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Abstract: The reproduction of sheep is affected by many factors such as light, nutrition and genetics.
The Hypothalamic-pituitary-gonadal (HPG) axis is an important pathway for sheep reproduction,
and changes in HPG axis-related gene expression can affect sheep reproduction. In this study, a
model of bilateral ovarian removal and estrogen supplementation (OVX + E;) was applied to screen
differentially expressed genes and miRNAs under different photoperiods using whole transcriptome
sequencing and reveal the regulatory effects of the photoperiod on the upstream tissues of the HPG
axis in sheep. Whole transcriptome sequencing was performed in ewe hypothalamus (HYP) and
distal pituitary (PD) tissues under short photoperiod 21st day (SP21) and long photoperiod 21st day
(LP21). Compared to the short photoperiod, a total of 1813 differential genes (up-regulation 966
and down-regulation 847) and 145 differential miRNAs (up-regulation 73 and down-regulation 72)
were identified in the hypothalamus of long photoperiod group. Similarly, 2492 differential genes
(up-regulation 1829 and down-regulation 663) and 59 differential miRNAs (up-regulation 49 and
down-regulation 10) were identified in the pituitary of long photoperiod group. Subsequently, GO and
KEGG enrichment analysis revealed that the differential genes and target genes of differential miRNA
were enriched in GnRH, Wnt, ErbB and circadian rhythm pathways associated with reproduction.
Combined with sequence complementation and gene expression correlation analysis, several miRNA-
mRNA target combinations (e.g., LHB regulated by novel-414) were obtained. Taken together, these
results will help to understand the regulatory effect of the photoperiod on the upstream tissues of
HPG in sheep.

Keywords: sheep; photoperiod; OVX + E; model; whole transcript sequencings; miRNAs

1. Introduction

Animals can adapt themselves to their survival environment by regulating themselves,
for example, females will choose to breed in specific seasons to ensure that they give birth in
the most appropriate season, which will facilitate lactation and early pup development, and
a stable physiological mechanism has evolved over the years [1]. Light perception is one of
the important mechanisms that trigger the response of organisms and many physiological
processes in mammals are influenced by the photoperiod [2]; a long photoperiod induces
circadian transcription factor BMIAL? in pars tuberalis (PT) and triggers summer biological
activity through the EYA3/TSH pathway. In contrast, the continuous prolongation of a
short photoperiod leads to melatonin secretion inducing circadian repressors, including
DEC1, which inhibit BMAL2 and EYA3/TSH pathways, into winter biological activity, and
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circadian rhythms are usually involved in some way in photoperiod-induced physiological
activity [3]. Seasonal changes in light have profound effects on the behavior and physiolog-
ical functions of many animals, and changes in the light-dark cycle can also induce anxiety
and depressive behavior in adult rodents [4,5]. The development of the visual system is af-
fected by light, and mice kept in the dark show alterations in a retinal synaptic organization
and visual function [6]. In short photoperiods, birds can meet increased energy demands in
winter by increasing their body weight, digestible energy intake and digestive tract size [7],
and photoperiods also induce migratory behavior in birds [8]. Photoperiodic changes also
influence the neuroendocrine action in fish [9] and horse deer [10]. Circadian clock genes
are involved in seasonal activity, and clock genes are expressed in PT and ventricular canal
cells within the hypothalamus [11], for example, the ability to regulate seasonal changes in
reproductive dormancy is disrupted in drosophila, which is deficient in the EYA gene [12].
Many studies on photoperiodic effects on reproduction have been carried out on quail and
hamsters [13-15].

Reproduction in sheep is a complex biological process influenced by many factors
such as light, nutrition, genetics, reproductive hormones, and reproductive techniques. The
reproduction of mammals was controlled by the hypothalamic-pituitary-gonadal (HPG)
axis regulation network of the reproductive axis. The supraoptic nucleus receives light
signals to the pituitary gland, where light signaling factors and cell morphology in the
pituitary nodules are transformed, leading to morphological changes in hypothalamic
GnRH neurons and ultimately to changes in the levels of gonadotropins secreted by
the distal pituitary gland, which ultimately induce estrus and estrus in sheep [16-19].
Early recognition of the role of the hypothalamus as an endocrine organ and as a site of
integration of autonomic and behavioral responses dates back centuries, and although the
hypothalamus represents only 2% of the total volume of the brain, it is a key regulator of
pituitary function and homeostatic balance, - it therefore has many functions, including
food and fluid intake, lactation, thermoregulation, circadian rhythms and sleep-wake
cycles [20]. The pituitary gland is targeted and regulated by the hypothalamic fine cell
neuroendocrine system through a hormonal feedback mechanism. The anterior pituitary is
a key organ involved in the control of a variety of physiological functions, including growth,
reproduction, and metabolic functions. To perform its functions, the pituitary receives and
processes signals from the central and peripheral sources and transmits them appropriately
to several key endocrine and non-endocrine organs [21]. These cells produce prolactin
(PRL), growth hormone (GH), corticotropin (ACTH), gonadotropin, thyroid-stimulating
hormone, and follicle-stimulating hormone (FSH)/luteinizing hormone (LH), which act
on the organism. Therefore, it is important to investigate the genetic changes in the
hypothalamus and pituitary gland related to estrus and circadian rhythms for reproduction
in sheep.

