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Abstract: Lysophospholipase I (LYPLA1) is an important protein with multiple functions. In this
study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1) was cloned using primers
and rapid amplification of cDNA ends (RACE) technology. The full-length OaLypla1 was 2457 bp
with a 51-untranslated region (UTR) of 24 bp, a 31-UTR of 1740 bp with a poly (A) tail, and an open
reading frame (ORF) of 693 bp encoding a protein of 230 amino acid residues with a predicted
molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared
a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was
expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb)
against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that
OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of
sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy
coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared
to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in
the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection
requires further study in the future.
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1. Introduction

Lysophospholipase I (LYPLA1), also known as acyl-protein thioesterase 1 (APT1), is a
widely distributed enzyme with phospholipase A2 [1], lysophospholipase [1,2] and acyl-protein
thioesterase [3–5] activity. Phospholipids are important components in cellular membranes and are
involved in signal transduction, mediator production and eicosanoid formation in both normal and
disease states [6]. Lysophospholipids (LPLs) are important molecules in phospholipid metabolism and
have received much attention as they are critical for cell survival and function [6–8]. LPLs are bioactive
second messengers that modulate gene expression and are involved in multiple processes, such as
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stimulation of growth, phagocytosis of macrophages [6,9–12], activation of T lymphocytes [13,14],
activation of many immune-related proteins [15], and promotion of anti-tumor and bactericidal
activities [6]. LPLs are strictly regulated because increased levels of lysophospholipids are associated
with many diseases [6,16]. The lysophospholipases (LYPLAs) are considered to be safeguards to ensure
that normal levels lysophospholipids are maintained [6]. Multiple enzymes display LYPLA activity,
and LYPLA1 belongs to the family of LYPLAs [4,16].

Palmitoylation involves the attachment of a 16-carbon fatty acid palmitate via a thioester
bond to specific cysteine residues of target proteins and is an important post-translational
modification that is critical for protein localization and function [5]. In contrast to other lipid
modifications, such as isoprenylation and myristoylation, palmitoylation is a unique reversible
post-translational modification [17] that allows proteins to rapidly shuttle between intracellular
membrane compartments [18,19] and can be dynamically regulated by specific extracellular stimuli [18].
This modification is important for regulating protein subcellular localization, stability, trafficking,
translocation to lipid rafts, aggregation, and interaction with effectors and other protein functions [17].
Recent studies have shown that palmitoylation is involved in endocytosis, reproduction, cell growth, fat
and sugar homeostasis and signal transduction at the synapse [18]. Palmitoylation/depalmitoylation
cycles are potential novel regulatory networks [20]. The multiple functions of palmitoylation suggest
that it should be studied in detail. Palmitoylation is catalyzed by palmitoylation acyltransferases
(PATs) while only a few enzymes catalyze depalmitoylation reactions [5,21].

LYPLA1 was identified as an acyl-protein thioesterase (APT), which is a depalmitoylation enzyme,
in addition to palmitoyl protein thioesterases (PPT) [3], and can catalyze the removal of mislocalized
palmitoylated proteins from endomembranes by depalmitoylation [21–23]. The PPT is localized
predominantly in the lysosome [24]. However, LYPLA1 is principally localized in the cytosol, while
some is present in the plasma membrane, the nuclear membrane and the endoplasmic reticulum
(ER) [21].

