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Innate lymphoid cells (ILCs) are a recently discovered lymphocyte population with high
cytokine productive capacity. Type-2 ILCs (ILC2s) are the most studied, and they exert a
rapid type-2 immune response to eliminate helminth infections. Massive and sustainable
ILC2 activation induces allergic tissue inflammation, so it is important to maintain correct
ILC2 activity for immune homeostasis. The ILC2-activating cytokine IL-33 is released from
epithelial cells upon tissue damage, and it is upregulated in various kidney disease mouse
models and in kidney disease patients. Various kidney diseases eventually lead to renal
fibrosis, which is a common pathway leading to end-stage renal disease and is a chronic
kidney disease symptom. The progression of renal fibrosis is affected by the innate
immune system, including renal-resident ILC2s; however, the roles of ILC2s in renal
fibrosis are not well understood. In this review, we summarize renal ILC2 function and
characterization in various kidney diseases and highlight the known and potential
contributions of ILC2s to kidney fibrosis.
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INTRODUCTION

Kidney fibrosis is a critical condition leading to kidney dysfunction and is a common characteristic
of chronic kidney diseases (CKDs), which are increasing around the world (1). The major clinical
issue in the progression of renal fibrosis is the loss of kidney function, which requires dialysis or
kidney transplantation in end-stage renal disease (ESRD) (2). Kidney injuries, such as acute kidney
injury (AKI) or glomerulonephritis, contribute to the progression of kidney fibrosis and CKD
pathology. Environmental factors including metabolic syndrome, diabetes, and hypertension are
also risk factors for renal disease onset and progression. Recently, an AKI-to-CKD continuum has
been recognized as a clinical issue that contributes to fibrosis (3). Therefore, the establishment of
therapies for renal fibrosis will improve quality of life not only for kidney disease patients but also
for various tissue fibrosis patients.

Tissue fibrosis involves several causal factors, such as epithelial- and endothelial-mesenchymal
transition and the immune system (4, 5). In the kidneys, fibroblasts in renal stroma transform to
myofibroblasts by profibrotic factors such as TGF-b, PDGF, FGF2, and CTGF, and express the
myofibroblast-unique markers a-SMA and fibronectin (6–8). These profibrotic factors are
considered to derive from inflammation-induced infiltrating macrophages and migrating Tregs
that repair tissue damage (9, 10). TGF-b derived from kidney-infiltrated M2 macrophages and
Tregs enhances renal fibrosis (10–12). Furthermore, it has been reported that newly identified
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innate lymphoid cells, ILCs, are associated with tissue fibrosis,
including in the lung, liver, and intestine (13–16). In kidneys,
ILC2s have a protective function against AKI and
glomerulonephritis, but it remains unclear if they are involved
in kidney fibrosis.

As an ILC2-activating cytokine, IL-33 is a member of the IL-1
family and has been recognized as an “alarmin” that is
ubiquitously expressed in various tissue cells (17, 18). IL-33
protein is divided into three domains, a nuclear domain, central
domain, and IL-1-like cytokine domain (19, 20). IL-33 is
constitutively distributed in the nuclei of epithelial cells under
basal conditions by binding the histone H2A-2B dimer and
chromatin-binding motif within the nuclear domain (21).
Upon the initiation of inflammation, stored full-length IL-33 is
released quickly from nuclei, and infiltrated inflammatory cell-
derived proteases act on the cleavage site in the central domain
(22). Cleaved-IL-33 has high activity and binds with ST2 (IL-33
receptor)-expressing cells, leading to the induction of MyD88-
IRAK-TRAF signaling for proliferation, survival, and cytokine
production (18, 23). IL-33-ST2 signaling is upregulated by
various kidney injuries and diseases, leading to the activation
of ILC2s in the kidney (24–27); however, it likely depends on the
amount of IL-33 whether ILC2s play a protective or progressive
role in renal disease. Recent studies have demonstrated that renal
ILC2s have pivotal roles in various kidney diseases and tissue
fibrosis and repair (28–33), so that these cells are being focused
on as a new therapeutic target. Here, we highlight recent findings
on renal ILC, especially ILC2s, in kidney disease leading to
kidney fibrosis.
ILC SUBSETS