With the development and application of whole transcriptomics sequencing tech-
nology, many miRNAs have been identified in various tissues and organs of sheep. In
recent years, a large number of miRNAs are involved in reproduction in both sheep [22,23]
and other species [24-26]. The IncRNA of different light-induced reproduction in sheep
have been mined in our laboratory in the previous stage using the classical model of the
OVX + Ep model [27,28]. The study used this model to explore the regulatory role of the
upstream tissues of the HPG axis in sheep and to screen the hypothalamic and pituitary
differential genes and miRNAs in sheep with different photoperiods, which will lay the
theoretical foundation for revealing the molecular mechanism of photoperiodic regulation
of estrus in sheep.

2. Materials and Methods
2.1. Animals and Sample Collection

A group of 21 Small Tail Han ewes (3 y, clinically normal, and non-pregnant) were
selected from Heilongjiang Province, China. All ewes were fed ad libitum and had free
access to water. After removal of the ovaries (OVX) from the experimental Small Tail Han
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ewes with good estrous traits as described above, estrogen silicone tubes were implanted
subcutaneously, and the sheep were penned into artificially controlled light sheds after the
hormone concentration was stabilized at 7.23 £ 2.50 pg/mL. OVX + E, sheep and light
control rooms were constructed as previously described [27]. After 21 days of short pho-
toperiod (8/16 h light-dark), six were euthanized (intravenous pentobarbital 100 mg/kg).
After slaughtering, hypothalamic and distal pituitary tissues were taken and were labeled
as SP21-HYP and SP21—PD, respectively. Six other Small-tailed Sheep were transferred
to a long photoperiod (16/8 h light-dark) sheep barn and after 21 days of rearing, tissues
were slaughtered and collected and labeled LP21—-HYP and LP21—PD. All collected tissue
was snap-frozen at liquid nitrogen, and then brought back to the laboratory and stored in a
—80 °C refrigerator for long-term storage.

2.2. RNA Extraction, Library Construction, Sequencing and Raw Data Processing

Total RNA from each sample was isolated using the TRIzol reagent (Invitrogen, Carls-
bad, CA, USA). then the Nanodrop 2000 instrument was used to detect the concentration
and purity of the extracted RNA, and the integrity of RNA was detected by agarose gel
electrophoresis. After the samples were tested and passed, cDNA and sRNA library con-
struction were performed according to the previous method [29]. To finally obtain valid
data, we filtered the raw sequencing data to obtain clean reads. Clean reads were aligned
to the sheep reference genome using bowtie (Oar_rambouillet_v1.0).

2.3. Differential Expression Analysis of mRNAs

Quantitative analysis was performed using StringTie software to obtain the number of
Reads per sample compared to each transcript, which was converted to FPKM (Fragments
Per Kilobase per Million bases). Quantitative statistical analysis of transcript expression
was performed to filter out transcripts with significantly different expression levels in
the samples. We used DESeq2 to analyze the significance of transcript expression dif-
ferences. The differentially expressed transcripts were screened from two levels of fold
change (FC) and corrected significance level (padj/g-value). In addition, |log,FCI >1 and
g-value < 0.05 were considered DEGs.

2.4. Differential Expression Analysis of miRNAs and Target Gene Prediction

Identification of known miRNAs was performed using bowtie software by comparing
sRNAs to miRNA sequences from the specified range of miRBase (v22) database, and
prediction of new miRNAs was performed using mirEvo and miRDeep software and
expression information was obtained. The expression of miRNAs represented by TPM
was obtained by comparing to the reads of miRNA precursor and mature body regions.
After calculating the expression, differential analysis was performed using DESeq2, and
the screening threshold for differential miRNAs was set to |1logo,FC |> 1, p value < 0.05.

The previously obtained known miRNAs and new miRNAs were analyzed for miRNA
target gene prediction. The miRanda and qTar software were selected for target gene
prediction, and the intersection of the two software was taken as the final result.

2.5. Functional Annotation and Enrichment Analysis of Target Genes of DE miRNAs and
DE mRNAs

The DEGs and the predicted target genes of DEMs were analyzed by Gene Ontology
(GO) (referred to as GO, http:/ /www.geneontology.org/, accessed on 6 January 2022),
which includes biological process, molecular function and cellular component, and Ky-
oto Encyclopedia of Genes and Genomes (KEGG). GO items or KEGG pathways with a
hypergeometric p-value < 0.05 were those that were significantly enriched.