Brucellosis is a zoonotic disease found worldwide that is caused by Brucella, resulting in
infectious abortion and fever [25]. Brucella infections are chronic, and the interaction between the
host and the Brucella pathogen is continuous [26]. Virulent Brucella strains invade the macrophages
through lipid rafts and then reside in an acidified compartment, which fuses with components
of the early endosomal pathway [27,28]. The macrophages kill the majority of Brucella cells at an
early stage of infection [28,29], and the remaining Brucella cells establish and maintain a persistent
intracellular infection in host cells using many virulence factors and strategies. Brucella can also
induce the loss of the robust antigen-processing capacity of professional phagocytes and prevent
phagosome-lysosome fusion and programmed cell death of infected macrophages, favoring pathogen
survival and replication [26,30–33]. The host transcriptional responses against infection by Brucella
have been characterized in several studies [28,34,35]. It is crucial to understand the host response
to Brucella. In our lab, a time course suppression subtractive hybridization (SSH) cDNA library of
buffy coats from sheep (Ovis aries) infected with different virulent Brucella strains was constructed
to analyze the modulation of transcriptional profiles of hosts exposed to Brucella infection, and the
differentially transcribed genes were screened. Among these genes, a partial cDNA of LYPLA1
(OaLypla1) containing a full-length 31-UTR was found to show differential expression in buffy coats
from different virulent Brucella-infected sheep. As a result, the OaLypla1 gene was chosen as a target
candidate gene to further study the response of the host to Brucella infection. LYPLA1 is a protease with
diverse biological functions that catalyzes multiple different reactions. It was reported that LYPLA1
is down-regulated in macrophages after LPS stimulation [36]. However, the expression profiles of
LYPLA1 gene of the host infected with bacteria and whether LYPLA1 takes part in the host immune
response after the bacterial infection had not been investigated before. Thus, more information about
the OaLypla1 is required to better understand the potential relationship between the expression profiles
of OaLypla1 gene and bacteria infection. In this study, we identified the full-length cDNA sequence of
a novel LYPLA1 gene from Ovis aries (O. aries) for the first time. The recombinant OaLypla1 protein
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was expressed and purified, and its phospholipase activity was assessed. The tissue distribution of
OaLypla1 was determined, and differential expression profiles of OaLypla1 in the buffy coats of sheep
following challenge with different virulent Brucella strains were observed. Furthermore, we generated
a monoclonal antibody (mAb) that reacts with the native OaLypla1. The results from this study may
facilitate further study of the functions of OaLypla1 in the host response to infection with Brucella.

2. Results

2.1. Characterization of OaLypla1 cDNA

The full-length cDNA sequence of the OaLypla1 gene was obtained using 51-RACE and deposited
in GenBank (accession number KJ000742). The full-length OaLypla1 cDNA was 2457 bp with a 51-UTR of
24 bp, an ORF of 693 bp and a 31-UTR of 1740 bp with a poly (A) tail downstream of a polyadenylation
signal (AATAAA). The full-length nucleotide sequence and the deduced amino acid sequence of
OaLypla1 cDNA are shown in Figure 1.
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Figure 1. The full-length cDNA and the corresponding amino acid sequence of OaLypla1.
The polyadenylation signal sequence (AATAAA) is shown in bold and underlined. The lipase motif
GXSXG is boxed, and the catalytic triad is marked by asterisks (*). The arrows represent the places and
lengths of the primers (5’-3’) used in this study.
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The predicted OaLypla1 protein consisted of 230 amino acid residues with a predicted molecular
weight of 24,625.78 Da and a theoretical isoelectric point of 6.77. The deduced OaLypla1 protein
contained a 117GFSQG121 amino acid sequence corresponding to the GXSXG motif, which was located
in an identical position to the amino acid sequence of the human LYPLA1 protein. A search using the
BLASTn program in NCBI showed that the OaLypla1 cDNA had 96% identity with the LYPLA1 cDNA
from Bos taurus (GenBank accession number: BC105143). Using the BLASTP program, the deduced
amino acid of O. aries OaLypla1 was shown to exhibit high homology with the LYPLA1 proteins of
other species, such as Bos taurus (99% identity), Pongo abelii (95% identity), Homo sapiens (95% identity),
Macaca mulatta (94% identity), Cricetulus griseus (93% identity), Xenopus tropicalis (82% identity), and
Dicentrarchus labrax (78% identity).

Multiple sequence alignment analysis of OaLypla1 was conducted using the known LYPLA1
proteins from several vertebrates to determine the level of amino acid conservation. The results showed
that highly conserved acids were observed in the entire protein sequence as shown in Figure 2. The
deduced amino acid sequence of LYPLA1 from O. aries had the Ser119, Asp174 and His208 triad that
formed the catalytic site for LYPLA1 proteins from the mouse [37] and human [2]. All of these proteins
shared the GXSXG motif sequence (152GFSQG156), which had a similar position and was found in the
active site of serine proteases, esterases and lipases [6].
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Figure 2. Multiple alignment analysis of the amino acid sequences of LYPLA1s from different
vertebrates. The conserved amino acid residues of LYPLA1s are indicated by asterisks (*) above
the column. Conserved substitutions are shown by colons (:), and dots (.) indicate semi-conserved
amino acids. GenBank GI numbers of LYPLA1 protein sequences are given as follows: Ovis aries
LYPLA1: gi (592882195); Bos taurus LYPLA1: gi (77736321); Cricetulus griseus LYPLA1: gi (537237418);
Homo sapiens LYPLA1: gi (5453722); Macaca mulatta LYPLA1: gi(388453011); Mus musculus LYPLA1: gi
(6678760); Oryctolagus cuniculus LYPLA1: gi (157954426); Pongo abelii LYPLA1: gi (197099340); Rattus
norvegicus LYPLA1: gi (6981362); and Xenopus (Silurana) tropicalis LYPLA1: gi(54020910). The different
colors are used to differ the proteinogenic 20 amino acids. Red: R and K; Brick red: G; Orange: C;
Yellow: P; Green: N, S, T, and Q; Indigo: H and Y; Blue: M, A, L, I, V, F and W; Purple: D and E.