ILCs lack antigen-specific receptors, like T-cell receptors (TCRs)
and B-cell receptors (BCRs), and do not express classical
immune cell lineage markers. ILCs are activated depending on
cytokines in the surrounding tissue microenvironment and play
pivotal roles in the protection against infection, inflammation,
and in immune-homeostasis (34). ILCs are categorized into three
groups depending on their function: ILC1, ILC2, and ILC3,
which reflect the acquired immunity of helper T-cell subsets
Th1, Th2, and Th17 respectively. T-bet-expressing ILC1 exerts
type-1 immune responses for viral infection, GATA3-expressing
ILC2s exert type-2 immune responses for helminth infection,
and RORgt-expressing ILC3s exert type-17 immune responses
for bacterial infection. However, it has been clarified that ILCs
are also involved in the pathogenesis of a variety of diseases. In
particular, pulmonary ILC2s have critical roles in asthma
accompanied with steroid resistance (35, 36). The appropriate
regulation of ILCs is therefore important for controlling various
diseases and maintaining immune-homeostasis. Recently, a new
subset of ILCs, regulatory ILCs (ILCreg), has been reported (37).
ILCregs exert immune-suppressive functions by producing IL-10
and TGF-b, similar to Tregs. Although ILC1, 2, and 3 commonly
develop from innate lymphoid cell progenitors (ILCP), ILCregs
differentiate from common helper innate lymphoid progenitors
(CHILP) in an Id3-dependent manner (37). As ILCregs do not
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express the Treg master regulator foxp3, it is unclear whether
ILCregs are an independent subset like Tregs. However, ILCregs
have the potential for unique phenotypes and functions in
comparison with Tregs, and these will be further investigated
in the future.
ILC2’s FUNCTION AND REGULATION

ILC2s reside in various tissues such as lung, intestine, mesenteric
fat associated lymphoid cluster (FALC), liver, skin, and kidney,
and are mainly responsible for helminth elimination mediated by
the type-2 immune response. Upon tissue damage by allergen
and pathogen exposure, IL-33, IL-25, and TSLP, which are the
strongest activating cytokines for ILC2 proliferation and
cytokine production, are released from epithelial cells leading
to rapid activation of ILC2s. Then, activated ILC2s secret large
amounts of type-2 cytokines IL-5 and IL-13, and induce
eosinophilic inflammation and mucosal hyperplasia. However,
abnormal and sustained ILC2 activation elicits allergic diseases
such as asthma, atopic dermatitis, and rhinitis (38–40), and thus
it is clinically important to understand ILC2 regulation. In
addition, ILC2s also produce amphiregulin (Areg) and IL-9,
which contribute to remodeling and repair of tissue damage
after inflammation. Areg produced from ILC2s promotes
epithelial proliferation and differentiation for epithelial repair
(41). Furthermore, IL-9-producing ILC2s help resolve
inflammation in rheumatoid arthritis (42).

Although IL-33 and ST2 signaling are critical in ILC2
activation, other stimulations including common g chain (gc)
cytokines (IL-2, -7, -9, 15) and co-stimulatory molecules (ICOS,
GITR, PD-1) are required for ILC2 regulation (43–45).
Numerous studies have identified positive or negative
regulators of ILC2s as follows: cytokines (IL-25, TSLP, IFN-g,
IL-27), neuropeptides (VIP, NMU, CGRP), neurotransmitters
(catecholamine, acetylcholine), lipid mediators (prostaglandins
and lipoxins from the arachidonic acid pathway), hormones
(androgen and estrogen), and nutrients (vitamins A and D and
butylate) (46–55). Since ILC2s are distributed in various tissues,
it is assumed that tissue-specific regulatory mechanisms and
factors of ILC2s exist. We previously reported that the oxidative-
stress responder Nrf2 activates lung-ILC2s, and their activation
ameliorates lung allergic inflammation (56). Oxidative stresses
are frequently generated in kidney injury and disease, and thus
renal ILC2s may be regulated by the Keap1-Nrf2 pathway. Taken
together, ILC2s are regulated by various factors, and have diverse
roles depending on the tissue environment.
RENAL ILC2 AND DISEASES

ILC2s are also resident throughout murine kidneys and are
especially localized in renal vasculature. GATA3-expressing
ILC2s are the main ILC subset (70~80% of ILCs) in murine
kidney, while T-bet-expressing ILC1s and RORgt-expressing
ILC3s are less than 10% of ILCs (2 7). Renal ILC2s constitutively
express IL-5 and IL-13 under steady-state conditions, and almost
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all of the expressed IL-5 is derived from ILC2s and not Th2 (57).
Although ILC2s account for approximately 1% of total renal
leukocytes, IL-33 expression is upregulated in several kidney
disease models, indicating that renal ILC2s are potentially
activated and exert unknown functions at both the acute and
chronic phases (Figure 1).

