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Background
Boolean networks [1] represent a well-established modelling formalism commonly used 
to study complex biological systems, such as gene regulatory networks. The simple 
underlying structure of a Boolean network (BN) combined with its expressiveness makes 
it particularly well suited for in silico analysis using formal methods. Consequently, we 
see a rapid development of new methods in this area [2–4]. A more thorough overview 
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of BN methods, models and tools for computational systems biology is then available in, 
e.g., [5].

A critical element of BN modelling is the structure of the network attractors. Attrac-
tors correspond to the long-term behaviour of the BN. Informally, an attractor is a 
connected subset of the network states in which the system, if left unperturbed, stays 
forever. Attractors then manifest in biologically relevant phenotypes, such as differen-
tiated cell types and tissues [6], or biological rhythms and sustained oscillations [7]. 
However, the structure of network attractors is closely related to the employed variable 
updating scheme [8].

A BN consists of a collection of Boolean variables, the state of which is determined 
by other variables in the network using associated Boolean update functions (one for 
every variable). We speak about synchronous dynamics if all update functions are applied 
simultaneously at each time point. If only one of the update functions is chosen non-
deterministically to modify the corresponding Boolean variable, we speak of asynchro-
nous dynamics.

In general, the analysis of synchronous dynamics is considered more accessible; in 
the asynchronous case, attractor identification is complicated by the non-determin-
istic nature of the state transitions. Unfortunately, it is known that the synchronous 
update can produce unrealistic attractors [9, 10]. However, models with asynchronous 
update can cover the real attractors quite well, though it has been recently shown that 
some exceptions exist [2]. Our method, therefore, primarily focuses on asynchronous 
dynamics.

In asynchronous systems, we generally recognise three distinct types of attractors cor-
responding to different long-term behaviour. Briefly, the first case is when the network 
evolves to a single stable state. Such states are the fixed points or point attractors. The 
second situation is when the network periodically oscillates through a  finite sequence 
of states-an oscillating attractor (the discrete equivalent of a  limit cycle in continuous 
systems). The third situation is classified as a so-called disordered attractor (sometimes 
also called a complex attractor). Such an attractor is neither stable nor periodically oscil-
lating. The system may behave unpredictably due to the non-determinism of the asyn-
chronous dynamics. Aside from these structural characteristics, a particular attractor’s 
phenotype may also be associated with specific values of relevant network variables.

One particular problem when detecting attractors of the network (and their associ-
ated phenotypes) is that the update functions of the BN are often only partially known 
or may be subject to influence from external factors. In such a case, we speak of para-
metrised Boolean networks [11], in which the update functions depend on a set of logical 
parameters.

In parametrised BNs, the attractors change as the values of the parameters are var-
ied. Some of these changes might lead to qualitatively different attractors (i.e. vari-
ation in the count and/or types of attractors). Such a qualitative change is called a 
bifurcation. To study bifurcations in discrete systems, we can classify the parameter 
valuations into distinct classes based on qualitatively different types of behaviour. We 
call such classification a bifurcation function and refer to the process of computing 
and studying this function as attractor bifurcation analysis [12]. As such, bifurcation 
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analysis is one of the most fundamental approaches that allow exploring the behav-
iour of biological networks on a global scale.

The core problem of bifurcation analysis, i.e. attractor detection, has been widely 
studied before in different contexts, but primarily in non-parametrised BNs (see [13] 
for an overview). Known attractor detection methods can be used for bifurcation 
analysis by employing a naïve parameter scan. However, such approach does not scale 
to systems with a large number of logical parameters, as the size of the parameter 
space rises exponentially with the number of parameters.

For synchronous systems, there are efficient exact solutions for attractor detection 
in terms of SAT [14, 15], constraint programming [16], integer-programming [17], 
or BDD-based representation [8, 18]. In the asynchronous cases, various techniques 
have been employed, including BDDs [8, 19], optimisation [20], algebraic methods 
[21], SAT [22], answer set programming [23], concurrency theory [24], sampling [25], 
or network structure decomposition [26].

Alternatively, algebraic methods based on semi-tensor products   [27] and polyno-
mial matrix representations   [28] can be employed for various analysis tasks in syn-
chronous BNs   [29–31]. However, these methods ultimately suffer from the curse of 
dimensionality, since the dimension of the state-transition matrix grows exponen-
tially with the number of variables in the BN  [32].

