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Deep learning methods have demonstrated the ability to perform accurate

coronary artery calcium (CAC) scoring. However, these methods require large

and representative training data hampering applicability to diverse CT scans

showing the heart and the coronary arteries. Training methods that accurately

score CAC in cross-domain settings remains challenging. To address this, we

present an unsupervised domain adaptation method that learns to perform

CAC scoring in coronary CT angiography (CCTA) from non-contrast CT

(NCCT). To address the domain shift between NCCT (source) domain and

CCTA (target) domain, feature distributions are aligned between two domains

using adversarial learning. A CAC scoring convolutional neural network is

divided into a feature generator that maps input images to features in the

latent space and a classifier that estimates predictions from the extracted

features. For adversarial learning, a discriminator is used to distinguish the

features between source and target domains. Hence, the feature generator

aims to extract features with aligned distributions to fool the discriminator.

The network is trained with adversarial loss as the objective function and a

classification loss on the source domain as a constraint for adversarial learning.

In the experiments, three data sets were used. The network is trained with

1,687 labeled chest NCCT scans from the National Lung Screening Trial.

Furthermore, 200 labeled cardiac NCCT scans and 200 unlabeled CCTA scans

were used to train the generator and the discriminator for unsupervised domain

adaptation. Finally, a data set containing 313 manually labeled CCTA scans

was used for testing. Directly applying the CAC scoring network trained on

NCCT to CCTA led to a sensitivity of 0.41 and an average false positive volume

140 mm3/scan. The proposed method improved the sensitivity to 0.80 and

reduced average false positive volume of 20 mm3/scan. The results indicate

that the unsupervised domain adaptation approach enables automatic CAC

scoring in contrast enhanced CT while learning from a large and diverse

set of CT scans without contrast. This may allow for better utilization of
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existing annotated data sets and extend the applicability of automatic CAC

scoring to contrast-enhanced CT scans without the need for additional

manual annotations. The code is publicly available at https://github.com/

qurAI-amsterdam/CACscoringUsingDomainAdaptation.

KEYWORDS

coronary artery calcium scoring, unsupervised domain adaptation, convolutional

neural network (CNN), coronary CTA, adversarial learning

1. Introduction

In recent years, deep neural networks have achieved

impressive performance on various medical image analysis tasks

(1, 2). This success is highly associated with the use of large

amounts of representative annotated training data. However, the

dependence on such data sets limits the applicability of already

trained and well-performing networks to non-representative

data sampled from a different distribution, such as images

acquired at different sites, on different scanners, and by different

acquisition protocols. Hence, generalizing deep neural networks

trained on specific data to test data originating from a different

domain remains a major challenge.

The domain shift, i.e., differences in data distributions

and types of data between training and test domains, can

be addressed by unsupervised domain adaptation methods

that transfer a model that was trained on the source domain

in a supervised manner to the target domain where no

labels are available (3, 4). The common idea of unsupervised

domain adaptation methods is to align features extracted by

a network between two domains, aiming to generate similar

feature distributions for both domains (4, 5). To achieve

this, an adversarial learning strategy can be used. In this

case, the generator network is optimized to extract features

with similar distribution for the two domains while the

discriminator network is trained to distinguish features from

these domains (6).

Several works have investigated methods for unsupervised

approaches to domain shift problem for segmentation of

cardiac images (7–10). Dou et al. (8) proposed an unsupervised

adversarial domain adaptation network to transfer cardiac

segmentation network between MRI and CT. In this work the

feature distributions of source and target domains were aligned

at multiple scales. Chen et al. (7) extended the work of Dou et al.

by aligning the domains in both image and feature perspectives.

This method was evaluated with cardiac segmentation and

abdominal multi-organ segmentation between MRI and CT.

Wu et al. (10) presented an unsupervised domain adaptation

framework to adapt cardiac segmentation betweenMRI and CT.

In thismethod, a novel distancemetric was proposed to calculate

the misalignment of feature distributions in latent space and

enable explicit domain adaptation.

In this work, we address detection and quantification of

coronary artery calcium (CAC scoring) in contrast-enhanced

coronary CT angiography (CCTA). Our aim is to exploit large

sets of already annotated data in CT scans without contrast

enhancement and extend the applicability of CAC scoring to

CCTA. Current CAC scoring protocols are performed in a highly

standardized manner without injection of iodinated contrast.

