor 1-associating
protein (WTAP).

In the RNA life cycle of m6A, METTL3 has important
functions, which include pre-mRNA splicing, nuclear export,
translation regulation, mRNA decay, and miRNA processing;
moreover, METTL3 also functions to influence epigenetics by
regulating and initiating pluripotency (23). Previously, METTL3
was reported as a tumor suppressor because of its upregulating
effect on the m6A modification (24). METTL3 expression is
increased in gastric cancer tissues, hepaticcellcarcinoma (HCC),
breast cancer (BC) and mediates the proliferation, metastasis,
Abbreviations: ALKBH5, Alkylation repair homolog protein 5; APCs, Antigen
presenting cells; BC, Breast cancer; FTO, Fat mass and obesity-associated protein;
HCC, Hepaticcellcarcinoma; PD-L1, programmed death-ligand 1; PDAC,
Pancreatic ductal adenocarcinoma; MCs, Mast cells; METTL, Methyltransferase-
like; m6A, N6-methyladenosine; NK cells, Natural killer cells; RA, Rheumatoid
arthritis; RBM, RNA-binding motif protein; VSMCs, Vascular smooth muscle
cells; WTAP, Wilms’ tumor 1 associated protein.
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and colony formation of cancer cells (25–27). In addition,
METTL3 plays an unusual role in spermatogonial cells (28),
bone marrow mesenchymal stem cells (29), fat mass (30),
immune cells and inflammation. Figure 2 shows the highlights
of METTL3 discoveries over time. Recently, studies have
indicated that m6A methylation modification plays an
indispensable role in the innate immune response and
antitumor immunity. However, the mechanism of action of
METTL3 in RA remains unclear. It has been reported that the
expression of METTL3 is significantly elevated in patients with
RA, and METTL3 affects the secretion of inflammatory factors in
RA through the NF-kB pathway (31). Given the influence on
inflammation, cancers, and other diseases, there has been
speculation that METTL3 has the potential to treat immune
diseases (32). For more information about the expression of
METTL3 in diseases and related genes, please refer to Table 1.

METTL14 is a pseudo methyltransferase that stabilizes
METTL3 and recognizes target RNA (45). The combination of
METTL14 and METTL3 promotes the identification of m6A by
METTL3 to some degree. The closed connection between full-
length polypeptide methylation with point mutations in the
catalytic base sites of METTL3 and METTL14 indicates that
METTL3 is the only subunit with catalytic activity in vitro (70).
There is a wide range of beneficial interactions between METTL3
and METTL14, which are important for stabilizing the structure
of both domains as well as for interdomain coordination. In
contrast to METTL3 studies, few studies have been published on
METTL14 alone. As an essential component of the m6A
methyltransferase complex, METTL14 is highly expressed in
hematopoietic stem/progenitor cells (HSPCs), acute
myelogenous leukemia (AML) cells, and pancreatic cancer (45,
71). Furthermore, studies have revealed that METTL14 depletion
is dependent on mTOR signaling-induced autophagy (30).

WTAP is an m6A methyltransferase complex that is found in
mammals. In the absence ofWTAP, the RNA binding capacity of
METTL3 is significantly weakened (72). This suggests that
WTAP regulates the recruitment of the m6A methyltransferase
complex to the mRNA target and affects its binding capacity.
WTAP functions without methylation activity, but it interacts
with the METTL3 and METTL14 complexes to significantly
affect cellular m6A deposition. Furthermore, WTAP participates
in crucial cellular processes, such as regulation of the cell cycle
(14, 73), cell proliferation, and cell apoptosis. Growing evidence
has shown that WTAP is related to the malignant potential of
tumor cells, is clearly upregulated in HCC tissues (50), and is
responsible for the migration ability of the SKOV3 cell line (51).
These results demonstrate that WTAP plays a vital role in
proliferation and invasiveness abilities.