Several computational tools have been developed to construct, visualise, and ana-
lyse attractors in non-parametrised BNs. Amongst them, the established tools include 
ATLANTIS [33], Bio Model Analyzer (BMA) [34], BoolNet [35] and ViSiBooL [36], 
PyBoolNet [37], lnet [38], The Cell Collective [39], CellNetAnalyzer [40], and ASSA-
PBN [41]. Furthermore, tools targeting parameter synthesis in BNs are relevant here 
as well. These cannot construct the full classification automatically but can often at 
least identify subsets of parametrisations based on a particular type of long-term 
behaviour. GINsim [42] supports parameter synthesis of both synchronous and asyn-
chronous models indirectly through an external model checker (however, the model 
has to be manually parametrised). Finally, TREMPPI [43] is an online tool providing 
parameter synthesis of asynchronous models w.r.t. LTL.

To the best of our knowledge, the only existing methodology targeting the concept 
of bifurcation analysis in Boolean networks has been proposed in   [44, 45]. In par-
ticular, Abou-Jaoudé et  al. adapt the notion of bifurcation diagrams to the settings 
of logical models, which also covers Boolean networks. This notion is established by 
relating the discrete dynamics of the logical model with the continuous dynamics of a 
corresponding piecewise differential model. The actual bifurcation diagram then dis-
plays attractors of the network along a growing sequence in the lattice of the model 
parameters.

However, it is worth noting that the number of such sequences tends to be very large 
in non-trivial BNs. Additionally, each such sequence only covers a relatively small 
portion of the parameter space. Consequently, many different bifurcation diagrams 
may be necessary to fully characterise the long-term behaviour of a single network. 
Meanwhile, our novel approach encodes this information within a single structure: 
a bifurcation decision tree. Additionally, our approach is supported by efficient sym-
bolic algorithms. As we demonstrate in our results, this allows us to efficiently handle 
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realistic large-scale networks, which, to the best of our knowledge, is not currently 
possible within the framework of  [44].

In this paper, we present a comprehensive methodology for automated attractor 
bifurcation analysis of parametrised BNs, fully implemented in our tool AEON [46, 
47]. The work is based on our previous research in this area [12, 48–51], in particular 
[12]. The main contribution is in combining the theoretical concepts into a singu-
lar methodology. In addition, this work addresses two remaining key challenges in 
attractor bifurcation analysis of BNs: 

1	 A concise specification of partially unknown parametrised BNs using uninterpreted 
Boolean functions, including static validation of such parametrised models.

2	 Extending our previous work on the visualisation of bifurcation functions using deci-
sion trees [12], we introduce a novel language of node attributes representing hierar-
chically the parameter constraints affecting the parametrised update functions.

Additionally, we introduce an interactive decision tree editor in AEON, which utilises 
the above mentioned improvements to facilitate a user-friendly experience. In part 
of these improvements, we have also incorporated a comprehensive stability analysis 
workflow into the decision tree editor. Finally, we demonstrate the presented meth-
odology on a complex human cell signalling network describing the activity of type-1 
interferons and related molecules interacting with the SARS-COV-2 virion, which, to 
the best of our knowledge, has not been studied in this way before.

Preliminaries
We start by formally introducing the modelling framework of parametrised Boolean 
networks and the notion of attractor bifurcation in such models. More technical 
details about this topic are discussed in [12] and [46].

Boolean networks

We consider the standard (non-parametrised) Boolean network (BN) to be given 
as a regulatory graph of Boolean variables, where each variable has an associ-
ated Boolean update function. Formally, we have a finite set of Boolean variables V 
(denoted A,B, . . . ), regulations R ⊆ V × V , and a family of Boolean update functions 
F = {FA | A ∈ V} . The signature of each FA is determined by the regulatory context 
C(A) = {B | (B,A) ∈ R} . Specifically, FA : {0, 1}C(A) → {0, 1} . Here, the members of C(A) 
are called regulators of A , and A is then referred to as the regulation target.

The network’s behaviour is represented by its asynchronous state-transition graph. 
State s of a BN assigns each variable a Boolean value, i.e. s : V → {0, 1} . Graph’s ver-
tices are then the 2|V| possible states of the BN. The edges of the graph correspond to 
the asynchronous application of the update functions to the current state. Formally, 
for every s → t in the graph, there exists a variable A ∈ V such that t(A) = FA(s) and 
the remaining B ∈ V are unchanged (i.e. s(B) = t(B)).



Page 5 of 18Beneš et al. BMC Bioinformatics          (2022) 23:173 	

Example 1  Consider a simple BN with V = {A,B,C} such that C(A) = {A,B,C} , 
C(B) = {C} , and C(C) = {A} . Additionally, let FA = A ∨ ¬B ∨ ¬C , FB = ¬C , and FC = B . 
The state-transition graph of this network is shown in Fig. 1 (a).