AKI manifests as acute dysfunction of kidneys, inducing
electrolyte imbalance, and is related to CKDs, fibrosis, and
cardiovascular diseases. AKIs are caused by traumatic injury,
reduced renal perfusion due to surgery, and various renal and
vascular diseases (58). AKIs have been investigated using
experimental AKI animal models induced by methods such as
drugs, ischemia-reperfusion injury (IRI), and sepsis (59). Recently,
it has been reported that ILC2s and IL-33 are associated with AKI
pathogenesis. In a cisplatin-induced AKI model, Akcay et al.
demonstrated that recombinant IL-33 administration
exacerbates AKI, while soluble ST2, which binds IL-33
preferentially to neutralize its activity, ameliorates its
pathogenesis (60). High-dose IL-33 administration induces AKI
progression in a CD4+ T cell-dependent manner. Conversely, low-
dose IL-33 has a protective effect against AKI. IRI models are
commonly used to identify the mechanisms responsible for AKI
pathogenesis and show that the innate immune response has a
critical role. Cao et al. found that pretreatment with IL-33
ameliorates renal damage and recovers kidney function in IRI-
induced mice (29). Renal ILC2s are increased in Rag1-knockout
mice by the administration of IL-33, and result in reduced tubular
Frontiers in Immunology | www.frontiersin.org 3
injury score and serum creatinine irrespective of acquired
immunity. However, ILC reduction using an anti-CD90
antibody in Rag1-KO mice does not rescue tubular damage.
Furthermore, adaptive transfer of ex vivo proliferated renal
ILC2s ameliorates renal injury. These results indicate that
abundant ILC2s in the kidney have a renal protective effect and
improve kidney functions in AKI.

CKDs have different origins such as diabetes, hypertension,
and immune and toxic responses (1). Various pathologies
including chronic inflammation and renal fibrosis are
associated with the underlying causes of CKDs. It has been
clarified that renal ILC2s have important roles in both AKI and
CKD pathology. IL-33 also relieves glomerular injury by lupus
nephritis (61). Moreover, the type-2 immune response induced
by IL-25 and the induction of M2 macrophages can alleviate
renal damage in adriamycin-induced nephropathy, which is a
widely used CKD model (28). These protective effects require
eosinophils recruited by IL-5 produced from ILC2s, and IL-33
fails to protect kidney function despite ILC2 abundance in
eosinophil-deficient DdblGATA mice. However, eosinophils are
considered to be pro-inflammatory cells in various diseases, so it
is unclear whether eosinophil accumulation is protective against
renal damage without clarifying the mechanism. In addition,
ILC2s are retained in murine kidneys for up to eight weeks by IL-
33 administration for four consecutive days, so there is a clinical
benefit to sustained activation of ILC2s for CKD therapy.
Interestingly, IL-233, a fusion cytokine of IL-2 and IL-33,
A
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FIGURE 1 | Potential functions in renal ILC2. ILC2 have protective functions in kidney, but exerts positively or negatively effects in dependent on the amount of renal
IL-33. Upon kidney injury and disease, IL-33 released from vascular endothelial cells and/or tubular epithelial cells leads to activate renal-resident ILC2, and secreted
type2 cytokines possibly affects in following events; (A) tissue repair by inducing M2 macrophages, (B) hypertension and cardiovascular disease through renin-
angiotensin system, (C) renal anemia mediated by EPO, (D) renal fibrosis via the plasticity for TGF-b producing ILCreg.
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contributes to kidney protection from diabetic nephropathy (30).
IL-233 attenuates hyperglycemia and proteinuria in BTBR.Cg-
Lepob/ob mice and has therapeutic potential for type-2 diabetic
nephropathy. These findings imply that ILC2s are a potential
therapeutic target in AKI and CKDs.