To determine the phylogenetic relationships of OaLypla1, the amino acid sequences of LYPLA1
proteins from different species were selected. The phylogenetic tree was constructed by the neighbor
joining method and revealed that the deduced amino acid sequence of OaLypla1 clustered with the
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ruminant subgroup near LYPLA1 from Bos taurus (Figure 3), suggesting that the gene cloned from
O. aries belongs to the LYPLA1 family.
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2.2. Protein Expression

The coding sequence of OaLypla1 was cloned and inserted into the pET-30a vector.
The recombinant proteins OaLypla1H (with a His6-tag) and OaLypla1W (with no tag) were
over-expressed in E. coli BL21 (DE3). The results of SDS-PAGE analysis showed an approximately
25 kDa band in the induced cells, indicating that the recombinant OaLypla1H and OaLypla1W were
successfully expressed in the transformed E. coli BL21 (DE3) cells following IPTG induction (Figure 4A).
The recombinant OaLyplaH protein was purified and detected by SDS-PAGE and Western blots using
a commercial His tag antibody and showed the same molecular weight of approximately 25 kDa,
including the molecular weight of His6-tag (Figure 4B,C).
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Figure 4. Expression and purification analysis of the recombinant OaLypla1 protein. (A) Expression
analysis of the recombinant OaLypla1 by SDS-PAGE. M: protein marker (Thermo, Waltham, MA, USA);
lane 1: total proteins from the uninduced pET-30a-LYPLA1-W cells; lane 2: total proteins from the
induced pET-30a-LYPLA1-W cells (expressing OaLypla1 with no His6-tag); lane 3: total proteins from
the induced pET-30a-LYPLA1-H cells (expressing OaLypla1 with a His6-tag) showing the shifted band
due to the His6-tag; (B) Purification analysis of the recombinant OaLypla1H by SDS-PAGE. M: protein
marker (Thermo, Waltham, MA, USA); lane 1: total proteins from the uninduced pET-30a-LYPLA1-H
cells; lane 2: total proteins from the induced pET-30a-LYPLA1-H cells; lane 3: the purified recombinant
protein OaLypla1H; (C) Expression and purification analysis of the recombinant OaLypla1H by Western
blotting. M: protein marker (Thermo, Waltham, MA, USA); lane 1: total proteins from the uninduced
pET-30a-LYPLA1-H cells; lane 2: total proteins from the induced pET-30a-LYPLA1-H cells; lane 3: the
purified recombinant protein OaLypla1H.
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2.3. Activity Assay

The phospholipase activity was determined by the egg yolk/agarose diffusion test. Phospholipase
A is able to degrade micellar lecithins and cephalins into dissolvable lyso compounds and fatty acids,
which leads to a clearing of egg yolk suspension in an agarose gel plate. Transparent rings will
develop around the holes in which the phospholipase A is added after the egg yolk suspension is
incorporated into the agarose gels [38]. The results of the egg yolk/agarose diffusion test showed
that transparent rings were visualized around the holes after purified recombinant OaLypla1H was
added. The diameters of the transparent rings were larger with increased concentrations of OaLypla1H.
There were no transparent rings in the BSA and OaPDCD10 groups (Figure 5).
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Figure 6. Immunoassay specificity of the monoclonal antibody against OaLypla1. (A) Immunoassay
specificity against the recombinant OaLypla1. M: protein marker (Thermo, Waltham, MA, USA);
lane 1: total proteins from the uninduced pET-30a-LYPLA1-W cells; lane 2: total proteins from the
induced pET-30a-LYPLA1-W cells; lane 3: total proteins from the induced pET-30a-LYPLA1-H cells;
(B) Immunoassay specificity against the native OaLypla1. M: protein marker (Thermo, Waltham, MA,
USA); lane 1: total proteins from the induced pET-30a-LYPLA1-H cells as a positive control; lane 2: total
proteins extracted from the kidney of O. aries. The pET-30a-LYPLA1-W cells were induced to express
the recombinant OaLypla1 with no His6-tag, and the pET-30a-LYPLA1-H cells expressed OaLypla1
fused with a His6-tag.
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2.5. Tissue Distribution of OaLypla1