Notice that the dependence between variables is typically monotonous. For example, 
an increase in B cannot decrease C ; hence we might say that B regulates C positively. We 
often graphically represent a BN using its regulatory graph in which we include these 
observations. For the network in Example 1, such a graph is shown in Fig 1b, with posi-
tive regulations (activations) using green and sharp arrow tips, while negative regula-
tions (inhibitions) use flat red arrows.

Furthermore, for every (B,A) ∈ R , in terms of [52], every regulator B is essential (also 
observable) in FA . The essentiality of regulators mandates that whenever B regulates A , 
B needs to have a measurable impact on the value of FA . Formally, there is a state s such 
that flipping the value of B in s also flips the value of FA(s).

However, we can further generalise this notion of essentiality. Consider the update 
function FA = A ∨ ¬B ∨ ¬C . When A = 1 , the value of FA does not depend on either B 
or C . Hence B and C are not essential in FA for A = 1 (however, they are both essential for 
A = 0 ). In this fashion, we can list an arbitrary partial state of the BN to further specify 
the dependence between two variables. For example, we can say that C is essential in FA 
for A = 0 and B = 1 . That is because there is a state s which satisfies this partial assign-
ment (i.e. s(A) = 0 and s(B) = 1 ), and flipping the value of C in s flips the value of FA(s) . 
This notion of generalised essentiality will come into play later for parametrised Boolean 
networks when we discuss how AEON visualises the space of possible update functions.

Network attractors

In practice, a crucial question of BN modelling is what eventually happens to the net-
work state in the long term. This information can be obtained by studying the network’s 
attractors. These correspond to the bottom (also terminal) strongly connected compo-
nents (BSCC) of the state-transition graph. Assuming no transition is delayed indefi-
nitely, these are the regions of the state space where the network eventually stays forever.

000 001

010 011
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B C

FA = A ∨ ¬B ∨ ¬C

FB = ¬C FC = B

(b)(a)

Fig. 1  (a) The asynchronous state-transition graph of the Boolean network in Example 1. Each state specifies 
the values of the network variables in the lexicographic order. The highlighted states show an oscillating 
attractor of the network. (b) The regulatory graph and update functions of the Boolean network in Example 1. 
Green and red arrows represent activating and inhibiting regulations, respectively. A solid arrow implies that 
the regulation is essential in the corresponding update function
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Formally, a BSCC is a maximal set of states S such that for all s ∈ S , the states reach-
able from s are exactly the set S. Consider the network from Example 1 and its state-
transition graph in Fig.  1a. It has one attractor, namely, the set {100, 110, 111, 101} . 
Once this set is reached, the network oscillates between these four states forever. In 
practice, attractors can exhibit different types of behaviour:

•	 Stability ( ⊙ ) An attractor is stable if it consists of a single state. The network then 
stays in this state forever. Sometimes, this type of attractor is also called equilib-
rium or sink.

•	 Oscillation ( � ) A single cycle of states, such as in our example, is called an oscil-
lating attractor. The length of such a cycle is its period. These attractors are also 
sometimes called limit cycles or periodic attractors.

•	 Disorder ( ⇄ ) Finally, an attractor is disordered (also aperiodic) if it is neither sta-
ble nor oscillating. Even though the network will stay in the attractor forever, it 
will behave somewhat unpredictably due to the non-determinism of the asynchro-
nous state-transition graph.

Since the network will often have multiple attractors, its long-term behaviour is char-
acterised by a multi-set over these three attractor types {⊙,�,⇄} . We call such multi-
set a behaviour class, and we denote the set of all possible behaviour classes C . In 
Example 1, the network’s behaviour class is only one � attractor.

Observe that this notion of behaviour classes follows intuitively from the estab-
lished bifurcation analysis methodology in continuous dynamical systems  [53]. In the 
continuous case, attractors are differentiated based on their topological properties in 
the continuous state space. This distinction naturally leads to the recognition of sta-
ble equilibria (single-state attractors), limit cycles (oscillating attractors), and chaos 
(attractors consisting of disordered trajectories). However, note that the workflow is 
(to some extent) modular in this regard. If a different classification is desired, assum-
ing a symbolic algorithm to perform this classification based on attractor states exists, 
it can be used to supplement or completely replace our proposed classification.

Parametrised Boolean networks

Inferring the exact update functions from experimental data is a complex and 
error-prone task, which often cannot be performed exactly. This uncertainty can be 
expressed using logical parameters, leading us to the introduction of parametrised 
Boolean networks.