Coronary artery calcifications are identified as high density

areas of ≥ 130 Houndsfield Units (HU) in the coronary artery

(11). Manual CAC scoring can be tedious and time-consuming,

therefore, automated CAC scoring methods have been proposed

(12, 13). Recent methods using deep learning have demonstrated

accurate performance (14, 15). Given that CAC scoring is

commonly performed in non-contrast CT (NCCT), automated

methods have mostly focused on application in these scans.

While earlier methods focused on a single type of NCCT

scans (16–18) recent studies showed that the methods can

generalize to diverse types of NCCT data. In a large-scale

study containing data of 7,240 subjects, Van Velzen et al. (19)

trained and evaluated a method proposed by Lessmann et

al. (16) with different types of NCCT scans including scans

from different hospitals, multiple scanners and multiple image

acquisition protocols and demonstrated a good agreement

between automated and manual scoring. Subsequently, Zeleznik

et al. (20) demonstrated the robustness of a deep learning system

for automated CAC scoring on routine cardiac gated and non-

gated NCCT of 20,084 individuals.

In addition to CAC scoring in NCCT, CAC can be

quantified in CCTA (21) and consequently, a number of

methods automating the process have been developed (22–25).

In a clinical cardiac CT exam, commonly cardiac NCCT is

acquired first to determine the calcium score, which is followed

by the acquisition of CCTA to detect presence of non-calcified

plaque and stenosis in the coronary arteries. However, the

amount of calcified plaque extracted from CCTA scans allows

accurate cardiovascular risk stratification (22, 24). Hence, when

the scan without contrast is not available, calcium scoring

in CCTA may allow determination of patient’s cardiovascular

risk and thus allow better utilization of the already acquired

data. Furthermore, performing CAC scoring in CCTA could

allow omitting acquisition of the NCCT and thereby reduce

the radiation dose to the patient and save scan time (24, 25).
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Coronary artery calcium scoring in CCTA differs substantially

from scoring in NCCT as the contrast material enhancing the

coronary artery lumen typically exceeds the threshold (130 HU)

used for CAC scoring in NCCT. Therefore, automatic methods

trained on NCCT are not directly applicable to CCTA scans.

Training the deep learning method with extra annotated CCTA

data may improve its applicability to CCTA. However, manually

annotating a large amount of representative training data is

tedious and time consuming. To address this, in this study, we

investigate the feasibility of adapting a CAC scoring network

trained on a large set of labeled NCCT scans (16, 19) to unlabeled

CCTA scans using unsupervised domain adaptation. For this,

we investigate a cross-domain approach described by Dou et al.

(8) to enable CAC scoring in CCTA without annotations while

utilizing NCCT with available manual annotations.

2. Materials

2.1. Image data

This study includes three data sets. First, a data set of labeled

low-dose chest NCCT scans from the National Lung Screening

Trail (NLST) was used. The NLST enrolled 53,454 current or

former heavy smokers aged 55–74 in the United States (26). In

our previous study, a set of 1,687 baseline chest NCCT scans was

selected (16). This set was designed to be diverse with respect to

scanner model and reconstruction algorithm. The selected scans

were acquired on 13 different scanner models in 31 hospitals.

These chest NCCT scans were acquired with breath hold after

inspiration and using a tube voltage 120 or 140 kVp, depending

on the subjects weight. Scans were reconstructed to 0.49–0.98

mm in-plane resolution, 1–3 mm slice thickness, and 0.6–3 mm

increment. For our work, all scans were resampled to 3 mm slice

thickness and 1.5 mm increment, following earlier studies (16).

Second, a mixed set of labeled cardiac NCCT and

unlabeled CCTA scans was used. Specifically, 200 labeled cardiac

NCCT scans were acquired in clinical patient workup at

University Medical Center Utrecht, The Netherlands (19, 27)

and 200 unlabeled CCTA scans were acquired at Amsterdam

University Medical Center location University of Amsterdam,

The Netherlands. The cardiac NCCT scans were acquired with a

Philips Brilliance iCT 256 scanner, with ECG synchronization

and 120 kVp tube voltage. Scans were reconstructed to 0.29–

0.49 mm in-plane resolution, 3 mm slice thickness, and 1.5

increment. The CCTA scans were acquired with a Siemens

Somatom Force CT Scanner, with ECG synchronization and

70–120 kVp tube voltage. Scans were reconstructed to 0.22–

0.46 mm in-plane resolution, 0.6 mm slice thickness, and

0.4 mm increment.

