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Whole-exome sequencing identifies two novel
ALMS1 mutations in Indian patients with Leber
congenital amaurosis
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Abstract
Leber congenital amaurosis (LCA) is a severe autosomal recessive retinal degenerative disease. The current study
describes exome sequencing results for two unrelated Indian LCA patients carrying novel nonsense p.(Glu636*) and
frameshift p.(Pro2281Leufs*63) mutations in the ALMS1 gene. Although ALMS1 gene mutations are associated with
Alstrom syndrome (AS), the current patients did not exhibit typical syndromic features of AS. These data suggest that
ALMS1 should be included in the candidate gene panel for LCA to improve diagnostic efficiency.

Leber congenital amaurosis (LCA) is one of the most
severe forms of hereditary retinal dystrophy causing early
infantile blindness. Affected infants show signs of night
blindness, roving/pendular nystagmus, photophobia,
and digito-ocular signs that are characterized by a non-
recordable electroretinogram (ERG)1. Accounting for
10–20% of childhood blindness, LCA is clinically het-
erogeneous; indeed, it is reported as an isolated clinical
entity as well as in certain syndromes, such as Joubert
syndrome2, thiamine-responsive megaloblastic anemia3,
Senior-Loken syndrome4, and Batten’s disease5. Geneti-
cally, LCA is predominantly inherited as an autosomal
recessive disease and rarely as an autosomal dominant
disease. To date, mutations in at least 25 genes have been
identified as causing LCA6. More recently, biallelic
ALMS1 gene mutations have been shown to be associated
with nonsyndromic LCA7.
The ALMS1 gene (2p13)8 encodes a basal body and

centrosome-associated protein found in ciliated cells.

The ALMS1 protein is involved in processes such as
microtubule organization, cilium formation and main-
tenance, extracellular matrix production, cell migration,
intraciliary transport, and cell cycle regulation9. This
ciliary protein is reportedly expressed in multiple tissues,
and as such, improper translation of ALMS1 may result in
Alstrom syndrome characterized by cone-rod dystrophy
(CRD), obesity, type 2 diabetes mellitus, cardiomyopathy,
hearing loss, and multiple organ failure10. Thus far,
ALMS1 (NM_015120) is the only gene associated with
Alstrom syndrome (AS).
A proper clinical evaluation along with relevant genetic

molecular testing for pathogenic disease-causing variants
are necessary for a conclusive and definitive diagnosis
of retinal dystrophies such as LCA, retinitis pigmentosa
(RP), and CRD. We report herein two novel homozygous
pathogenic genetic variants in the ALMS1 gene in two
unrelated Indian families presenting with clinical features
similar to LCA, without extraocular phenotypes.
Consultation with the Vitreo Retinal Services of a ter-

tiary eye care center was sought for the patients, who
underwent complete ophthalmic and clinical evaluation,
including documentation of family history, birth history,
refraction, visual acuity testing, retinal examination,
nystagmus, photophobia, oculo-digital signs, full-field
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electroretinogram (ffERG), fundus photography, and
optical coherence tomography (OCT). This study was
approved by the institutional Ethics Committee, and
informed consent was obtained from the patients’ famil-
ies. Peripheral blood samples were collected from the
proband and family members, and genomic DNA was
extracted using a NucleoSpin Blood XL kit (Macherey-
Nagel, GmbH, Germany). In our previous study, we per-
formed targeted resequencing of 20 candidate genes in 92
Indian LCA patients (AIPL1, CABP4, CEP290, CRB1,
CRX, GUCY2D, IQCB1, IMPDH1, KCNJ13, LCA5, LRAT,
MERTK, NMNAT1, OTX2, RD3, RDH12, RPE65,
RPGRIP1, SPATA7, and TULP1) using an Agilent Halo-
Plex target enrichment assay11. The probands (case 1 and
case 2) were negative for disease-causing pathogenic
variants when screened by targeted resequencing. Hence,
samples from the proband along with one parent were
subjected to whole-exome sequencing (WES) using the
Agilent SureSelectXT Human All Exon V5+UTRs
enrichment kit and sequenced using an Illumina HiSeq
2500 at 80–100x depth.
We obtained 8 Gb data per sample. The pipeline for

processing the data involved a Burrows-Wheeler Aligner
(BWA) for mapping to the GRCh37/hg19 genome build,
and GATK-lite was used for realignment and recalibra-
tion of the obtained reads after duplicate removal. Variant
calling was performed using the GATK-lite Unified
Genotype caller and annotated using VariMAT (internal
data analysis pipeline curated by MedGenome Labs,
Bangalore).
Only Q30 data were considered for further annotation.