A parametrised Boolean network has an associated finite set of parameter names 
P (disjoint with V ), which parametrise each update function. We use the F̂A notation 
for such update functions to differentiate them from their non-parametrised coun-
terparts. The type of each such function is then F̂A : {0, 1}C(A)∪P → {0, 1} . Hence to 
obtain the final result, values of both regulators and parameters are considered.

We call each assignment p : P → {0, 1} a parametrisation. With each parametrised 
Boolean network, we also associate a set of valid parametrisations P. This set allows 
us to arbitrarily restrict which parametrisations are considered admissible for the 
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given network. By fixing one such parametrisation p ∈ P , we obtain a standard non-
parametrised Boolean network called a p-instantiation.

In the worst case, the number of unique instantiations can be doubly exponential in 
the size of V [54]. It is, therefore, necessary to restrict the set P as much as possible. To 
do this, we often utilise the monotonicity and essentiality properties that we discussed in 
relation to the non-parametrised BNs.

Specifically, when we say a regulation is monotonous in a parametrised BN, we mean 
that for every p ∈ P , the p-instantiation has this property. Consequently, we can use 
the visual elements we introduced for non-parametrised regulatory graphs in a para-
metrised setting as well.

In a non-parametrised BN, we assumed each regulation was essential. In a para-
metrised BN, we pose no such requirement, as an unknown update function need not 
always depend on all regulators. Instead, we assume each regulation marked as essential 
(solid arrow) must be essential in each instantiation, and regulations not denoted as such 
(dashed arrows) may or may not be employed by valid instantiations.

Example 2  Let us now consider Example 1, but extended to a parametrised Boolean 
network in the following way: We add a new regulation (C,C) without any assumptions 
about monotonicity or essentiality (drawn in black, with a combined sharp and flat arrow 
tip). Then, let P = {K} and F̂C = B ∧ (K ⇒ C) . As valid parametrisations P, we naturally 
consider both K = 0 and K = 1 . Consequently, K effectively switches F̂C between B (as 
used in Example 1) and B ∧ C . Fig. 2 shows how this influences the state-transition graph 
and the regulation graph.

As we see in Fig. 2a, even a small change in an update function can drastically alter the 
attractors of a Boolean network. Knowing when such change occurs and which para-
metrisations produce similar behaviour is the motivation behind the attractor bifurca-
tion problem.

Attractor bifurcation in Boolean networks

Given a parametrised Boolean network with a set of valid parametrisations P, the goal 
of attractor bifurcation analysis is to compute the bifurcation function A : P → C . For a 

000 001

010 011

100

110

101

111
¬K

¬K

A

B C

F̂A = A ∨ ¬B ∨ ¬C

F̂B = ¬C F̂C = B ∨ (K ⇒ C)
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Fig. 2  (a) The asynchronous state-transition graph of the network in Example 2. The two dotted edges are 
only present when K = 0 . Consequently, the attractor of the network changes to the single highlighted state 
when K = 1 . (b) Regulatory graph and parametrised update functions of the Boolean network in Example 2. 
Compared to Example 1, there is one new regulation, which may not be essential (thus uses a dashed arrow)
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valid parametrisation p ∈ P , the function A provides the behaviour class (i.e. multiplic-
ity of different attractor types) of the corresponding p-instantiation.

Note that such A is not concerned with the exact states of individual attractors but 
instead provides a very general overview (in terms of stability, oscillation and disorder) 
of what is admissible within the given network. In some instances, further investigation 
into the internal structure of the attractors within each behaviour class may be benefi-
cial (as is also the case for bifurcation analysis in continuous systems). We address this 
aspect in more detail later in the text.

Overall, we believe bifurcation analysis to be an excellent tool for high-level analysis 
of the parameter space, which can then guide further experiments. Additionally, as we 
show in this case study, it can help identify critical network parameters that negatively 
affect the network’s behaviour.

Methods
Although the bifurcation function contains all important information about the behav-
iour classes of a given network, creating a large parametrised network and then inspect-
ing the impact of parameters on its behaviour is still a challenging task. In this section, 
we discuss how our tool, AEON, addresses these challenges and what new features this 
adds to Boolean network modelling.

Our contribution is the following: First, to make the specification of a parametrised 
network more natural, AEON models support uninterpreted Boolean functions inside 
update functions. Using these large, partially unknown update functions can be con-
structed much more concisely. Then, thanks to its use of advanced symbolic algorithms, 
AEON can compute the bifurcation function for systems with tens or even hundreds of 
variables and parameters. Finally, using its unique interactive decision tree visualisation, 
AEON enables the discovery of parameters detrimental to the system’s behaviour.