2.6. Construction of Integral miRNA-mRNA Interaction Networks

To accurately identify the key association with reproductive DEMs and DEGs, based
on miRNA function, the mRNAs that were negatively related to miRNAs were screened
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out, and the miRNA-mRNA interaction networks were built by using Cytoscape (v3.8.2,
http:/ /www.cytoscape.org/, accessed on 1 April 2022).

2.7. Quantitative PCR Validation

To verify the accuracy of sequencing data, 7mRNAs including hypothalamus (DIO2,
SIX1, RASD1, KCNH3) and distal pituitary (OXT, THUMPD1, LOC101114319) were ran-
domly selected. The first primers were synthesized by Bioengineering (Shanghai) Co.,
Ltd. For the qPCR analysis of mRNAs, reverse transcription was performed using the
PrimeScriptTM RT reagent kit (TaKaRa, Dalian, China). Furthermore, qPCR with the SYBR
Green qPCR Mix (TaKaRa, Dalian, China) was conducted with a RocheLight Cycler480® I
system (Roche Applied Science, Mannheim, Germany) as follows: initial denaturation at
95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 5 s, then annealing at
60 °C for 30 s. The sequences of qPCR primers are listed in Table 1.

Table 1. The Details of Primers of mRNA.

Gene Primer Sequences (5'-3) Product Size (bp) Tm (°C)
F:CGCAGAACACCTTCCTGGACAC
KCNH3 R:GCAGAAGCCATCAGAGCAGTAGAC 122 60
Six1 F:CATCGTTCGGCTTCACACAGGAG 60
R:GCCTTGAGCACGCTTTCATTCTTG 142
IO F:CCAGAGCTGTTCCAAGGCAAGTC 109 ‘0
R:CTCCAGTGCTGCTGTCCAAGATG
RASDI F: GGAGACGTGTTCATCCTGGTGTTC " 60
R: GTGTCGAGAATCTGCCGCTTGAG
OXT F:GCCTTCTCCCAGCACTGAGA 81 0
R: TCCTGGGGATGATTACAGAGGGA
FTCAACGAATACGGCGACGACATG
THUMPD1 RTCTTCAAGGCAGCTTCCACATCATC 108 60
F:GTACACCTTGGTCTTGACAGATCCG
LOC101114319 R: GAGAACCGTGCCACTGCTGATG 121 60
F:ATCGCCAATGCCAACTC
RPLI9 R: CCTTTCGCTTACCTATACC 154 60

Eight miRNAs were randomly selected, including hypothalamus (oar-miR-200a,
novel_10, novel_101, novel_4, oar-miR-143) and distal pituitary (novel_142, oar-miR-181a,
oar-miR-323b). For the qPCR analysis of miRNAs, reverse transcription was performed
using miRcute Plus miRNAs First-Strand cDNA Kit (TIANGEN, Beijing, China). Then,
qPCR was conducted miRcute Plus miRNA qPCR Kit (TTANGEN, Beijing, China) using
a RocheLight Cycler480® II system (Roche AppliedScience, Mannheim, Germany) in the
following procedure: initial denaturation at 95 °C for 15 min, followed by 40 cycles of
denaturation at 94 °C for 20 s, then annealing at 60 °C for 34 s. The primers specific to
miRNAs were synthesized by Beijing Tianyi Huiyuan Biotechnology Co., Ltd. (Beijing,
China). The primer design information is shown in Table 2.

Table 2. The Details of Primers of miRNAs.

The Name of the Primer Primer Sequence Tm (°C)
oar-miR-200a F:GCTGCAACACTGTCTGGTAACGAT 60
novel_10 F:CGCTTCACAGTGGCTAAGTTCTGC 60
novel 101 F:AGCTCTGGGTCTGTGGGGA 60
novel_4 F:CCGCGTCTTTGGTTATCTAGCTGTATG 60
oar-miR-143 F:CGCTGAGATGAAGCACTGTAGCTC 60
novel_142 F:CCACCTCCCCTGCAAACG 60
oar-miR-181a F-TGCGAACATTCAACGCTGTCGGTGAG 60
oar-miR-323b F:AGGCCTCCCAATACACGGTCGATCTC 60
[8[3 F:CAAGGATGACACGCAAATTCG 60

Note: The reverse primer for miRNA is the universal primer of the miRcute Plus miRNA qPCR Kit (TTANGEN,
Beijing, China).
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In addition, RPL19 (for mRNA) and U6 small nuclear RNA (for miRNA) were utilized

as reference gene-miRNA to calculate the relative expression level with the method of
2—AACt