Similar to other RNA-binding motifs (RBM) proteins,
RBM15 combines with RNA through spliceosomes to regulate
splicing, translation, and stability. At present, RBM15 has been
studied widely in various blood diseases, such as chronic
myelogenous leukemia (CML), acute megakaryocytic
leukemia, and T−cell acute lymphoblastic leukemia. Yang
et al. found that patients with chronic and accelerated-phase
CML had a significantly lower mRNA expression level of
September 2021 | Volume 12 | Article 731842
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RBM15 than that of patients with blast-crisis CML. Moreover,
the RBM15 protein may affect the growth of RBPJ-mediated
CML cells through Notch signaling (25, 74). Rbp-Jk is one of
the major canonical transcriptional effectors in the Notch
signal pathway.
Frontiers in Immunology | www.frontiersin.org 3
Erasers
The second type of protein is an m6A demethylase called erasers,
which remove the m6A methylated group from RNA. The most
common erasers are the fat mass and obesity-associated protein
(FTO) and alkylation repair homolog protein 5 (ALKBH5).
FIGURE 1 | Time for discovery and functions of m6A-related enzymes and proteins.
FIGURE 2 | Research progress on METTL3, which is one of the most studied genes in m6A methylation.
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TABLE 1 | m6A methylation related to tumorigenesis.
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Originally, FTO was thought to be a protein that regulates
body weight and obesity. Overactivation of FTO can increase
food intake, which leads to obesity. The FTO controls mRNA
splicing by inhibiting SRSF2 (a RNA splicing factors) binding at
splice sites (18). However, when FTO was recognized as an RNA
demethylase, it was found to have additional functions for
controlling various aspects of biological processes. FTO
removes the m6A modification and modulates the stability of
mRNA, which ultimately leads to the alteration of pathogenesis
in various types of cancer (55, 75). In some tumor cells, FTO is
critical for their immune escape. FTO-deleted made melanoma
cells sensitive to interferon therapy and anti-PD-1 therapy (60).
FTO and programmed death-ligand 1 (PD-L1) were both high
expressing in colon cancer cells, and FTO regulate the expression
of PD-L1 (76). In arsenic-associated diseases, FTO is upregulated.
While FTO-deleted promoted autophagy and inhibited arsenic-
associated tumorigenesis (77). Some observations of FTO suggest
that it plays a crucial role in the proliferation and apoptosis of
some cancer cells, also glucose and lipid metabolism (59, 78, 79).
Applying this biological function of FTO to inflammatory
immune cells could inhibit the release of inflammatory
cytokines and alleviate inflammatory disease.

ALKBH5 is known for regulating transcriptional modification
in numerous human malignancies and maintaining mRNA
stability (62). ALKBH5 is primarily involved in the
demethylation of m6A modification and exerts its functions
during the regulation of mRNA nucleation and other
metabolic processes in the development of sperm. The
functions of m6A modification are involved in the regulation
of IncRNA to affect the development of cancers (80). In
addition, ALKBH5 regulated PD-L1 mRNA in intrahepatic
cholangiocarcinoma (ICC). The lack of ALKBH5 decreased
the expression of PD-L1 on monocytes-macrophages by a
YTHDF2-dependent manner (81). Also, the deletion of the
m6A demethylase Alkbh5 sensitized tumors to cancer immuno
therapy (82). It extended the cognition of ALKBH5 in tumor
immune microenvironment and immunotherapy.

FTO and ALKBH5 inhibit proliferation by regulating cell
migration, invasion, and metastasis in some cancer cells.
However, few studies on these proteins have investigated
immune diseases. If proliferation and migration of synovial
cells are reduced by FTO and ALKBH5, the onset of the
inflammatory response in RA could be delayed. Although the
role of m6A erasers has not been extensively explored in immune
diseases, it has promise as a valuable research direction for FTO
and ALKBN5.

Readers
The final group of proteins plays a specific role by binding to the
m6A methylation site in RNA, and their coding genes are called
readers. There are five YTH domain-containing proteins in the
human genome: YTHDC1, YTHDC2, YTHDF1, YTHDF2, and
YTHDF3. YTHDF1 enhances mRNA translation and protein
synthesis by interacting with initiation factors (20). YTHDF2
induces degradation of transcripts by selectively binding to and
recruiting m6A-modified mRNA to mRNA decay sites (16).
YTHDF3 enhances RNA translation by interacting with
Frontiers in Immunology | www.frontiersin.org 5
YTHDF1 and promotes RNA degradation by associating with
YTHDF2 (83).

YTHDF1 not only participates in mRNA translation, which
directly targets YTHDF1 or binds to translational initiation
factors in some cancer cells but is also involved in neoantigen-
specific immunity. In classical DCs, the absence of YTHDF1
enhances the cross-presentation of tumor antigens and the cross-
priming of CD8+ T cells in vivo (76). Firstly, YTHDF1
distinguishes between m6A-related mRNAs in DCs that encode
lysosomal proteases. The binding between m6A-marked mRNAs
and YTHDF1 then boosts lysosomal protease translation, which
suppresses the cross-presentation of engulfed tumor
neoantigens. Furthermore, PD-L1 expression was increased in
tumor cells from Ythdf1−/− tumor-bearing mice, anti-PDL1-
treated on Ythdf1−/− tumor-bearing mice made tumor
disappeared, the simultaneous depletion of PD-L1 and
YTHDF1 was beneficial to the improvement of tumor immune
microenvironment (76). This process is a novel mechanism of
immune evasion to elude immunosurveillance.