Third, a data set of labeled 313 CCTA scans fromAmsterdam

University Medical Center location University of Amsterdam,

The Netherlands was used to evaluate the CAC detection on

the target domain (CCTA test set). These CCTA scans were

acquired with the Siemens Somatom Force CT Scanner, with

ECG synchronization and 70–120 kVp tube voltage. Scans were

reconstructed to 0.19–0.77 mm in-plane resolution, 0.6–1 mm

slice thickness, and 0.4 mm increment.

2.2. Manual reference annotations

Manual reference labels of CACwere available from previous

studies for the low-dose chest NCCT scans in the NLST data

set(16) and the cardiac NCCT in the mixed set (19). The

labeling was performed semi-automatically: all regions of ≥ 3

adjacent voxels with a CT value above 130 HU were shown

as overlay. An observer manually identified lesions and labeled

them according to their anatomical location, i.e., left anterior

descending artery (LAD), left circumflex artery (LCX), or right

coronary artery (RCA) (19). Given that chest CT without ECG

synchronization does not allow visualization of the left main

(LM) artery, CAC in the LM was labeled as LAD. Examples of

chest NCCT slices and manual reference annotations are shown

in the Supplementary Figure S1.

For the 200 CCTA scans in the mixed set, reference labels

of CAC were not available. Hence, for the CCTA scans from

the CCTA test set, CAC was manually annotated with a semi-

automated method as either LAD, LCX, or RCA. This was done

using an in-house developed software designed in MevisLab

3.2 (28). In agreement with manual labeling in NCCT, CAC

in the LM was labeled as LAD. Because the standard 130

HU threshold for CAC detection in NCCT can not be used

in CCTA, we used scan specific thresholds, following earlier

studies (25, 29). For this, a region of interest (ROI) defined

by a bounding box with a size around 35 × 36 × 44 voxels

in the ascending aorta at the level of the origin of the left

coronary artery was manually selected. Subsequently, the mean

meanROI and standard deviation STDROI from the CT values

of the voxels within the ROI were used to compute a scan

specific threshold meanROI + 3STDROI. Using this threshold,

each coronary artery calcification was manually identified by a

mouse click on the lesion. Subsequently, all connected voxels

in the lesion above the scan specific threshold were marked as

CAC in LAD, LCX, or RCA using 3D connected component

labeling considering six-voxel connectivity. Examples of CCTA

slices and manual reference annotations are shown in the

Supplementary Figure S2.

In this study, NCCT scans (both chest and cardiac) are

considered the source domain and CCTA scans are representing

the target domain. The NCCT scans with CAC annotations

from the NLST data set were used to train the CAC detection

network on the source domain. The mixed set of labeled cardiac

NCCT (source domain) and unlabeled CCTA (target domain)

was used to train our unsupervised domain adaptation method.

The labeled CCTA scans (target domain) in the CCTA test
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set were only used to evaluate the CAC detection on the

target domain. The description of data sets and their usage are

illustrated in Table 1.

3. Methods

A CNN is used for detecting CAC candidates in CCTA scans

that is followed by false positive (FP) reduction, as shown in

Figure 1. The CNN, which is trained on labeled NCCT data is

adapted for application in CCTA using unsupervised domain

adaptation. False positive reduction is performed by limiting the

detected lesions to plausible CAC location and size.

3.1. CAC detection in CCTA with
unsupervised domain adaptation

Unsupervised domain adaptation aims to transfer a model

trained with data from a source domain with labels Ds =

(Xi
s,Y

i
s)i=1..ns

to a target domain without labels Dt =

(Xi
t)i=1..nt

, where D represents domain, X represents images

and Y represents labels. As proposed by Dou et al. (8), we

use an adversarial training strategy to adapt the CNN to the

target domain. In our application, a large set of chest NCCT

scans with CAC labels is available, and hence, we aim to

transfer the knowledge from NCCT to CCTA for CAC scoring.