The annotated variants were cross-checked with open
databases such as dbSNP (v.2.0, Build 153), GenomAD,
LOVD, 1000 Genomes Project, and Ensemble Variation
Table to filter variants with MAF ≤ 0.01. As LCA is pre-
dominantly an autosomal recessive disease, data for the
proband and the respective parent were compared to
analyze variants that were found to be homozygous in the
proband and heterozygous in the parent and possible
compound heterozygous in the proband(s). Heterozygous
variants of known dominant and recessive gene(s) [Sup-
plementary Table 1] were also considered and ruled out
after segregation and phenotypic correlation.
For Sanger sequencing of the identified variants in exon

8, primers were designed using the ALMS1 transcript
ENST00000264448.6 using Primer 3 (v.0.4.0), as follows:
for g.73675557 G>T, forward 1-5′TGACCAGACAACTG
GCATGTC3′ and reverse 1-3′GACTGTCTGCTAAGT
CCTGTG5′; for g.73680491delT, forward 2-5′CTCAG
GCTGATGACAGAGTTG3′ and reverse 2-3′GGTGT
AGTGGAACCATTGGG5′. PCR was standardized using
a touchdown protocol of 63.5–56.5 (−0.5 °C) for
g.73675557 G>T and 59.5 °C annealing temperature for
g.73680491delT with a reaction mixture comprising

10 pmol/µl primers (forward and reverse), 1X Taq buffer,
50 ng DNA template, 0.5 mM dNTPs, and 0.5 U Taq
polymerase. The PCR products were purified by Exo-SAP
and cycle sequenced using a Big dye Terminator v3.1 kit
(Applied Biosystems, USA). The purified products were
sequenced using an ABI 3500 Avant genetic analyzer.
Regarding case 1, the child was first seen at 18 months of

age with a history of profound visual loss (counting fingers
[CF] at one meter in both eyes) and nystagmus since
6 months of age. The pedigree, as indicated in Fig. 1A
shows an isolated family history. The refractive error was
+3 D sphere in both eyes. Full-field ERG was performed
under general anesthesia and inferred to be unrecordable
under both scotopic and photopic conditions (Fig. 1B).
Fundus examination was performed under anesthesia and
revealed disc pallor with marked arteriolar attenuation, a
salt and pepper appearance of the retina, and sparse pig-
mentation (Fig. 1C). The macula showed a dull reflex, but
no macular scarring, pigmentation, or bull’s eye lesion was
seen. At a follow-up visit at 12 years of age, we observed
that the vision of the child was the same as before, and ERG
continued to be unrecordable. The child was cooperative
for OCT at this visit, which revealed the presence of a
shallow foveal dip with thinning of the outer nuclear and
ellipsoid layers (Fig. 1D). This presentation is similar to
LCA with extinguished responses on ffERG in the first year
of life. Whole-exome sequencing for the proband and
unaffected father identified homozygous novel nonsense
mutation (g.73675557G>T; c.1906G>T (NM_015120);
p.(Glu636*)), leading to premature truncation of the
ALMS1 protein (Fig. 1E). Sanger sequencing identified the
parents and unaffected siblings to be heterozygous (Fig. 1F)
for the variant.
Case 2 was brought to the clinic at 2 and half years of

age, and the parents described observing poor vision in
the child since the first year of life. The pedigree indi-
cated no family history (Fig. 2A). BCVA was very poor
in the proband, with both eyes exhibiting only fixation
and light following. The child had nystagmus and
photophobia at presentation, with bilateral hyperopia of
+8.00 D. Nonrecordable photopic responses for both
3.0 and 30 Hz flickers were obtained by ffERG. Dark-
adapted (DA) responses were extinguished for the DA
0.01 flash but were recordable, though with markedly
reduced amplitudes for the DA 3.0 flash. These findings
are suggestive of severe and widespread effects of the
rod and cone system, with the cone system being more
severely affected (Fig. 2B). Fundus examination revealed
the presence of disc pallor with arteriolar attenuation,
widespread peripheral granularity, and early macular
involvement in the form of macular pigment mottling
with bony spicule pigmentation (Fig. 2C). The
child at this age was not cooperative for OCT. Mole-
cular testing by WES identified a novel homozygous
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deletion variant (Fig. 2D), g.73680491delT; c.6840delT
(NM_015120), leading to a frameshift and thereby
truncated protein (p.Pro2281Leufs*63). The deletion
variant segregated in the parents, with a heterozygous
genotype (Fig. 2E).