YTHDF2 destabilizes key gene transcripts in certain biological
processes. Furthermore, the knockdown of YTHDF2 leads to
reductive proliferation of lung cancer cells (84). However,
YTHDF2 is specifically downregulated in HCC cell lines under
hypoxia culture conditions, and the overexpression of YTHDF2
unexpectedly inhibits the growth and proliferation of HCC cells
(85). There are two clearly opposing effects on the regulating
process of YTHDF2, and further research into its mechanisms is
required. In addition, Yu et al. (78) discovered that the YTHDF2
expression level is upregulated in macrophage RAW264.7 cells
after stimulating with LPS. Moreover, the knockout of YTHDF2
expression contributed to the downregulation of mRNA
proinflammatory factor levels. The function of YTHDF2 in
preventing an excessive inflammatory response offers a potential
target and a new perspective for inflammation in the treatment of
immune diseases (86).

YTHDF3 has been proposed to be the first reader protein to
interact with m6A-modified transcripts in the cytoplasm (83).
Denise and colleagues (59) found that knocking out YTHDF3 in
human CD4+ T cells increases the risk of infection, and YTHDF3
acts as a limiting factor for human immunodeficiency virus (HIV).
In this study, YTHDF3 proteins were mixed with HIV particles in
a nucleocapsid-dependent manner, allowing the m6A reader
protein to limit infection in the new target cell at the reverse
transcription step, which reduced viral infectivity in the next cycle
of infection (87). In studies related to YAP signaling pathways,
YTHDF3 induces GAS5 decay by recognizing m6A modified
GAS5 through a negative feedback loop between lncRNA,
GAS5, and YTHDF3. The functional link between the YAP
signaling pathway and the m6A modification offer a promising
approach for other research (69).

YTHDC1 is located in the nucleus, whereas YTHDF2 and
YTHDC2 are found in the cytoplasm. YTHDC1 affects the
processing of pre-mRNA transcripts in germ cells and directly
affects the maturation of oocytes (64). YTHDC2 is of great
importance in spermatogenesis, where it selectively binds to
m6A at its consensus motif. Genital morphology mice with a
knockdown of the YTHDF3 gene had smaller ovaries and testes
September 2021 | Volume 12 | Article 731842
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in females and males, respectively. It is possible that high
expression of YTHDC2 heightens the translation efficiency of
its targets during spermatogenesis.

State of the Art Knowledge: How m6A
Affects Immune Cells
Wang et al. demonstrated that DC activation and function for
promoting CD4+ T cell proliferation decline following inhibition
of the m6A modification. During DC maturation, METTL3
catalyzes m6A in CD40, CD80, and Tirap, which facilitates DC
activation by increasing translation efficiency and function for
promoting T cell activation (88). DCs are specialized antigen-
presenting cells (APCs) that are linked to innate and adaptive
immune responses (89). These studies indicate that m6A plays a
vital and flexible role in the innate immune response and
antitumor immunity.

M6A has a significant influence on the homeostasis and
differentiation stability of T cells. Li et al. demonstrated in mice
that if the m6A protein, METTL3, is absent from T cells, T cell
homeostasis and differentiation are easily disrupted. The number
and characteristics of immune cells in mice with a conditional
knockout of METTL3 were detected under a stable state:
abnormal T cells were found in the spleen and lymph nodes
(LNs), and there was an increase in the number of naive T cells in
the LNs. In non-small-cell lung cancer, circIGF2BP3 inactivated
cocultured CD8+T cells and METTL3 depended on YTHDC1 to
participate in the methylation modification of circIGF2BP3 (90).
Subsequently, Li et al. found that, through the TCR-dependent T
cell differentiation system, TH1 and TH17 cells in METTL3-
deficient naive T cells were decreased, TH2 cells were increased,
and Treg cells remained unchanged (91). M6A modification plays
an important role in the differentiation of CD4+ T cells. Previous
studies have shown that m6A induces the degradation of soc
mRNA in response to IL-7 signals to reprogram the proliferation
and differentiation of naive T cells, which indicates a novel T cell
homeostasis mechanism and signal-related induction of mRNA
degradation (92).