In humans, ILCs (lineage- CD127+ CD161+ populations)
account for 0.5% or fewer of total kidney lymphocytes (28). In
contrast to murine kidneys, human ILC2s account for 40% or
fewer of the ILCs in kidneys, and ILC3s are the main
constituents. It is unclear how this difference in the ILC
constitutions of human and mouse kidneys affects kidney
homeostasis and disease pathogenesis. A recent study indicated
that blood ILC2s are upregulated in ESRD patients (62);
however, it is unclear if this elevation is related to ESRD
pathogenesis. Moreover, it has also been reported that changes
of blood ILC correlate with the severity of DN and LN (63, 64).
Further investigation is required to determine whether human
renal ILC2s are friend or foe in kidney diseases.
ILC2 CONTRIBUTE TO PROGRESSION OF
RENAL FIBROSIS?

ILC2 also has been shown to affect various tissue fibrosis. ILC2
contributed collagen deposition via IL-25 leading to induce
pulmonary fibrosis (13). IL-33 is a profibrotic cytokines, and
promote the initiation and progression of lung fibrosis at ST2-
dependent manner (65). Some study reported that liver-resident
or cardiac tissue resident ILC2 are associated with hepatic or
Frontiers in Immunology | www.frontiersin.org 4
cardiac fibrosis, respectively (66, 67). Therefore, ILC2-IL33 axis
is likely affect to promote tissue fibrosis.

Kidney fibrosis is characterized by aberrant accumulation of
extracellular matrix (ECM), and then destruct robust kidney
structure and function (68). Fibrosis is a part of normal response
to restore tissue structure and environment. Upon kidney injury,
damaged tubular and vascular epithelial cells, and infiltrated
immune cells are released profibrotic factors with progression of
renal damages, and then various signaling are activated leading
to promote fibroblast to a-SMA positive myofibroblast
transition. Persistent renal damages disrupt the balance of
ECM production and degradation, and excessive ECM
accumulation leads abnormal fibrosis, resulting kidney
dysfunction. Progression of renal fibrosis elicit CKD
exacerbation, and its pathology proceed irreversible course if
kidney function less of a certain level, resulting in ESRD. In
addition, renal stroma produces the erythropoietin (EPO)
required for erythrocyte development, and its reduction
induced by kidney fibrosis results in renal anemia. Thus, the
overcome of renal fibrosis is a clinical importance in nephrology.

During chronic renal injury and inflammation, damaged
renal and vascular endothelial cells also release IL-33 together
with aberrant ECM production, and renal-resident ILC2 are
thought to be activated (Figure 2). The commonly used method
to study renal fibrosis is unilateral ureter obstruction (UUO)-
model, and IL-33 increased in serum and urine in this model (24,
69). In fact, ST2+ innate immune cells are increased in UUO-
model, and ILC2 numbers also increased in murine kidney (25).
Furthermore, Liang et al. showed that renal IRI-induced fibrosis
A
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FIGURE 2 | ILC2 contribution for renal fibrosis. Renal fibrosis is partially induced by pro-fibrotic factors including TGF- b from M2 macrophages, Tregs, and ILCs,
and fibroblasts accelerate trans-differentiation to myofibroblasts in renal stromal region. Activation of myofibroblast occurs excessive ECM deposition, leading to
impair renal functions. Renal ILC2 possibly contribute to enhance fibrosis at following aspects of myofibroblast activation; (A) ILC2-ILCreg plasticity, (B) M2
macrophages differentiation, (C) direct effect by Areg production, (D) indirect effect via eosinophils induced by IL-5, (E) Effect of Areg to produce pro-fibrotic factors
on tubular epithelial cells, vascular endothelial cells, fibroblasts and pericytes.
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is accelerated by exogenous IL-33 treatment, and soluble ST2
ameliorated fibrosis (70). High-dose administration of IL-33
promoted renal fibrosis via AKI, but the inhibition of IL-33
was decreased AKI-induced renal fibrosis (60). While, low-dose
and short-term IL-33 administration attenuate renal damages
induce by IRI (28, 29). These may imply that modest IL-33
release is induced by mild renal damages at early time point to
protect renal damages, while progressive renal destruction
caused excessive and long-term IL-33 release leading to
exacerbate renal damages and fibrosis. Taken together, renal
ILC2 and adequate IL-33 has pivotal roles in kidney fibrosis.