To determine the tissue expression profiles of OaLypla1, qPCR and Western blot analyses were
carried out to examine the tissue distribution of OaLypla1 with the primers (Table 1) and the mAb
prepared as described above. As shown in Figure 7A, the OaLypla1 mRNA was detected in the liver,
spleen, lung, kidney and WBCs, with the highest expression in the kidney. OaLypla1 protein was
detected in the liver, spleen, lung and kidney but not in the WBCs (Figure 7B) by Western blotting.
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protein detected in the tissues using Western blotting. Statistical differences among liver, spleen, lung,
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13.0 software (IBM, Armonk, NY, USA). Data are presented as the mean relative expression ˘ SD
(n = 3). An asterisk indicates a statistically significant difference (* p < 0.05). WBCs: white blood cells.

Table 1. Primers used in this study.

Primer Object Sequence (51-31)

GSP 51-RACE 51-TCTTGCCATAAGTTAGATCTTGCTG-31

NGSP 51-RACE 51-GTCACTTCCATCATCAAATAGCACC-31

(20)KLS ORF amplification 51-CATATGTGCGGCAATAACATGTCGGC-31

(20)KLHisA ORF amplification 51-CTCGAGGTCAATGGGAGGTAGGAGCTTATC-31

(20)KLWA ORF amplification 51-CTCGAGTCAGTCAATGGGAGGTAGGAGCTTATC-31

β-actin-S qPCR 51-CCCAAGGCCAACCGTGAGAAGATGA-31

β-actin-A qPCR 51-CGAAGTCCAGGGCCACGTAGCAGAG-31

OaLypla1S qPCR 51-CCTATTGGTGGCGTGAACAGAGAC-31

OaLypla1A qPCR 51-GAACTGTGCATCATGCCTGCGTAG-31

The letters marked by the single underline in the primer sequences stood for the restriction sites of Nde I
(CATATG) and Xho I (CTCGAG).

2.6. OaLypla1 Expression Profiles after Challenge with Virulent and Avirulent Brucella Strains

The expression profiles of OaLypla1 in the buffy coats of O. aries challenged with virulent
and avirulent Brucella strains were analyzed using qPCR, as shown in Figure 8. Compared with
the untreated control group, the transcription levels of OaLypla1 were down-regulated in both the
BmF-challenged group and the S2-challenged group from 3 to 75 dpc. In the S2-challenged group, the
level of OaLypla1 transcription increased from 3 to 14 dpc, reached a peak at 14 dpc, and then decreased,
with the lowest level at 75 dpc. In the BmF-challenged group, the OaLypla1 levels remained at a low
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level compared with the S2-challenged group. However, at 21 dpc, OaLypla1 in the BmF-challenged
group was much higher than in the S2-challenged group.Int. J. Mol. Sci. 2016, 17, 1206 8 of 15 
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Figure 8. Differential expression of OaLypla1 from buffy coats of O. aries challenged with different
virulent Brucella strains. N: the normal sheep group; S: the group inoculated with the avirulent
Brucella suis S2 strain; and B: the group challenged with the virulent field strain Brucella melitensis.
Relative expression was calculated by the 2´∆∆Ct method using O. aries β-actin as an endogenous
control. Statistical differences among the groups were determined by a one-way analysis of variance
(ANOVA) using SPSS 13.0 software. Data are presented as the mean relative expression ˘ SD (n = 3)
(* p < 0.05, ** p < 0.01).

3. Discussion

Lysophospholipases are critical enzymes to regulate the multifunctional lysophospholipids. In this
study, we focused on the OaLypla1 gene screened from a time course SSH cDNA library constructed
in our lab before. The full-length cDNA of OaLypla1 was cloned and sequenced for the first time.
The OaLypla1 gene was characterized at the molecular level and the recombinant protein was produced
to identify its functional activities in vitro. Further, the tissue-specific expression of OaLypla1 was
determined, and the bacterial stress responses of OaLypla1 were investigated after sheep were infected
with Brucella. This was the first report about the LYPLA1 gene from sheep (Ovis aries).