As an important part of innate immunity, polarization changes
between M1 and M2 phenotypes of macrophages regulate various
physiological and pathological states. Recent findings have
suggested that the m6A catalytic enzyme, METTL3, promotes
M1 macrophage polarization to play a pro-inflammatory role.
Mechanistically, METTL3 directly methylates the mRNA of
STAT1, which is a critical transcription factor for priming
proinflammatory macrophages, and enhances its mRNA
stability; thus, upregulating STAT1 expression and facilitating
M1 macrophage polarization (93). Therefore, METTL3-
mediated m6A methylation in macrophages may serve as a
potential anti-inflammatory target in the treatment of
inflammatory diseases. In a fascinating new study, Zhang and
colleagues identified a novel mechanism by which METTL3 acts
during oxidized low-density lipoprotein (oxLDL)-induced
monocyte inflammation. In human monocyte PHT-1 cells,
METTL3 and YTHDF2 jointly affect the state of mitochondria
and energy metabolism, thereby enhancing the inflammatory
response of monocyte-macrophage (94). Basing on this research,
Frontiers in Immunology | www.frontiersin.org 6
we can open up various ideas about the pathogenesis of
inflammatory and immune diseases.

Type I interferon produces an immune response to viral
infection. Winkler and colleagues proposed a new approach for
m6A targeting of IFNB mRNA to regulate the type I interferon
response, which limits the duration of the antiviral response (95).
After viral infection, depletion of METTL3 leads to elevated
levels of type I interferons because m6A modification of
interferon transcripts regulates their decay rates. Further
studies on the role of m6A modification in the immune system
may provide new therapeutic options for inflammatory and
infectious diseases.
TRANSLATIONAL POTENTIAL

The Potential Link Between RA and
Immune Cells
In autoimmune diseases, the immune response is initiated by local
innate immune cells that are exposed to external antigens or
autoantigens. With the advances in surgical techniques, such as
synovial excision and surgical correction, Janossy et al. found that
the number of HLA-DR+ macrophages is greater in RA synovial
tissue (96). In RA, monocytes and macrophages, as specialized
APCs, stimulate the response and infiltration of inflammatory
cells and play a considerable role in joint destruction (97). B cells
produce immunoglobulins, inflammatory cytokines, rheumatoid
cytokines, and other factors that promote the positive feedback
regulation of macrophages.

In the inflamed RA joint, tumor necrosis factor (TNF) is
produced primarily by macrophages, and TNF inhibitors are
effective for the treatment of RA (98). Secretion of cytokines
and chemokines perpetuates the inflammatory response by
recruiting additional innate immune cells, such as monocytes
and neutrophils, and also by inducing T cell differentiation (99).
Moreover, abnormally activated macrophages and T cells migrate
to the joint cavity and are stimulated by the activated synovial cells
to aggravate the inflammatory response in the synovial
microenvironment, which leads to synovial inflammation,
synovial hyperplasia, and cartilage in the joint tissues.

In the early 1990s, macrophage gene expression was found to
vary under different media stimulation (IL-4/IFN-g/LPS). In
2000, Mills et al. (65) discovered M1-M2 polarization because
of arginine metabolism in macrophages. They further proposed
that the M1-M2 dichotomy is an intrinsic property of the
transition of macrophages from inflammation to healing.
However, findings of subsequent studies have deviated from the
initial concept of Mill et al., although the definition and
distinction of M1-M2 remain controversial. The inconsistencies
in macrophage activation and biomarkers introduce challenges in
the study of M1-M2 polarization of macrophages. Kung et al.
proposed proinflammatory cytokines and anti-inflammatory
cytokines as features that distinguish M1 macrophages (CD80
+) from M2 macrophages (CD163+) (100). Although there is
little evidence for M1-M2 polarization, we recognize that is
involved in RA. Indeed, the mass proliferation of synovial cells
September 2021 | Volume 12 | Article 731842
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is typical of RA and is closely related to macrophages. Therefore, a
treatment targeting macrophages in the articular cavity may have
a positive effect on the disease by reducing inflammation and
joint damage.