3. Results
3.1. Summary of Sequencing Data for mRNA and miRNA

RNA-seq for mRNA generated about 673 million (hypothalamus) and 640 million
(distal pituitary) clean reads after data filtering, and more than 94% of the clean reads were
located in the genome. The GC content of clean reads was between 47.97 and 53.37%, and
the clean reads quality scores of Q20 and Q30 were above 96.29% and 89.87%, respectively,
indicating that the reliability and quality of the sequencing data were sufficient for further
analysis (Supplementary Table S1). Regarding the expression level of mRNAs, details are
provided in Supplementary Table S2, Figure 1A,C. In addition, the chromosomal distribu-
tion of mRNA on both tissues showed that genes were mostly present on chromosomes 1, 2
and 3, occupying 27.53% and 27.46%, respectively, (Supplementary Table S2, Figure 1B,D).
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Figure 1. FPKM (A) and Chromosome (B) distribution of identified g expressed genes in SP21-HYP
vs. LP21-HYP; FPKM (C) and Chromosome (D) distribution of identified expressed genes in
SP21-PD vs. LP21-PD.

RNA-seq for miRNAs generated about 140 million (hypothalamus) and 132 million
(distal pituitary) clean reads after data filtering, and in the range of 92.99-98.65% of the
clean reads, which were located in the genome (Supplementary Table S1), with the length
between 21-24nt (Supplementary Table S3, Figure 2B,D). The average Q20 content was 98%
(hypothalamus) and 96% (distal pituitary) (Supplementary Table S1). In addition, a variety
of non-coding RNAs (ncRNAs) were also identified, including transfer RNAs (tRNAs), snR-
NAs and miRNAs (Supplementary Table S3, Figure 2A,C). The known miRNAs accounted
for only a part of all identified ncRNAs, 29.85% and 32.73%, respectively. However, most of
them are newly identified miRNAs. Totally, 902 new miRNAs and 149 known miRNAs
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were included in the hypothalamus, 628 new miRNAs and 152 known miRNAs in the
distal pituitary (Supplementary Table S3).
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Figure 2. Types of non-coding rRNAs (A)and length distribution of SRNAs (B) from SP21-HYP vs.
LP21-HYP, (C,D) from SP21—-PD vs. LP21—-PD.

3.2. Identification of Differential Expressed Genes and miRNAs

A total of 1813 DEGs were identified from SP21-HYP vs. LP21-HYP comparison.
Compared to the short photoperiods, 966 genes were up-regulated, and 847 genes were
down-regulated in the long photoperiods (Supplementary Table S4, Figure 3A). Similarly,
a total of 2492 DEGs were identified from SP21—PD vs. LP21—PD comparison. Among
these DEGs, 1829 genes were up-regulated, and 663 genes were down-regulated in the
long photoperiods (Supplementary Table S5, Figure 3C). The 10 mRNAs with the most
significant difference are shown in Table 2.

A total of 145 DEMs were detected among the 1051 identified miRNAs. Compared
to the short photoperiods, 73 were up-regulated and 72 were down-regulated in the long
photoperiods (Supplementary Table S4, Figure 3B). A total of 59 DEMs were detected
among the 1051 identified miRNAs, of which 49 were up-regulated and 10 were down-
regulated (Supplementary Table S5, Figure 3D). The 10 mRNAs with most significant
difference was shown in Table 3, the 10 miRNAs with most significant difference was
shown in Table 4, Sequence details of miRINAs are available at Supplementary Table S5.

3.3. Functional Enrichment Analysis of the DEGs

GO and KEGG analyses were conducted for the differentially expressed mRNAs. In
GO terms, the most enriched terms in SP21-HYP vs. LP21-HYP are actin cytoskeleton
organization and protein phosphorylation (Supplementary Table S6, Figure 4A). KEGG
analysis showed that MAPK signaling pathway, GnRH signaling pathway, and insulin
signaling pathway were significantly enriched (Supplementary Table S6, Figure 4C).
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Figure 3. DEGs and DEMs analyses. Volcano plot of identified genes (A) and miRNAs (B) in
SP21—-HYP vs. LP21-HYDP, where red and blue represent up or down-regulation, respectively.
Volcano plot of identified genes (C) and miRNAs (D) in SP21—PD vs. LP21—PD, where red and green
represent up or down-regulation, respectively.