Therefore, the CAC scoring CNN trained with labeled low-

dose chest NCCT scans is transfered to CCTA using adversarial

domain adaptation.

We used our previous CAC scoring method described by

Lessmann et al. (16) that has been trained and evaluated with

a large set of low-dose chest NCCT data. The method consists

of two sequential convolutional neural networks (CNN). The

first CAC scoring CNN detects CAC candidates and labels them

according to their anatomical location, i.e., as CAC in LAD, LCX,

or RCA. The second CNN reduces the number of false positive

detections. In our current work, only the first CNN is used

to transfer knowledge obtained by training the network with

NCCT to enable application in CCTA data using unsupervised

domain adaptation.

To adapt the CAC detection network(16) from the source

domain to the unlabeled target domain, we aim to align

the distributions of extracted features from the two domains

following the work by Dou et al. (8). For this, we divide the

CAC detection network into two parts: a feature generator G(·)

and a classifier C(·), as shown in Figure 1. The G(·) maps input

images into feature representations in the latent space and the

C(·) predicts the output class from the feature representations.

The early layers of the network which are used for feature

extraction are mostly related to the domain, while the deeper

layers are mostly task-specific and learn semantic-level features

for conducting the predictions (8, 30). Hence, we adapt the

feature generator G(·) trained with NCCT to enable application

in CCTA with adversarial domain adaptation, and we reuse the

classifier C(·) as originally trained.

To enable adversarial learning, we design a discriminator

D(·) to identify whether the features are from the source domain

or the target domain. While the feature generator G(·) aims

to extract features with similar distributions for both domains,

the D(·) discriminates between the two domains (Figure 2). The

adversarial loss based on the differences in feature distribution

between the two domains is formulated as:

Ladv = Ext∈Dt
log(D(G(xt)))− Exs∈Ds

log(D(G(xs))) (1)

whereG(·) is optimized to minimize the adversarial loss, and

D(·) is optimized to maximize the same loss. The generator G(·)

is optimized based on the objective function calculated from the

discriminator D(·), which can lead to an incorrect optimization

forgetting the classification task. That means the features

extracted by the trained G(·) can fool the D(·). However, these

features are not beneficial for the final classification task C(G(·)).

For cross domain learning with paired data, the alignment loss

in feature space, such as L1(G(xs),G(xt)) or L2(G(xs),G(xt)),

can be used as a constraint for the generator optimization (31).

For cross-domain learning with unpaired training data as in our

case, such an alignment loss in feature space can not be used

as a constraint for the generator optimization. In this work, the

images were not registered to a common space either. Instead, as

proposed in the work by Chen et al. (4), we use a classification

loss in the source domain Ds as constraint to stabilize the

training and avoid catastrophic forgetting.

The classification loss is formulated as:

Lcls = LCE(C(G(Xs)),Ys) (2)

where LCE is the cross-entropy loss, Xs and Ys are the images

and the corresponding reference labels on the source domain.

TABLE 1 Description of data and corresponding usage.

Scan type #Scans Reference Domain Usage

Chest NCCT 1,687 ✓ Source Training CAC scoring on source domain

Cardiac NCCT 200 ✓ Source
Training unsupervised domain adaptation

CCTA 200 ✗ Target

CCTA 313 ✓ Target Testing CAC scoring on target domain
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FIGURE 1

Overview of the proposed method for coronary artery calcium (CAC) detection in CCTA. The CNN for CAC detection is divided into a feature

generator and a classifier. The feature generator is trained on source domain and is adapted to the target domain using unsupervised domain

adaptation. The classifier in the target domain is reused from the source domain. After detection of CAC candidates using the CNN, false

positive (FP) reduction is applied to remove FP detections.

FIGURE 2

Unsupervised domain adaptation with unpaired data is performed using an adversarial learning strategy. The discriminator is optimized to

distinguish the features from NCCT (source) domain and CCTA (target) domain. The generator is trained to extract features with similar

distributions for the two domains. The blue dots in latent space represent features from the source domain, the orange ones from the target

domain. The Ladv is used as the objective function and the Lcls is used as a constraint, which is determined on the source domain using the

classifier.