It is reported that LYPLA1 of murine represents a member of the serine hydrolase family with
Ser119, Asp174, and His208 composing the catalytic triad [39], and site-directed mutagenesis indicated
that mutation of each residue to Ala abolished LYPLA1 activity [37,39]. The protein sequence analysis
showed that OaLypla1 has the same catalytic triad with LYPLA1 from murine, rat and human.
To confirm the bioactivity of the lipase catalytic center 117GFSQG121 in the OaLypla1 protein, the
phospholipase activity of the recombinant OaLypla1 was identified using the egg yolk/agarose
diffusion test in this study. This is a sensitive and simple test that has been used frequently for
phospholipase A activity assay in recent years [40–44]. The purified recombinant OaLypla1 was also
used to generate an anti-OaLypla1 mAb that was confirmed to specifically bind to the recombinant
and native OaLypla1 proteins.

The tissue distribution of the OaLypla1 gene at both the mRNA and protein levels was measured
using qPCR and Western blots, respectively. OaLypla1 was detected in all of the examined tissues,
showing the highest mRNA expression in the kidney. The result was similar to the previous
reports [2,4]. OaLypla1 was constitutively expressed in tissues at the transcriptional level, suggesting
that OaLypla1 is a ubiquitously expressed gene and is a critical molecule that could potentially be
involved in numerous physiological functions. OaLypla1 protein was not detected in WBCs, which
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was consistent with the low OaLypla1 mRNA abundance in WBCs. As described in a previous study,
gene expression levels cannot be determined only by mRNA abundance based on the mRNA–protein
correlation [45], and post-transcriptional processing would also affect the expression levels of genes.
The different mRNA and protein abundances resulting from the same gene emphasize the importance
of integrative analysis of transcription and translation [46].

LYPLA1 has been cloned from rat [4], murine [37], and human [2]. The lysophospholipase,
phospholipase A2 and thioesterase activities were identified [21]. However, there is no investigation
about the relationship between LYPLA1 and infection of bacteria. The LYPLA1 gene from Ovis aries
cloned in this study may take apart in the immune response of the host towards the infection of bacteria.

Brucellosis is a major zoonotic disease worldwide. Brucella can evade the host immune response to
survive and reproduce in host cells. Currently, live attenuated vaccines are used to eradicate brucellosis
in cattle, sheep and goats. Infection by both the live attenuated vaccines and by the virulent strain will
cause similar immune responses, such as stimulation of Th1 responses [47]. As a consequence, it is
impossible to distinguish between vaccinated animals and infected ones using the available serological
tests at present [48].

It was reported that the expression profiles and releases of LYPLA1 are related to
immunological stimulation and decreased LYPLA1 levels likely contribute to macrophage responses
to pro-inflammatory stimuli. Along with the mRNA and protein levels of LYPLA1 decreased in
LPS-stimulated RAW 264.7 cells, LYPLA1 released from RAW 264.7 cells into the culture medium
was significantly increased. Inhibition of circulating LYPLA1 activity may be an effective treatment
strategy for inflammation [36]. In the present study, the expression profiles of OaLypla1 were analyzed
using qPCR, and the results confirmed that the transcriptional levels of OaLypla1 in WBCs were
down-regulated by infection of Brucella compared with the uninfected sheep. Down-regulation of
OaLypla1 expression in WBCs from the infected groups showed that LYPLA1 was perhaps involved in
the immune response to the stimulation, and indicated that the transcription of the LYPLA1 gene is
inducible, which is consistent with the previous report [36]. There are hardly any studies about the
relationship between the expression profile of LYPLA1 and bacterial infection. LYPLA1 can hydrolyze
lysophospholipids and participate in the phosphatidylcholine (PLC) pathway [39,49]. Thus, we
speculated that the decreased LYPLA1 might result in the increasing level of LPLs, which are able
to attract and activate macrophages and T or B cells, influence their interactions with other types of
cells, and promote and modulate immune responses [50]. The exact mechanism of this phenomenon
needs to be further studied. In addition, we also determined that the transcription patterns of the
OaLypla1 gene in buffy coats were different between sheep infected with the avirulent Brucella suis S2
vaccine strain and those infected with the virulent Brucella melitensis field strain. Whether OaLypla1 can
be a biomarker distinguishing between virulent Brucella infection and the avirulent Brucella vaccine
inoculation and the relationship between OaLypla1 and brucellosis need to be further studied in
the future.