Genes 2022, 13,1091 8 of 19

Table 3. mRNAs with the Most Significant Differences in Expression of Hypothalamus and Distal

Pituitary.
Group mRNA log2FoldChange g-Value Up/Down
SI;%;T{(%S COMMDS5 ~7.48 3.93 x 10-72 down
EHBP1 —6.30 1.54 x 10751 down
LOC114108752 3.92 2.39 x 10~48 up
LOC114116052 5.90 8.05 x 10~ up
MAPK6 —14.07 5.16 x 10~ down
MAX 1.93 2.30 x 10-% up
ASPSCR1 6.50 249 x 10-2 up
STK38 5.08- 249 x 10~ up
SV2A —9.16 3.40 x 10~ down
RBM42 13.67 3.76 x 10~21 up
55%12:%’5' LOC114116052 543 439 x 10-80 up
LOC114108752 3.84 1.15 x 10743 up
PRUNE2 9.87 6.13 x 10738 up
AKAP9 15.95 9.79 x 1036 up
GGNBP2 6.59 1.94 x 10726 up
BROX ~13.02 2.59 x 1072 down
RAPGEF6 13.83 2.03 x 10~18 up
PTEN —4.09- 6.83 x 10717 down
PLEC 13.59 6.83 x 10717 up
CEP112 —8.20 1.14 x 10716 down

Table 4. miRNAs with the Most Significant Differences in Expression of Hypothalamus and Distal

Pituitary.
Group miRNA log2FoldChange p-Value Up/Down

SE%;_HI\E%S novel_154 7.34 117 x 1075 up
oar-miR-3956-5p -2.32 1.33 x 107° down

oar-miR-544-5p 3.86 3.61 x 107> up

novel_156 4.64 6.50 x 107> up
oar-miR-3956-3p —3.68 1.61 x 1074 down

oar-miR-376e-3p 4.85 1.63 x 1074 up

oar-miR-376b-3p 5.55 1.70 x 104 up

oar-miR-374a 3.85 1.77 x 1074 up

novel_234 3.86 3.66 x 107* up

novel_199 5.67 6.00 x 104 up

SE?ZIE]I:’)];S novel_5 8.83 1.02 x 10~° up

novel_200 5.59 3.06 x 1077 up

novel_62 9.67 1.85 x 107° up

novel_652 5.47 5.10 x 107° up

novel 172 6.38 7.94 x 1076 up

novel_123 4.85 2.04 x 1072 up

novel 203 5.69 4.00 x 107> up

novel 505 412 1.18 x 1074 up

novel_357 6.41 1.78 x 1074 up

novel 83 3.28 5.61 x 1074 up
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Figure 4. TOP enriched gene ontology (GO) study of differential expressed genes between short-
photoperiod and long-photoperiod in the hypothalamus and distal pituitary of sheep. (A) GO
enrichment terms for DEGs in SP21—-HYP vs. LP21—-HYP. (B) GO enrichment terms for DEGs in
SP21—-PD vs. LP21—-PD. KEGG pathway analysis for DEGs between short photoperiod and long
photoperiod in hypothalamus and PD of Small Tail Han sheep. (C) 20 enrichment pathways in
SP21—-HYP vs. LP21-HYP. (D) 20 enrichment pathways in SP21—PD vs. LP21—PD. Rich factors are
defined as the amount of differentially expressed genes enriched in the pathway/amount of all genes
in the background gene set.

In GO terms, the most enriched terms in SP21—PD vs. LP21—PD are modulation of
chemical synaptic transmission and regulation of trans-synaptic signaling (Supplementary
Table S7, Figure 4C). All of these pathways are related to the basic activities of life, such as
circadian entrainment, oxytocin signaling pathway and GnRH signaling pathway, and are
associated with reproduction (Supplementary Table S7, Figure 4D).

3.4. miRNA-mRNA Interaction Network

To further analyze the relationship between miRNAs and mRNAs, we constructed a ge-
nomic network of interactions using potential target genes of DEMs with DEGs obtained by
RNA-Seq. Crossing the identified potential target genes of DEMs with the DEGs obtained
from RNA-Seq, there were 468 hypothalamic overlapping genes and 426 pituitary overlap-
ping genes (Figure 5). Then, Cytoscape was used to construct a co-regulatory network of
DE miRNA-mRNA pairs with multiple targeting relationships (Figure 6, Supplementary
Tables S10 and S11).

To further determine the role of genes and miRNAs in the regulation of the gonadal
axis by light conversion. GO and KEGG analysis was undertaken for the above overlapping
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genes (i.e., simultaneous differential expression of miRNAs and target genes). The two
most enriched entries of GO are the regulatory activity of GTPase regulator activity and
nucleoside-triphosphatase regulator activity in SP21—-HYP vs. LP21-HYP (Supplementary
Table S8, Figure 7A). GO results found that positive regulation of glial cell production was
significantly enriched in SP21—PD vs. LP21—PD (Supplementary Table S9, Figure 7B). The
pathways of KEGG enrichment of target genes in DEMs and DEGs were similar in both
groups (Supplementary Table S8, Figure 7C, Supplementary Table S9, Figure 7D).

A B

Predicted target genes DEGs Predicted target genes

DEGs I .