NK cells are natural immune effector cells with a direct killing
function and are particularly important in immune cells because
they eliminate viral infections and secrete proinflammatory
cytokines. Li et al. conducted an integrative pathway association
analysis of RA using genome-wide association studies (GWAS)
summary data of 25 RA-associated pathways for NK cells (2). A
large number of NK cells were found in the synovial fluid of RA
patients, which is considered an important factor for bone
destruction (101). In a mouse model of arthritis, exhaustion of
NK cells before constructing the mouse model provided almost
complete protection of bones and joints from erosion (102). In the
synovial fluid of 15 patients with inflammatory arthritis, NK cells
expressed high levels of CD56 and low levels of CD16 was
significant increase. They further showed that proinflammatory
factor IL-12, in combination with IL-15, is effective in stimulating
NK cells to express IFN (103). However, IFN itself can activate
macrophages and regulate the transcription of genes within
macrophages, which suggests that NK cells could interact with
art icular macrophages/monocytes to produce more
proinflammatory cytokines (103). In addition, RBM15 regulates
the Notch signaling pathway (71). It is known that the Notch
signaling pathway is related to the number of NK cells to some
degree, and a variety of excitatory and inhibitory receptors are
inherently expressed on the cell surface, which monitor malignant
cells (104). After RBM15 regulates the Notch signaling pathway,
the Notch signaling or canonical transcriptional effectors affect
immune cells, such as NK cells. Eventually, the immune cells
operate throughout the entire immune system by linking the
immune system. This generates natural immunity and activates
acquired immunity to maintain the body’s normal immunity
status. Taken together, interfering with the activation of NK
cells may provide a basis for therapeutic strategies.

Autoreactive T cells play an important role in many
autoimmune diseases. There are various types of T cells, such as
the T helper cell and nonclassical T helper cell subsets, such as
Th0, Th1, Th2, Th17, Th1/17, CCR4, CCR6, and CXCR3 (105).
Yasuo et al. found that the frequency of memory CXCR4(+)
CD4(+) T cells was significantly associated with RA severity (91).
Furthermore, autoreactive T cells have been shown to be critical in
many models of autoimmune diseases, such as collagen-induced
arthritis, non-obese diabetic mice, and experimental autoimmune
encephalitis (106). The PD-1/PD-L1 is one of the pathways for
tumors to evade the immune system by challenging T cell
tolerance, T cell exhaustion, enhancing immunosuppressive
Treg cell function and inducibling co-stimulatory molecule (107,
108). Thus, T cell immunity as a target for more precise
immunotherapy interventions for human autoimmune diseases
is likely to be a more selective way to treat RA.

In addition to autoantibody production, B cells are efficient
APCs, which allow T cell activation. In some RA patients, B cells
have been found to differentiate into plasma cells that produce
rheumatoid factor and anticyclic citrullinated peptide antibodies
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(109). Rituximab is primarily used to deplete the ability of B cells
and alleviates RA in patients who have TNF inhibitor failure.
Inspired by clinical experience with rituximab, various
approaches for investigating the pathogenic function of B cells
for RA are popular. Currently, direct targeting of B cells in
rheumatic diseases is divided into four broad categories: CD19,
CD20, CD22, and CD52. Target-specific surface molecules
effectively deplete B cell populations, which control immunity
and B cell activation (110).

DCs are thought to play a crucial role in immunopathogenic
responses, which result in the establishment of chronic
proliferative synovitis and joint destruction in RA (111). Frances
demonstrated that RA synovial fluid contains specific subsets of
myeloid progenitor cells, which could differentiate into mature
DCs in the correct microenvironment (112). It may ultimately be
possible to provide some basis for the heterogeneity of the
immune response in RA. Huang et al. demonstrated that
etanercept (ETN), which is a TNF antagonist, prevented
arthritis development through the regulation of DC actions.
ETN reduces the ability of DC to migrate to local LNs and
regulates the quantity of T and B cells to change the
composition of LN cells. Moreover, it has been shown that
TNF-a blockade has a significant impact on DC maturation
and migration, which contributes to the immune regulatory
effects in RA patients (113). There is evidence that mature DCs
present in the RA joint mediate immunopathology. These studies
suggest that RNA modification of m6A has a potential function
between DCs and RA.

MCs are important immune cells in the mammalian body and
affect the pathogenesis of. MCs recognize and respond to various
antigens, secrete various chemokines, recruit other immune cells,
and cause local tissue inflammation, neovascularization, and
tissue remodeling in the body (114). They exist in normal and
RA synovium. However, the number of MCs in the synovium in
RA patients is higher, and active RA patients show higher MC
infiltration than those at the end stage of the disease (115).