During training, the D(·) is trained to maximize the objective of

Ladv, while the G(·) is optimized to minimize the objective of

Ladv and Lcls. These are formulated as:

max
D

Ladv

min
G

Ladv + αLcls

(3)

where α is a hyper-parameter for balancing the two loss

terms. It is set to 2.0 in this work, based on a grid search strategy.

3.2. FP reduction

To identify CAC lesions, 3D connected component labeling

is performed from the detected voxels and the scan specific

threshold (25, 29). To remove potential false positive detections,

detected lesions smaller than 1 mm3 are discarded as those

are likely noise voxels. Similarly, detected lesions larger than

500 mm3 are discarded as those exceed the expected CAC

volume (27). In addition, lesions detected outside the heart are

discarded. For this, the heart volume is defined by segmentation
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of cardiac chambers, as described by Bruns et al. (32) which

was trained with CCTA scans of 12 patients scanned for

transcatheter aortic valve implantation (SOMATOM Force,

Siemens, 70–120 kVp, 310–628 mAs, in-plane resolution 0.31–

0.61mm, slice thickess 0.31–0.61mm, slice increment 0.45mm).

No additional changes or fine tuning for the data in this current

study was performed. Subsequently, the segmentation of cardiac

chambers was dilated by a sphere as a structuring element with

diameter of 10.0 mm to ensure the heart wall and coronary

arteries are included in the segmentation.

3.3. Evaluation

To evaluate the performance of CAC scoring on CCTA,

the volume-wise and lesion-wise performance was determined

by comparing automatically detected CAC with the manually

annotated reference. Since the typically used Agatston score

(11) is not applicable for CAC quantification in CCTA, the

volume score was used. The evaluation was performed for total

CAC and separately for CAC in LAD, LCX, and RCA. Both

the volume-wise and lesion-wise performance was evaluated

using sensitivity, false-positive (FP) rate, and F1 score (16).

The agreement of calcium volume and number of lesions

between the automatic detection and the reference labels was

determined with Spearman correlation coefficients. Finally,

the agreement between automatic volume scores and manual

reference volume scores was assessed by examining Bland-

Altman plots including 95% limits of agreement. Since errors

tend to increase with increasing CAC volume, the variation

of absolute differences between automatic and manual scores

was modeled using regression for nonuniform differences(33).

Because the absolute differences have a half-normal distribution,

the modeled absolute differences were multiplied by 1.96 ×

(π/2)0.5 to obtain the 95% limits of agreement.

4. Experiments and results

4.1. CAC scoring on CCTA

First, we retrained the two-stage CNNs for CAC detection

(16) with the labeled chest NCCT data as the source domain. For

this, the 1,687 NCCT scans in the NLST data set were randomly

divided into 60% training set (1,012 scans), 10% validation set

(169 scans), and 30% test set (506 scans). As originally reported

(16), during the training, categorical cross-entropy was used as

loss function, Adam was used as optimizer with a learning rate

of 5 × 10−4. The first CNN was trained with three orthogonal

(axial, sagittal and coronal) patches of 155×155 pixels and the

second CNN with three orthogonal patches of 65×65 pixels

(16). Randomized patch extraction was used as augmentation

for training.

Next, to stabilize adversarial training in the unsupervised

domain adaptation, the generator was initialized with the

weights of the CAC scoring model trained with the chest

NCCT data from the NLST dataset. The unsupervised domain

adaptation method was trained with the mixed dataset of

labeled cardiac NCCT data from source domain and unlabeled

CCTAdata from target domain.When performing unsupervised

domain adaptation with mixed data containing labeled cardiac

NCCT and unlabeled CCTA scans the method achieved

sensitivity of 0.78 in CCTA (Table 2). For comparison, the

sensitivity of 0.53 was achieved when unsupervised domain

adaptation was performed with mixed data containing labeled

chest NCCT and unlabeled CCTA scans. Labeled cardiac NCCT

data was chosen because these scans resemble CCTA scans more

than chest NCCT. Unlabeled CCTA were used as unlabeled data

from the target domain. To obtain a reliable discriminator, the

discriminator was solely pretrained for 1,000 iterations first.