Figure 5. Overview of mRNA-miRNA networks. (A) Overlapping genes in SP21-HYP vs.
LP21-HYP between DEGs and predicted target genes by miRNAs. (B) Overlapping genes in
SP21—PD vs. LP21—PD between DEGs and predicted target genes by miRNAs.
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Figure 6. Regulatory networks of DE miRNA-mRNA in hypothalamus and distal pituitary of
sheep. (A) The network contained 4 up-regulated miRNAs and 4 target genes in SP21-HYP vs.
LP21—HYP. (B) The network contained 10 down-regulated miRNAs and 8 target genes in SP21-HYP
vs. LP21—HYP. Red and blue indicate up or down-regulation, respectively. (C) The network contained
14 upregulated miRNAs and target genes in SP21—-PD vs. LP21—PD. (D) The network contained
6 downregulated miRNAs and target genes in SP21—PD vs. LP21—PD. Blue and Red indicate up or
down-regulation, respectively.
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Figure 7. TOP enriched gene ontology (GO) study of target genes for differential expressed miRNAs
between short-photoperiod and long-photoperiod in the hypothalamus and distal pituitary of sheep.
(A) GO enrichment terms for target genes of differentially expressed miRNAs in SP21-HYP vs.
LP21—-HYP. (B) GO enrichment terms for target genes of differentially expressed miRNAs in SP21
—PD vs. LP21-PD. KEGG pathway analysis for target genes of differentially expressed miRNAs
between short photoperiod and long photoperiod in hypothalamus and distal pituitary of sheep.
(C) 20 enrichment pathways in SP21-HYP vs. LP21-HYP. (D) 20 enrichment pathways in SP21—-PD
vs. LP21—PD. Rich factors are defined as the amount of differentially expressed genes enriched in the
pathway/amount of all genes in the background gene set.

3.5. Data Validation

In order to assess the accuracy of sequencing, mRNAs and miRNAs were selected
randomly for qPCR validation. We measured the gene expression level and compared
it with the RNA-seq data. The results demonstrated that RNA-seq data and qPCR data
showed similar patterns (Figure 8), which indicate the reliability of the data generated from

RNA-seq.
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Figure 8. gPCR validation of mRNAs and miRNAs identified by RNA —seq.

4. Discussion

In most animals, reproduction is regulated by the hypothalamic-pituitary-gonadal
axis [30]. The hypothalamus and pituitary gland are important upstream tissues that
regulate HPG in sheep and control a wide range of animal behaviors [31,32]. To better
probe the effects of the photoperiod on hypothalamic and pituitary function, we applied the
OVX + E; sheep model, which is often used to study the response of seasonally breeding
animals to photoperiodic and reproductive endocrine changes [33-35]. Therefore, this
study used transcriptomic approaches to mine differential genes and miRNA expression
patterns associated with reproduction in sheep with different photoperiods.

4.1. Identification and Analysis of mRNAs and miRNAs Data in SP21— HYP vs. LP21— HYP

A total of 145 DEMs were identified for SP21-HYP vs. LP21-HYP, including miR-
200 [36]. Family members were identified multiple times in seasonal and non-seasonal
estrus ovaries of sheep. Among them, miR-200a is a member of the miR-200 family, which
is associated with ovarian development in goats [37]. One study showed that miR-494-3p
significantly inhibited apoptosis of endometrial epithelial cells [38], and oar-miR-485-3p can
regulate the developmental quality of oocytes [39]. From the above, we can speculate that
DEMs target and regulate genes related to reproductive estrus, which may be responsible
for the reproductive variation in sheep due to different photoperiodic changes.

A total of 1813 DEGs were identified in SP21-HYP vs. LP21-HYP, including APAF1,
CASP3 associated with apoptosis, and DIO2, LHB, and TSHB associated with estrous
reproduction in sheep. Some studies have demonstrated that haplotype H2 and diploid
H2/H4 of TSHB may be associated with year-round estrus [40]. GO was enriched for many
terms associated with intercellular communication, and differential genes expressed may
influence changes in reproductive traits in sheep by affecting the expression of intercellular
communication-related receptor proteins. KEGG pathways include enriched ErbB signaling
pathway; GnRH signaling pathway (PTK2B and CAM2B), gonadotropin secretion (LHB),
and prolactin signaling pathway were also significantly enriched; these pathways have
been studied and proven to be associated with reproductive activity [27,41].