Uninterpreted Boolean functions

In AEON, a network can declare an arbitrary number of uninterpreted Boolean functions 
K
(a) , L(b) , M(c) , etc. Here, a, b, c are the function arities, which can be omitted when clear 

from the context. Such functions are similar to the standard parameters discussed in the 
previous section in that they represent an unknown but fixed part of the network update 
function. In fact, an uninterpreted function of arity 0 is equivalent to a parameter.

However, uninterpreted functions can be often used to express uncertainty much 
more naturally. Consider the update function F̂A = A ∨ ¬B ∨ ¬C from our running 
example. In a situation where the dependence of A on B is certain, but the exact relation-
ship between A and C in the equation is unknown, we can introduce an uninterpreted 
function K(2) and write F̂A = ¬B ∨ K(A,C) . In turn, AEON will consider all admissible 
binary functions in place of K as network parametrisations.

Internally, every such function K of arity i is represented using 2i standard Boolean 
parameters; one for each row of the function table of K . Since model analysis is per-
formed symbolically using binary decision diagrams [55], AEON can map between 
applications of update functions and symbolic constraints on the network parameters. 
As a result, the asynchronous state-transition graph can be explored without explicitly 
enumerating either the network states or parametrisations.
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Finally, to limit the space of valid parametrisations, AEON allows the user to spec-
ify which regulations are monotonous or essential. Any instantiation that does not 
meet these criteria is then excluded from the analysis. For example, in the case of 
F̂A = ¬B ∨ K(A,C) , we know that both A and C are essential, with A being activating and 
C inhibiting. This leaves only two valid instantiations of K , namely A ∧ ¬C and A ∨ ¬C.

This type of analysis is performed even for fully specified update functions. As a result, 
AEON can be used to validate that the regulatory graph and update functions follow 
the same properties. While this benefit may seem trivial, when developing AEON, we 
discovered many publicly available models with inconsistencies between their regulatory 
graphs and their update functions.

Such parametrised Boolean networks with uninterpreted functions can be developed 
in an interactive online editor, which is a part of AEON. This network editor also per-
forms integrity checks between the update functions and the regulatory graph on the fly, 
ensuring the model is always consistent.

Bifurcation decision trees

When given a parametrised model, AEON symbolically computes the attractors for all 
valid parametrisations. Based on these attractors, AEON assigns each parametrisation 
its behaviour class from C . Initially, this bifurcation function can be displayed as a simple 
table with the option to obtain witness instantiations for each discovered behaviour class 
and inspect their attractor state space.

Example 3  Let us consider a different parametrised variant of the Boolean network 
from Example 1. We declare two uninterpreted functions, K(3) and L(2) . We then write 
F̂A = K(A,B,C) and F̂C = L(B,C) . Set P is restricted to the 45 parametrisations that fol-
low the properties of the regulatory graph in Fig. 3 (a). AEON discovered four distinct 
behaviour classes in the bifurcation function A of this network. An overview of A is 
shown in Fig. 3b.

However, as we see in Fig. 3b, such tabular representation does not meaningfully con-
vey the relationship between behavioural classes and parametrisations of the network. 
AEON thus enables the user to explore the bifurcation function more comprehensively 
using decision trees.

Decision trees commonly appear in machine learning [56], where they are used to 
represent classifiers and decision strategies. A decision tree is a flowchart-like structure 
in which each node represents a test on some attribute(s), and each leaf represents one 
class or end result. Furthermore, each leaf can have an assigned confidence level, repre-
senting the precision of the result. When used to visualise the bifurcation function, we 
refer to this data structure as the bifurcation decision tree (BDT).

The bifurcation function as stored internally by AEON already has a compact sym-
bolic representation using binary decision diagrams. However, this representation is 
very hard to read, especially in models with complex uninterpreted Boolean functions, 
as the decision diagram is essentially a compressed representation of their logical func-
tion tables. The purpose of bifurcation decision trees is then to provide an alternative, 
human-friendly visualisation format.
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To this end, we provide a wide range of decision attributes, which the user can 
interactively select based on their visualisation goal and any prior knowledge of the 
network. To simplify the choice, the attributes are pre-sorted based on information 
gain [57], a heuristic used in standard machine learning algorithms [56] to greedily 
select optimal decision attributes.

The attributes considered by AEON fall into the following categories:

•	 For a basic Boolean parameter (i.e. uninterpreted function of arity 0), simply 
decide based on the value of such parameter.