ILC2s have been reported to produce amphiregulin (Areg) to
recover pulmonary epithelial integrity at viral infection (71, 72).
In kidney, ILC2-producing Areg also exerted protective function
for renal damages by IRI, and directly contribute to repair renal
tubular structure (29). Knock-out of Areg in ex-vivo cultured
ILC2 using by CRISPER-Cas9 system could not restore tubular
injury score and serum creatinine, and renal TECs apoptosis.
This renoprotective effect is partially responsible for anti-
inflammatory M2 macrophages induced by activated ILC2.
While, Areg has function to progress tissue fibrosis including
liver, lung, and kidney (73–75). Recent studies indicated that
Areg-EGFR signaling enhanced renal fibrosis in proximal renal
tubules (76, 77). In addition, type2 immune responses are also
profoundly associated with fibrosis. BM-derived CD11c+ cell
produces Areg in response to tissue damages (78), and these
producing Areg induce fibroblast activation leading to promote
pulmonary fibrosis. Moreover, Areg-producing pathogenic
memory Th2 cells trained eosinophils to produce large amount
of osteopontin, and accelerated pulmonary fibrosis (79). In
addition, Liu et al. have been reported that ILC2 was
negatively correlated with eGFR level in diabetic kidney disease
patient with promoting renal fibrosis (63). Although it is not well
understood whether Areg produced from ILC2 contribute to
progress renal fibrosis, Areg expression is required for fibrosis
induced by TGF-b overproduction. Further studies would be
clarified the relationship among ILC2, Areg and TGF-b leading
to reveal the roles of ILC2 in renal fibrosis. Areg is detected from
serum and urine from CKD and AKI patients (77), and it will be
as a novel therapeutic target and biomarkers in kidney fibrosis
and kidney diseases including CKD and AKI.
A POSSIBLE NEW PLAYER ILCreg IN
RENAL FIBROSIS

One cause of renal fibrosis is TGF-b signaling, which accelerates
fibroblast transformation to myofibroblasts in renal stroma (80).
Kidney-infiltrating macrophages and Tregs contribute to the
progression of renal fibrosis via TGF-b production. Also, IL-4-
and IL-13-producing ILC2s are associated with the progression
of renal fibrosis through the induction of M2 macrophages (81).
Moreover, Wang et al. reported that TGF-b signaling induces
ST2 expression and contributes to the development of ILC2s
from ILC2 progenitors (82). Therefore, the relationship among
M2 macrophages, Tregs, and ILC2s is critical in renal fibrosis,
and TGF-b plays a central role in these profibrotic networks.
Frontiers in Immunology | www.frontiersin.org 5
The recently defined ILCreg subset resides in both human and
mouse kidneys, and is a source of TGF-b in kidneys (83). Renal
ILCregs suppress immune responses by secreting IL-10 and
TGF-b, and they express CD25, ICOS, and transcriptional
factor Id3, but not ST2 and KLRG1. In vitro cultured ILCregs
produce large amounts of IL-10 and TGF-b and suppress the
innate immune response of ILC1 and macrophages. Adaptive
transfer of ex vivo expanded ILCregs to IRI-treated mice
ameliorates kidney damage, so ILCregs have therapeutic
potential for kidney disease. However, it is a concern that large
amounts of TGF-b produced from ILCregs could enhance renal
fibrosis, so additional studies are needed. Intriguingly, Morita
et al. demonstrated that ILC2s are plastic and can develop into
ILCregs in human nasal tissue. ILC2s stimulated by IL-33 and
retinoic acid are transdifferentiated to ILCregs, producing IL-10
to suppress ILC2s and CD4+ T cell proliferation (84). In addition,
Nakamura et al. demonstrated that fibroblasts acquire retinoic
acid-producing capacity in transitioning to myofibroblasts in
several kidney injury models (85). These findings indicate that
ILC2-to-ILCreg plasticity is common during kidney injury,
leading to the progression of renal fibrosis. These are therefore
potential therapeutic targets as TGF-b source cells, although the
full contribution of ILCregs to renal fibrosis is still enigmatic.

CONCLUDING AND FUTURE
PERSPECTIVE

The relationship of IL-33 and ILC2s has pivotal roles in renal
immune homeostasis and kidney diseases leading to renal
fibrosis. Although the functions of ILC2 in kidney diseases are
gradually understood, there are still obscure in humans.
However, it is intriguing that change of circulating ILCs
correlate with the severity of some renal diseases. Moreover, it
is interesting question what the difference means that ILC2 is
dominant in murine kidney but ILC3 is dominant in human
kidney, and it would be necessary to further investigate in detail.
When these questions are clarified, it may be possible to elucidate
the role and characteristics of ILC2 in the kidney and apply it to
new therapeutic targets and clinical diagnosis in renal diseases.
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