4.2. Analysis of miRNA-mRNA Interaction Network in SP21—HPY vs. LP21—-HPY

To better understand the function of miRNAs, the SP21—HPY and LP21—HPY interac-
tion negative network was constructed. In the upregulated network, a key oar-miR-200a
targeting CACNA2D1 was identified, and it has been shown that miR-200a-3p plays an im-
portant role in chicken [42] and goat [37] reproductive regulation, and some other miRNAs
target genes that regulate cell proliferation apoptosis-related biological processes [43].
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Among the down-regulated networks, the important DEGs and DEMs were selected
to construct the reciprocal network, in which DENND1A was the target gene of novel 550,
and it was shown that DENND1A gene was expressed higher in the low yield group than
in the high yield group in ovarian and showed an opposite expression trend with chi-miR-
324-3p. CCK-8 assay showed that chi-miR-324-3p overexpression significantly inhibited
the proliferation of GCs and knockdown of chi-miR-324-3p promoted GC proliferation [44],
thus affecting ovulation and reproduction in ewes, while novel_550 inhibited DENND1A
gene expression in this study. We speculate that novel 550 and chi-miR-324-3p act similarly.
It has also been reported that DENND1A is a susceptibility gene for polycystic ovaries,
which is essential for ovarian and embryonic development [45-47] and can affect the
reproductive process. Another target gene of novel_550, EML6 was also shown to be
associated with reproduction. The production of high-quality eggs in mouse reproduction
requires normal segregation during oocyte meiosis, and EML6 is highly expressed in oocytes
and is responsible for the accurate segregation of homologous chromosomes [48]. GH is a
target gene of novel_984; GH plays an inductive role in ovulatory reproduction [49], and is
elevated during growth hormone secretion during major transitions in reproductive status
such as puberty and pregnancy [50]. It is an important regulator of female reproduction, and
is involved in gonadal steroidogenesis, gametogenesis and ovulation [51], and alterations
to the GH axis can have a reproduction. In growth regulation, it is mainly used with
growth hormone (GH) to promote cellular metabolism, promote growth and regulate
reproduction [52]. Novel 414 targets LHB, luteinizing hormone (LH), also known as
luteinizing hormone, which is released by gonadotropins and promotes blood flow and
secretion of progesterone in the ovary, affecting ovulation [53]. SIX1 is a common target
gene of novel_618 and novel_424, and long light signaling molecules are mainly mediated
by EYA3 and TSHf3. EYA3 can form a complex with thyrotropic embryonic factor (TEF)
and SIX1, which synergistically promotes TSHf} transcription upon binding to the TSHf3
promoter D element [54]. In summary, in the down-regulated network, the expression
of the above DEGs in this study was significantly higher during the shift from short to
long photoperiods, and we hypothesize that DEMs such as chi-miR-324-3p, novel _550, and
novel_414 lead to alterations in reproductive traits in sheep by negatively regulating and
reproduction-related genes.

4.3. Identification and Analysis of mRNAs and miRNAs Data in SP21—PD vs. LP21—PD

A total of 2942 DEGs were identified for SP21—PD vs. LP21—-PD, including CREB3L1
and OXT. CREB3L1 acts as a downstream effector of TSH to regulate the expression of
transport proteins and increase the ability of secretory amplification [55]. Under short
photoperiods, the pituitary nodules secrete the thyrotropic hormone, which stimulates
T3 in the hypothalamus, which in turn affects the secretion of gonadotropin-releasing
hormone and gonadotropin. Studies have shown that OXT and its receptor (OXTR) play
a central role in reproduction and metabolism, especially in females, by functioning in
an estrogen-dependent manner in rats [56] and are associated with human social and
emotional behavior, as well as physical and mental health and disease [57-59]. In addition,
we performed functional enrichment analysis of target genes of DEGs and DEMs in sheep,
respectively. The results of KEGG pathway enrichment in both showed many common
pathways in LP and SP comparison, among which the most interesting reproductive
pathways included GnRH signaling pathway, Wnt signaling pathway, ErbB signaling
pathway, and MAPK signaling pathway. Circadian rhythm-related pathways included
circadian and TNF signaling pathways, and these results are consistent with the Kazakh
sheep [60], suggesting that reproduction in Small-tailed Sheep is also influenced by the
photoperiod. In KEGG analysis, enriched for pathways related to calcium regulation, light
influences vitamin D synthesis and thus changes in calcium processing expression. It was
shown that the rapid, light-dependent changes in melatonin levels in the pineal organ are
apparently regulated by novel calcium signaling pathways [61,62].
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We found that among the identified miRNAs, the most highly expressed ones, oar-miR-
148a and oar-miR-379-5p, oar-miR-495-3p, oar-miR-143, oar-miR-106b and oar-miR-218a,
have been shown to play important roles in regulating GnRH release [63]. In addition,
a variety of miRNAs are expressed in the sheep pituitary and at different levels under
different light conditions. However, some miRNAs are species-specific, which is also
likely to lead to different sensitivity to photoperiods in different animals and different PD
secretion of hormones leading to differences in reproductive cyclicity. A total of 6 of the
59 DEMs are known, of which oar-let-7¢c, oar-let-7a, and oar-let-7b are of the same miRNA
family, in animal genomes. The high conservation of let-7 in different animal species
suggests that they may play important (and possibly similar) roles in biological processes
in various organisms [64,65]. The effect of miR-150 on GC cell apoptosis by targeting the
STAR, thereby affecting ovarian function and subsequently hormone secretion related to
estrus [66].