4. Materials and Methods

4.1. Animals and Cells

All of the sheep used in this research were purchased from Sangang farm (Jilin Province, China)
and had no infectious diseases. Female BALB/c mice and sheep received food and water ad libitum [51].
All the animal experiments were carried out abiding by the provisions of EU animal management
practices (24 November 1986), and approved by the Animals Ethics Committee of Jilin University
of China in accordance with the Jilin university ethnic committee guideline for the Care and Use of
Laboratory Animal (No. SCXK 2015-0004, 7 January 2015). The avirulent strain of Brucella (S2) was
purchased from Harbin Pharmaceutical Group Bioengineering Co., Ltd. (Haerbin, China). The isolated
and identified virulent strain of Brucella, myeloma SP2/0 cells, Escherichia coli DH5α competent cells
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and E. coli BL21 (DE3) cells were provided by the Key Laboratory of Zoonosis Research, Ministry of
Education, Jilin University (Jilin, China).

4.2. Total RNA Isolation

Total RNA was isolated as described previously [48]. Briefly, the anticoagulant-containing blood
collected from O. aries was centrifuged at 800ˆ g for 15 min at 4 ˝C to extract the buffy coats. The
buffy coats were used for total RNA extraction using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA)
following the manufacturer’s instructions. DNA and protein contamination was removed using
recombinant DNase I (RNase-free) (TaKaRa, Dalian, China) and an RNeasy MinElute Cleanup Kit
(Qiagen, Hilden, Germany).

4.3. 51-RACE and Sequence Assembly

To obtain the full-length cDNA sequence, the purified total RNA and a SMARTer™ RACE cDNA
Amplification Kit (Clontech, Mountain View, CA, USA) were used. A set of gene-specific primers was
designed (Table 1) and named GSP (gene-specific primer) and NGSP (nested gene-specific primer).
The PCR amplifications were performed using the following protocol. Briefly, 20 µL reaction volumes
containing 51-RACE-Ready cDNA as the template, primers (0.4 µL of 10 µM GSP and 2.0 µL UPM
provided by the kit), 0.4 µL 10 mM dNTPs, and 0.4 µL 50ˆ Advantage Polymerase mix were prepared.
The conditions were 94 ˝C for 3 min; 20 cycles of 30 s at 94 ˝C, 30 s at 54.1 ˝C, 3 min at 72 ˝C; then a
final extension at 72 ˝C for 5 min. The products were diluted 1:50 and used as template cDNA for the
nested PCR. The nested PCR amplification was similar to the first PCR amplification except for the
primers and template. The PCR conditions were 3 min at 94 ˝C; 25 cycles of 30 s at 94 ˝C, 30 s at 61.1 ˝C,
3 min at 72 ˝C; then the last extension at 72 ˝C for 5 min. The PCR products were visualized on a 1%
agarose gel stained with ethidium bromide. After purification and ligation into the pMDTM18-T vector
(TaKaRa, Dalian, China), the target DNA products were transformed into E. coli DH5α competent cells
and sequenced by Shanghai Sangon Biological Engineering Technology & Service Co., Ltd. (Shanghai,
China). The obtained sequences and the partial cDNA sequence identified from the SSH cDNA library
were assembled to obtain the full-length cDNA sequence of OaLypla1.

4.4. Sequence Verification and Analysis

A homology search for the assembled sequence of OaLypla1 was performed using the BLAST
search programs at NCBI [52]. The molecular weight of the putative protein was predicted using the
Expert Protein Analysis System [53]. Characteristic domains or motifs were identified using the Motif
scan program [54]. The amino acid sequences of LYPLA1 from various species were retrieved from
NCBI and analyzed using ClustalW version 1.83. The phylogenetic tree was constructed based on the
amino sequence alignment with the neighbor joining method from the MEGA version 4.1 program.

4.5. Cloning of OaLypla1

The open reading frame (ORF) of the Oalylpla1 transcript was amplified using the forward
primer (20)KLS with a NdeI recognition site and the reverse primers (20)KLHisA (for the 6ˆ His tag
fusion) and (20)KLWA (for no fusion) with a XhoI recognition site at their 51-ends, as listed in Table 1.
The recombinant plasmids constructed in 4.3 were used as the template with Ex Taq (TaKaRa, Dalian,
China), and the PCR reactions were performed at 94 ˝C for 30 s; then at 94 ˝C for 30 s, 60 ˝C for
30 s, 72 ˝C for 60 s for 32 cycles; and the final extension at 72 ˝C for 10 min. The PCR products were
separated, purified and ligated into the pMDTM19-T Simple vector and transformed into E. coli DH5α
cells. The cells with recombinant plasmids were confirmed with PCR using M13 forward and reverse
primers, and the plasmids were then sequenced.
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4.6. Expression and Purification of the Recombinant OaLypla1 Protein