•	 If there is a regulation without monotonicity or essentiality constraint, decide on 
the possible presence of such constraint. For example, consider how making a reg-
ulation positively monotonous influences the behaviour of the network.

•	 In a parametrised update function, consider possible generalised essentiality con-
straints as discussed in Section 2.1. For example, consider if the behaviour changes 
when we require that C is essential in F̂A for A = 1.

•	 Finally, one can decide based on the individual rows of the uninterpreted func-
tions, e.g. test whether L(1, 0) is 1 or 0. Such attributes are not very human-friendly 
but can occasionally uncover interesting relationships and are thus included for 
completeness.

A

B C

F̂A = K(A, B, C)

F̂B = ¬C F̂C = L(B, C)

Behavioural
Class

No. of
instantiations

� 23
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(b)(a)
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C is essential in F̂C

C is essential in F̂C

for B = 1

�

A is essential in F̂A

for B = 1 and C = 1

��
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��

A is essential in F̂A

for B = 1 and C = 0

A is essential in F̂A

for B = 0 and C = 1

�
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for B = 0 and C = 0

�

�

(c)
Fig. 3  (a) Regulation graph of the network in Example 3. (b) Overview of the bifurcation function in 
Example 3 as computed by AEON. (c) A bifurcation decision tree constructed in AEON with four possible 
behavioural classes ( [⊙], [�], [⇄] , and [⊙,⊙] ) for the network in Example 3. Solid and dashed arrows 
represent positive and negative decisions, respectively
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If we load the bifurcation function produced by Example 3 into AEON ’s decision tree 
explorer, we can produce a visualisation similar to the one in Fig.  3c. From this deci-
sion tree, we can quickly observe several interesting properties about the network from 
Example 3.

First, non-trivial attractors are only present if (C,C) is a (possibly non-essential) inhi-
bition. Whenever C has some other than negative effect in F̂C , the network is stable. If 
(C,C) is not essential, the network decides between oscillation and disorder based on 
what happens in F̂A when B = C . In the stable branch, the presence of bistable behav-
iour depends on values of F̂C when B = 1 and values of F̂A when B  = C . Interestingly, all 
these conditions identify autoregulation as the main driver of attractor bifurcation in 
this network.

Variable stability analysis

So far, we have only distinguished between the behaviour of different attractors on a 
qualitative level (i.e. stability, oscillation, or disorder). Nevertheless, there may be impor-
tant biological phenotypes that do not manifest as a qualitative change in the network’s 
long-term behaviour. For example, the network may exhibit two stable states (under dif-
ferent parametrisations) which differ in the values of certain critical variables. This dif-
ference may then result in a different biological phenotype, even though the qualitative 
long-term behaviour of the network is the same.

Changes on this level are harder to detect fully automatically since different mod-
els express phenotypes differently. However, changes in long-term variable expression 
across parametrisations can be tracked by AEON as well. This can be done globally 
(across the whole model) or locally, meaning for a specific behaviour class or a node in 
the afore-mentioned bifurcation decision tree. As such, one can investigate the possible 
long-term outcomes (variable is always 1, always 0, or switches between 1 and 0) across 
different subsets of the parameter space.

For the simple network in our running example, we can discover that when the net-
work is bistable, it always switches between A = 0 and A = 1 in the two sink states. 
Additionally, when the network oscillates, the value of A is always constant. That is, the 
oscillating variables are always B and C . This type of information could be then used to, 
for example, reprogram the network to avoid this switching behaviour.

Results
We evaluate the method on a systematic study of a complex human cell signalling net-
work describing the activity of type-1 interferons and related molecules interacting with 
SARS-COV-2 virion. The network is important in explaining the dynamics of innate 
immune response (IIR) – an important biological phenotype, corresponding to the activ-
ity of the immune system, and inflammation (INFL)—a biological phenotype causing an 
overreaction that might cause severe health problems in affected tissues (e.g., cytokine 
storm in [58]).

Core model

We have adopted the BN model of interferon type-1 pathways produced by the COVID-
19 Disease Map project [59]. The original BN model has been constructed from the 
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openly accessible SBGN curated pathway1 by employing the automated inference algo-
rithm CaSQ [60]. CaSQ is producing ready-to-simulate (non-parametrised) BNs where 
influences affecting a certain reaction are combined using disjunction. Parameters are 
introduced explicitly to represent input variables.

The original BN model contains 93 variables, 157 regulations, and 18 parameters. It is 
available as an SBML-qual model (original.sbml) and AEON model (original.
aeon) in Additional file 1. The parameters can be classified into three groups: virus pro-
teins, input signals, and drugs (azithromycin and GRL0617). The input signals include 
virus replication detection, PAMP signalling and TREML4.