4.4. Analysis of miRNA-mRNA Interaction Network in SP—PD vs. LP—PD

In the up-regulated network, containing 45 mRNAs and 14 miRNAs negative interac-
tors, of which ZNF787 and CAMK?2 are both target genes of novel_146, CAMK2b is one of
the most prominent isoforms of CAMK?2 [67], and calcium/calmodulin-dependent protein
kinase II (CAMK?) is a key player in synaptic plasticity and memory formation. It has
been shown that CAMK2b is associated with apoptosis and is involved in the protection of
neurons from homocysteine-induced apoptosis through the HIF-1«x signaling pathway [68]
and that ZNF787 is a neuronal inhibitory molecule [69].

The down-regulated network contained 169 mRNAs and 6 miRNAs. Bok was targeted
by novel_142, a pro-apoptotic Bcl-2 protein, and the loss of Bok significantly reduced
susceptibility to apoptosis and had an important role in ovarian and follicular maturation
and apoptosis in humans [70] and mice [71]. Therefore, we hypothesize that miRNAs
are affecting estrus-related hormone activity by inhibiting apoptosis and thus ultimately
estrus. Interestingly, novel_414, novel_427 and novel_587 collectively target Lhx1, and Lhx1
deficiency causes severe loss of circadian rhythm and sleeps’ light control in mice [72], and
in the present study, Lhx1 expression was elevated during long photoperiods, in which we
hypothesize that light sensitivity in sheep is reduced through miRNA regulation of Lhx1.

The two pathways that regulate seasonal estrus in sheep, are the hypothalamic-
pituitary-gonadal axis and KISS51/GPR54. In birds [73] and sheep [74] TSHf3, a molecular
signature of long photoperiods, increased in expression in the shift from short to long pho-
toperiods. Under long photoperiods t, high levels of TSHf bind to TSHR and then drive
the conversion of DIO3 to DIO2 through the cAMP signaling pathway, which regulates
GnRH neurons, in addition to higher levels of KISS1 expression in the sheep hypothalamus
than in the non-breeding season [75]. In the present study, we did a collated comparison
of differential genes in the comparison groups of hypothalamus and distal pituitary, and
found consistent trends in KISS1 and DIO3 (Supplementary Table 512). In this study, during
the short to long photoperiod shift, TSHR expression increased, KISS1 gene expression
decreased, DIO2 significantly increased, and DIO3 was decreasing, consistent with the
above studies. LHB expression decreased and PRL increased, consistent with the trend
of change during the shift from short to long photoperiods in seasonal estrus [60,75], but
FSHR expression was slightly decreased, and these changes may also be the reason for the
Small Tail Han sheep.

5. Conclusions

The present study provides, for the first time, the complete miRNA-mRNA network of
sheep under photoperiodic regulation from the hypothalamus and pars tuberalis. We iden-
tified many DEGs (e.g., LHB, TSHB) and miRNA-mRNA pairs (e.g., LHB is a targeting gene
of novel_414) from the RNA-seq data obtained from hypothalamus. We identifiedmany
DEGs (e.g., OXT, GH and Lhx1) and miRNA-mRNA pairs (e.g., Lhx1 is a targeting gene of
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novel_414, novel_427, and novel_587) from the RNA-seq data obtained from pars tuberalis.
These data provide significant data for further exploring the reproduction of sheep.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/genes13061091/s1. Table S1: Overview of quality control of
mRNA and miRNAs reads. Table S2: Introduction of mRNA. Table S3: Introduction of miRNA.
Table S4: Differentially expressed mRNAs in long photoperiods to short photoperiods were iden-
tified in hypothalamic and distal pituitary. tissues. Table S5: Differentially expressed miRNAs
in long photoperiods to short photoperiods were identified in hypothalamic and pituitary tissues.
Table S6: GO and KEGG enrichment annotation for mRNAs in hypothalamus. Table S7: GO and
KEGG enrichment annotation for mRNAs in distal pituitary. Table S8: Crossover genes GO and
KEGG between predicted target genes of DEGs and DEMs in the hypothalamus. Table S9: Crossover
genes GO and KEGG between predicted target genes of DEGs and DEMs in the distal pituitary.
Table 510: Construction of miRNA-mRNA Interaction Network in hypothalamus. Table S11: Con-
struction of miRNA-mRNA Interaction Network in distal pituitary. Table S12: Summary of changes
in the genes of the hypothalamus and pituitary gland.
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