The recombinant plasmids were digested with NdeI and XhoI restriction enzymes, and
the products were purified and ligated into the restriction enzyme-digested pET-30a vectors.
The recombinant expression plasmids were transformed into E. coli BL21 (DE3), and the cells carrying
the plasmid were named pET-30a-LYPLA1-H and pET-30a-LYPLA1-W. A single transformant colony
was grown overnight in 5 mL Luria-Bertani (LB) medium containing 50 µg/mL kanamycin at 37 ˝C,
and the protein expression of OaLypla1H (OaLypla1 with His6-tag) and OaLypla1W (OaLypla1
with no His6-tag) was separately induced by adding isopropyl β-D-1-thiogalactopyranoside (IPTG)
at a final concentration of 1.5 mM at 37 ˝C for 6.5 h. Total protein lysates extracted from the
induced pET-30a-LYPLA1-H and pET-30a-LYPLA1-W cells were analyzed using 12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Protein expression of OaLypla1H in 200 mL fresh LB medium was induced by adding IPTG
at a final concentration of 1.5 mM at 37 ˝C for 6.5 h. The induced pET-30a-LYPLA1-H cells were
harvested and resuspended in binding buffer (20 mM sodium phosphate, 30 mM imidazole, 0.5 M
NaCl, pH 7.4) [48]. The supernatant was collected by centrifugation at 12,000ˆ g for 30 min at 4 ˝C
after the resuspended cells were sonicated. Then, the supernatant was loaded onto a HisTrapTM FF
crude (GE Healthcare, Pittsburgh, PA, USA) resin, and after washed with binding buffer for 10 times
of column volume, the OaLypla1H protein was eluted with elution buffer (20 mM sodium phosphate,
0.5 M NaCl, 0.5 M imidazole, pH 8.0). The purified protein was dialyzed using 0.01 M PBS (pH 8.0).

The purified protein OaLypla1H was run on 12% SDS-PAGE with a protein marker (Thermo,
Waltham, MA, USA) and stained with Coomassie brilliant blue R250. The molecular mass and the
purity of the purified protein were assessed. Western blotting was performed with a commercial
anti-His tag antibody (Abcam, Cambridge, MA, USA) to demonstrate that the recombinant OaLypla1H
protein had been expressed and purified.

4.7. Phospholipase Activity Assay

The phospholipase activity of the OaLypla1H protein was analyzed as described in previous
reports [38,55–57]. Briefly, the egg yolk was diluted 1:4 with 0.85% NaCl, and the supernatant (Buffer A)
was collected by centrifugation at 3500 rpm for 2 min. Agarose (0.6 g) was dissolved in 100 mL 0.05 M
NaAc (pH 7.5) at 120 ˝C for 10 min. Buffer A (3 mL) and 0.01 M CaCl2 (1 mL) were added to the 0.6%
agarose NaAc solution when the temperature cooled to 50 ˝C, and the solution was then poured into
glass plates (φ 150 mm), and a hole was punched after the agarose solidified. A 0.85% NaCl solution
(50 µL) containing different concentrations of purified OaLypla1H (0.05–1.2 mg/mL) was added into
the holes of the agarose plates, and 50 µL of 0.85% NaCl containing 1.6 mg/mL of the bovine serum
albumin (BSA) and 0.8 mg/mL of the recombinant programmed cell death 10 of Ovis aries (OaPDCD10)
with a 6ˆ His tag [58] were applied as negative controls. The plates were incubated at 37 ˝C for
24 h. The diameters of visible transparent circles appearing as a result of the phospholipase activity of
OaLypla1H were measured.

4.8. Preparation of the mAb against the OaLypla1 Protein

Eight- to ten-week-old female BALB/C mice were immunized in the footpad with 100 µg of
OaLypla1H emulsified with an equal volume of complete Freund’s adjuvant (CFA, Sigma, St. Louis,
MO, USA) or incomplete Freund’s adjuvant (IFA, Sigma, St. Louis, MO, USA) based on a previous
report [59]. The mice were housed with adequate food and water. Four days after the fourth
immunization, the spleen cells isolated from the immunized mice were fused with myeloma cells
(SP2/0) at a ratio of 10:1 in the presence of PEG1000. Then, the fused cells were cultured in 96-well cell
culture plates using 20% (v/v) FBS/HAT (Sigma, St. Louis, MO, USA) medium, which was changed
once per 4 days. Two weeks later, the hybridoma cells secreting the anti-OaLypla1 mAb were screened
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and cloned by limiting dilution at least three times. The culture supernatant of the positive hybridoma
cells was used for the next experimental study.