Model reduction

Even though the original model can be analysed using AEON without major problems, 
there is an unexpectedly high number of distinct steady-state attractors. By inspecting 
the attractor state space in AEON, we discovered that they often represent the same 
phenotypes. To ease presentation, we have reduced the number of attractors so that it 
more closely matches the phenotypes of the network.

The extraneous attractors appear due to a set of three mutually dependent variables, 
NFKBIA, NFKB-NFKBIA-complex and NFKB1-cell. By analysing these three variables 
in isolation (i.e. keeping only variables on which the variables in this set depend), we 
discovered that in approx. half of the parametrisations, the variables in the set become 
bistable.

However, the rest of the model only depends on NFKB1-cell and is unaffected by bista-
bility. As a result, the amount of steady-state attractors is doubled since, for every dis-
tinct attractor phenotype, there are two attractors corresponding to the two possible 
stable situations reported on variables in the set.

We have, therefore, replaced these three variables with a parameter NFKBIA-NFKB1-
component, removing other variables that only influence this complex. As a result, the 
reduced model over-approximates the bistability of the original model by abstracting 
the removed variables in terms of new parameters in the parameter space. The reduced 
model finally contains 87 variables, 146 regulations and 17 parameters. Its full descrip-
tion is again part of Additional file 1.

Model analysis

For in-depth analysis, we use the reduced model. First, we construct the BDT showing 
the effect of the two suggested drug components on the stabilisation of the interferons 
systems dynamics. Next, we focus on the distribution of the studied biological pheno-
types across the identified attractor phenotypes.

We root the BDT at the input variable representing the presence/absence of the 
unfolded double-stranded RNA in the cell, indicating the virus is present in the cyto-
sol and is replicating. Fig. 4 shows both possible situations (detected and undetected 
virus replication). In the next levels of the BDT, we consider the decision points rep-
resenting the application of the drugs. At first, the GRL0617 is considered due to the 

1  https://​faird​omhub.​org/​models/​713

https://fairdomhub.org/models/713
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fact that it brings the most significant information gain towards the attractor bifurca-
tion (even more significant than most of the virus proteins). Application of azithro-
mycin affects the bifurcation only when used additionally with GRL0617.

In further levels of the BDT, the effect of transcribed virus proteins is unfolded. The 
most significant information gain is reported for Nsp15. The presence of active Nsp15 
in cells under the drug therapy implies bistability. This situation is not affected by 
virus replication detection. In non-medicated cells, the presence of Nsp15 stabilises 
the system in a single point attractor. In this case, positive virus replication detec-
tion increases (doubles) the number of attractor phenotypes (collectively represented 
by the mixed phenotypes nodes). A further unfolding of the respective paths to the 
leaves of the BDT involves decisions based on the presence of individual virus pro-
teins (see Additional file 1 for details). All attractor phenotypes achieved that way dis-
play multi-stability.

The variable stability analysis tool provided in AEON allows to explore the indi-
vidual nodes of the BDT for presence/absence of particular biological phenotypes (in 
our case represented as output variables in the BN). This helps us reveal the effect 
of input variables (virus proteins and drugs) on the studied biological phenotypes. 
In particular, the tool reports the number of instances exhibiting the given variable 
stable (True or False) or unstable in the selected node of the BDT. This allows us to 

Fig. 4  BDT of the reduced model representing the decisions in input variables causing bifurcations and 
affecting the presence of different attractor phenotypes. The tree is first segmented based on the detection 
of virus replication by the cell. Then, the decisions marked (1–3) are significant with respect to the studied 
biological phenotypes: (1) corresponds to the total absence of IIR, (2) shows the interferon production 
switched off, and (3) makes IIR either off in some instances, or bistable (no instance with IIR positive and 
stable)

Table 1  Qualitative influence of individual components on the stabilisation (more/less prominent 
or unchanged) of a particular phenotype (column) in either stable ( ⊙ ) or bistable ( ⊙⊙ ) regime

Component Interf. production IIR INFL

⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

N ց ց ց ր ց ր

Nsp15 − − ց ր − −
GRL0617 − ր ր ր − ր

azithromycin ց ր ց ր ց ր
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characterise the effect of a given input variable on the number of instances presenting 
the studied phenotypes. In Table 1, we show the results for inputs with high informa-
tion gain affecting the bifurcations. E.g., the presence of Nsp15 viral protein has no 
influence on the stability or bistability of interferon production and the presence of 
INFL. However, it has a negative effect on the presence of IIR in a single point attrac-
tor while increasing the number of instances where IIR becomes bistable. From this 
perspective, the effect of the drugs is interesting. In particular, GRL0617 contributes 
to increased IIR (in both stable and bistable regimes). Moreover, it does not affect the 
stable interferon production or stable INFL, and it increases the presence of bistable 
IIR and INFL. On the contrary, the effect of azithromycin is destabilising to all stud-
ied biological phenotypes. In the case of INFL and interferon production, this is the 
required feature. Anyway, it causes a potentially undesired side-effect for IIR.