Control samples (N= 100) exhibited the wild-type
genotype for both variants by Sanger sequencing. The
variants were not found in open databases, and in silico
tools such as Mutation Taster12 and CADD13 predicted
them to be disease-causing. Both variants might lead to

Fig. 1 Clinical and phenotypic documentation in case 1. [A] Family pedigree: affected status is indicated by a shaded circle, and carrier status is
indicated by a dot (●). [B] ERG is nonrecordable. [C] Fundus photograph of case 1 (i) showing a near normal looking macula (ii) with RPE granularity
in the mid periphery. [D] OCT shows a preserved foveal dip with thinning of the outer nuclear and ellipsoid layer. [E] The analysis, validation, and
identification of WES data. [F] Electrophoretogram showing the reverse-strand sequence of the g.73675557â€‰G>T; c.1906G>T; p.(Glu636*) variant,
homozygous (II3) in the proband and heterozygous in the (I1) mother, (I2) father, and (II1) unaffected sibling.
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nonsense-mediated decay (NMD) because they are loca-
ted ~50–55 nucleotides upstream of the last exon–exon
junction14; nevertheless, characterization studies are
essential to prove this functionality. The variants are
classified as strongly pathogenic according to ACMG
guidelines (PVS1, PM-1, 2, 4, PP1, 3)15.
In conclusion, we identified two novel pathogenic variants

in exon 8 of the ALMS1 gene in patients with LCA but

without any symptoms of AS. Similar to the current study,
WES has revealed compound heterozygous null mutations
or homozygous mutations in ALMS1 in LCA or early-onset
severe cone-rod dystrophy cases without extraocular
abnormalities16, thus indicating ALMS1 as a candidate gene
for isolated LCA/early-onset retinal diseases other than AS.
As LCA is congenital, it could be the primary manifestation
of AS, and careful clinical examination along with

Fig. 2 Clinical and phenotypic documentation in case 2. [A] Family pedigree: affected status is indicated by a shaded square and carrier status by
a dot (●). [B] ERG shows severely reduced rod and cone responses, with cone responses almost extinguished. [C] Fundus photograph of case 2
(i & ii): right and left eye of the child showing a large macular scar, arteriolar attenuation, and RPE granularity. [D] The analysis, validation, and
identification of WES data. [E] Electrophoretogram showing the g.73680491delT; c.6840delT; (p. Pro2281Leufs*63) variant, homozygous (II1) in the
proband and heterozygous in the (I1) father and (I2) mother.
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confirmatory genetic testing is necessary to elucidate the
underlying gene, especially in the absence or late onset of
other syndromic features. The manifestations of AS phe-
notypes begin as early as a few days after birth in retinal
degeneration or cardiomyopathy and later in adulthood/the
second decade, such as the indication of type 2 diabetes and
renal or hepatic abnormality17.
Analysis of genotype and phenotype correlation in AS

cases harboring a mutation in exon 8 of the ALMS1 gene
has suggested an association between exon 8 mutations
and a normal18 or delayed renal disease phenotype19. This
emphasizes the phenotypic heterogeneity for this protein
depending on the mutation. In the current study, except
for delayed milestone presentation in case 2, the patients
did not show any systemic features specific for AS (cur-
rent ages are 19 yrs for case 1 and 18 yrs for case 2).
Nevertheless, biochemical tests for hepatic and renal
problems or to diagnose early diabetes were not per-
formed. Annual monitoring of the cardiac, hepatic, and
renal phenotypes of such patients will be helpful for dif-
ferential diagnosis, early treatment, better disease man-
agement, and rehabilitation of future cases.

HGV Database
The relevant data from this Data Report are hosted at the Human Genome
Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2975; https://doi.
org/10.6084/m9.figshare.hgv.2978.
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