Numerous studies have shown that immune cells play a role
in the pathogenesis of RA. First, some immune cells secrete
chemokines and growth factors and subsequently, infiltration of
other immune cells into synovial cells occurs. Second, immune
cells can act as APCs to stimulate the production of various other
immune cells. Third, in the early stage of RA, synovial cells have
a small expansion area. Through the suppression of specific
immune cells, combined with the patients’ age, sex, diet,
constitution, and other factors to give appropriate treatment, it
is a great approach to fully improve the treatment effect. Finally,
whether immune cells promote angiogenesis in the synovium
remains to be elucidated.
THE GAP IN KNOWLEDGE FOR FUTURE
RA RESEARCH

So far, the presence of m6A methylation in RA has been poorly
studied. Wang and colleagues showed that in RA patients, the
expression of METTL3 is markedly increased in peripheral blood
September 2021 | Volume 12 | Article 731842
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FIGURE 3 | mRNA expression of m6A-related enzymes was quantified using qRT-PCR in the synovial tissues of RA and osteoarthritis patients. The histogram
represents multiple expressions of m6A-related enzymes in RA. The expression in osteoarthritis is 1. Values represent means ± standard deviations. ##p < 0.01 vs.
OA; #p < 0.05 vs. OA.
FIGURE 4 | The complexes formed by METTL3, METTL14, WTAP, and RBM15 are common writers; those formed by ALKBH5 and FTO are common erasers; and
those formed by YTHDC1, YTHDF1, and YTHDF3 are common readers. M6A methylation is involved in a wide range of biological regulatory processes in the innate
and adaptive immune systems, such as adjustment of signaling pathways, differentiation, translation of immune transcripts. It controls the production of inflammatory
factors, inflammation-related signaling pathways, and other genes that have a direct impact on RA. It is worth noting that, m6A methylation may also directly affect
synovial cell proliferation and tumor tissue, which may be a potential discovery in future RA research.
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mononuclear cells (PBMCs); however, other RNA m6A
methyltransferases have no obvious (31). In vitro experiments
have shown that by stimulating LPS, total m6A content can be
enhanced by upregulating METTL3 in pTHP-1 macrophages
and that METTL3-related m6A modification is associated with
cytokines IL-6 and TNF-a (31). In other words, METTL3
attenuates inflammation through the NF-kB pathway in RA,
which could be one approach to treat RA. In addition to the
mechanism of action of METTL3 in inflammatory immune
macrophages. METTL3 had also been reported in synovial cells
recently. METTL3 promoted the inflammatory response of RA-
FLS by activating the NF-KB signaling pathway (116). The
mRNA expression of ALKBH5, FTO and YTHDF2 in RA
patients’ PBMCs was significantly decreased (117), it also
provided novel insights into recognizing the pathogenesis of RA.

The main symptom of severe RA is synovial hyperplasia.
Inhibiting the infinite proliferation of synovial cells is an
important treatment method to curb the development of RA.
There are few studies on the treatment of RA from the perspective
of m6A methylation. However, our previous study showed that
m6A-regulated methyltransferase, demethylase, and binding
protein genes are altered in the synovial tissues of patients with
RA. Control tissues were synovial tissues of patients with
osteoarthritis. Using qRT-PCR, we found that METTL3,
METTL14, WTAP, METTL16, and YTHDF2 were significantly
upregulated, and FTO was significantly downregulated, whereas
the others did not change significantly. Moreover, the expression
of WTAP was significantly upregulated in the RA synovial
membrane (Figure 3). The histogram in Figure 3 represents
multiple compared with osteoarthritis, and osteoarthritis is 1.
DISCUSSION

M6A methylation belongs to one of the many families of RNA
epigenetic modification. Based on the current understanding of its
Frontiers in Immunology | www.frontiersin.org 9
relationship with tumors, m6A methylation does not have a “good
or bad” effect on tumor cells and promotes or inhibits tumor cells by
regulating the mRNA expression level of related oncogenes or
tumor suppressor genes. Extensive research on the methylation
mechanism of m6A has demonstrated that the regulation of the
RNA level related to m6A is complex and diverse. In addition, there
is unequivocal evidence that m6A modification is essential for a
variety of biological processes, including the immune response, and
there is increasing evidence that its dysregulation is linked to
numerous human diseases. We believe that further research on
the mechanism of m6A methylation in immune diseases will have
profound implications for the treatment of immune diseases
(Figure 4). New approaches and targets for the treatment of RA
will certainly come to light, which will have a positive effect on
human life.
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