4.9. Specificity Analysis

The specificity of the mAb was analyzed using Western blotting as described in a previous
report [48]. Untagged OaLypla1W, OaLypla1H with a His6-tag and whole proteins from sheep kidneys
were used to confirm the specificity of the mAb binding by Western blotting. Briefly, protein samples
were extracted from bacteria or sheep kidneys, separated with 12% SDS-PAGE, and probed with the
anti-OaLypla1 mAb (dilution 1:20) after transfer to a PVDF membrane (Millipore, Billerica, MA, USA).
Then, the horseradish peroxidase-labeled goat anti-mouse IgG (dilution 1:2000) was incubated with
the PVDF membrane. The membrane detection was performed with a BeyoECL Plus kit (Beyotime,
Shanghai, China) using the ECL detection system (DNR, Jerusalem, Israel).

4.10. Tissue Distribution

Tissue distribution of OaLypla1 in the liver, spleen, lung, kidney and white blood cells (WBCs)
of sheep was analyzed by quantitative real-time PCR (qPCR) and Western blotting. Total RNA was
extracted from different tissues and organs of 3 healthy sheep using TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s instructions. One microgram of total RNA was
used to synthesize cDNA using a PrimeScriptTM RT reagent kit with gDNA Eraser (Perfect Real Time)
(TaKaRa, Dalian, China). The qPCR reaction was carried out in a total volume of 20 µL containing
10 µL of FastStart Universal SYBR Green Master (ROX) (Roche, Basel, Switzerland), 0.6 µL of the
forward primer (10 µM), 0.6 µL of the reverse primer (10 µM), and 1.5 µL of 5-fold diluted cDNAs.
The qPCR cycling protocol was 95 ˝C for 10 min and 40 cycles of 15 s at 95 ˝C, 62 ˝C for 35 s and 72 ˝C
for 32 s. Samples were normalized with β-actin, and the relative transcription level of OaLypla1 was
calculated using the 2´∆∆Ct method. Each assay was repeated in triplicate.

The total proteins from different tissues (liver, spleen, lung, kidney and WBCs) were extracted
using RIPA lysis buffer (Beyotime, Shanghai, China) with 10 µL PMSF according to the manufacturer’s
instructions. The total protein concentration was measured by the Bradford method [60] using a
Bradford protein assay kit (Bio-Rad, Hercules, CA, USA). Total proteins (125 µg) from different
sheep tissues and organs were used for Western blot analysis with the generated anti-OaLypla1 mAb
following a standard protocol [48], and β-actin was used as an internal control. Optical densities of
OaLypla1 and β-actin were calculated using Quantity One software (Bio-Rad, Hercules, CA, USA).
Significant differences were determined by one-way analysis of variance (ANOVA) using the SPSS
13.0 software (IBM, Armonk, NY, USA).

4.11. Relative Transcript Level Analysis of OaLypla1 in Buffy Coats after Challenge with Virulent and
Avirulent Brucella Strains

For differential expression analysis of OaLypla1, qPCR was employed with a pair of gene-specific
primers (OaLypla1S and OaLypla1A) listed in Table 1, and β-actin (GenBank accession number U39357)
was used as an internal control [48]. As described in a previous study [61], 9 sheep were randomly
divided into three groups (n = 3). Three sheep were challenged with a virulent Brucella melitensis
field strain (BmF) as the BmF-challenged group, and three sheep were inoculated with an avirulent
Brucella suis S2 vaccine strain (S2) as the S2-inoculated group. Each sheep was injected with a total
dose of 2.2 ˆ 109 cfu of bacteria. In addition, three other sheep were treated with the same volume
of sterile 0.85% NaCl as the normal control group. The buffy coat samples from three individuals in
each group were obtained at 3, 7, 14, 21, 30, 40, 50, 60 and 75 days post-challenge (dpc). Extracting the
total RNAs and performing the qPCR for OaLypla1 differential expression analysis in buffy coats were
performed as described in 4.10 above. Each assay was repeated in triplicate.
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5. Conclusions

This study identified and characterized a novel full-length cDNA of the LYPLA1 gene from
Ovis aries (OaLypla1), and the corresponding protein was expressed, purified and characterized.
OaLypla1 was widely expressed in different tissues at both the mRNA and protein levels. qPCR analysis
showed that the expression of OaLypla1 in the white blood cells of Ovis aries was down-regulated
after infected with Brucella. This study provides fundamental data for further investigations exploring
the relationship between Brucella infection and the expression patterns of OaLypla1 and the possible
functions of OaLypla1 during Brucella infection.
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