Discussion
The Boolean abstraction of the interferon signalling model shows interesting insights 
into the non-linear dynamics driven by regulatory mechanisms of kinases, phosphatases, 
and other involved protein molecules (including virus proteins) reflected in the model. 
In contrast to the traditional quantitative models, e.g., represented as ODEs [61], it is 
not necessary to known the details of reaction kinetics to unfold the impact of regula-
tory feedback. This allows studying processes such as complex immune system networks 
that are not entirely known at the kinetic level [62, 63]. In particular, Boolean network 
models can predict the long-term dynamic patterns of a biological system under internal 
and environmental perturbations, and that way uncover the mechanisms behind biologi-
cal phenotypes observed in vivo [10].

Our method creates a working analogy to the concept of bifurcation analysis widely 
used in kinetic modelling to reveal the impact of kinetic parameters on the system’s sta-
bility [64]. In our case, the bifurcation is understood as an effect of perturbing logical 
parameters (and/or input variables) of the Boolean model. Bifurcations are therefore 
understood as crucial decisions in the settings of perturbed components, affecting the 
long-term dynamics patterns. This kind of reasoning is enormously important in situa-
tions where different external (and/or internal) stimuli control the stabilisation of mark-
ers related to several specific biological phenotypes [65].

The presented case study investigates the combined effect of signal transduction and 
gene regulation on the immune response and thus represents a typical example of such 
a  situation. The decision on which subset of biological phenotypes is achieved is pro-
cessed based on several inputs: (i) input stimuli of immune system cells (extracellular 
interferons produced by other cells, internal/external mechanisms detecting the pres-
ence of the virus in the cell/tissue), (ii) proteins transcribed from the viral DNA, and 
(iii) drug molecules. The BDTs constructed by AEON have shown which inputs repre-
sent the most significant decision points causing switching between different attractors. 
Based on the computed information gain, the crucial role has been reported by the drug 
GRL0617. In a recent study [66], GRL0617 has been suggested as an efficient small mole-
cule drug suppressing the replication of the virus through supporting the innate immune 
response phenotype. Our case study is in good agreement with those findings. In par-
ticular, our analyses show that regardless of the activity of the other inputs (including 
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the virus proteins), GRL0617 increases the presence of innate immune response and the 
production of the type-1 interferons.

The important feature of our tool is its unique capability to work fast with large-scale 
networks with a relatively large extent of unknown information. In particular, this allows 
the user to work interactively with the models, making several variants reflecting the 
considered hypotheses. The largest analysed model had almost 100 variables and 18 
input parameters (the size of the state space ∼ 1.3× 1030 ), while the computations took 
at most 10 seconds on common hardware (Mac mini 2014, 2.8GHz Intel Core i5, 8GB 
RAM).

The employed BN model can be easily extended when new knowledge of the involved 
processes is obtained. This includes, e.g., the role of the Triggering Receptor Expressed 
on Myeloid cells-like 4 (TREML4) [67], which is purely incorporated in the currently 
known pathway reconstructions. Moreover, the new variants of the model can be quickly 
aligned with new virus mutations – these might affect the regulations controlled by virus 
proteins, including potentially new virus protein structures. Newly designed drug mol-
ecules can be incorporated within the model to explore their effect on the presence (and 
character) of the attractors underlying the targeted biological phenotypes.

Conclusions
This article presents novel features of our unique method for fully automated bifurcation 
analysis of large Boolean networks with partially unknown information on regulatory 
mechanisms. The unknown knowledge is represented using uninterpreted functions 
that appear in logical formulae, specifying individual variables’ asynchronous updates.

We believe that attractor bifurcation computed by AEON will shift the current tech-
nology toward a comprehensive analysis of uncertainty in BNs. These advancements can 
then enhance other tools aimed at, for example, control or synthesis. In the future, we 
would also like to further enhance AEON with the ability to automatically connect the 
discovered attractors with a specification of biological phenotypes (based on their long-
term behaviour and the stability properties of significant network variables).
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