Thereafter, the generator and discriminator were optimized

together by training alternately. Specifically, the generator

was optimized one iteration after every 20 iterations of the

discriminator, according to the heuristic rules of training a

Wasserstein GAN (34). Following the standard for adversarial

training (34, 35), the discriminator was kept in a compact space.

To enforce this constraint, the weights were clipped between

[−0.1, 0.1]. The RMSProp optimizer was used to optimize

the discriminator with a learning rate of 5 × 10−4, and the

generator with a learning rate of 5×10−5, respectively (36). The

optimal hyperparameters were determined by grid search. The

adversarial learning was trained for 200 epoch. The networks

were implemented in PyTorch (37). All the training was trained

on NVIDIA GeForce RTX 2080 Ti.

To establish the performance of the CNN adapted from

NCCT to CCTA, the network was evaluated with the 313

labeled CCTA test scans. The adapted CNN obtained an average

volume-wise sensitivity of 0.78, an average FP volume per scan

of 73.9 mm3 and an F1-score of 0.41. After the FP reduction, the

proposedmethod achieved an average volume-wise sensitivity of

0.80 with an average FP volume per scan of 19.8 mm3, and F1 of

0.66. There were 36 patients without CAC but with FP detected

by the proposed method, with an average FP volume per scan

of 40 mm3. The Spearman correlation between automatically

detected and reference CAC volume was 0.73. The Bland-

Altman plots comparing automatically detected CAC volume

with manually annotated reference are illustrated in Figure 3.

Coronary CT angiography slices and corresponding

automatic CAC detections for two outliers cases (marked

orange in Figure 3) are shown in Figures 4a,b. In addition,

two representative cases from the labeled CCTA test set are

shown in Figures 4c,d. For lesion-wise evaluation, the proposed

method achieved an average sensitivity of 0.79 and FP lesion

per scan of 1.06. The correlation between the number of

automatically detected and manually annotated reference

lesions was 0.69.
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TABLE 2 Results of the automatic CAC scoring evaluated by volume-wise sensitivity, FP volume per scan, and F1-score between automatic

detection and manual reference.

NCCT [506] CCTA [313]

Ladv ✗ ✓ ✓ ✓ ✗

Lcls ✗ ✓ ✓ ✗ ✗

FP reduction ✗ ✓ ✗ ✗ ✗

CAC

Sensitivity 0.89 (0.25) 0.80 (0.32) 0.78 (0.33) 0.68 (0.38) 0.41 (0.48)

FP volume/scan 73.6 (141) 19.8 (60.6) 64.5 (150) 25.8 (70) 132 (205)

F1 0.66 (0.37) 0.66 0.38 0.41 (0.40) 0.49 (0.41) 0.16 (0.36)

LAD

Sensitivity 0.92 (0.21) 0.89 (0.27) 0.86 (0.28) 0.79 (0.33) 0.47 (0.48)

FP volume/scan 31.6 (79.6) 13.9 (45.5) 44.5 (118) 20.2 (54.4) 55.8 (90.5)

F1 0.79 (0.34) 0.74 (0.37) 0.48 (0.42) 0.56 (0.42) 0.24 0.41

LCX

Sensitivity 0.88 (0.29) 0.74 (0.44) 0.71 (0.45) 0.71 (0.46) 0.66 (0.48)

FP volume/scan 19.7 (55.6) 0.13 (1.13) 0.17 (1.01) 0.02 (0.31) 1.60 (0.30)

F1 0.67 (0.42) 0.74 (0.44) 0.69 (0.46) 0.70 (0.46) 0.66 (0.48)

RCA

Sensitivity 0.89 (0.26) 0.87 (0.30) 0.87 (0.31) 0.80 (0.38) 0.67 (0.47)

FP volume/scan 30.1 (73.4) 6.80 (35.6) 21.3 (78.1) 6.64 (35.6) 77.6 (157)

F1 0.65 (0.42) 0.73 (0.41) 0.52 (0.46) 0.68 (0.44) 0.31 (0.46)

The method with different settings (using adversarial loss and classification loss in the CAC detection network, and false positive reduction stage) is tested on chest NCCT data and CCTA

data. FP volume/scan is given in mm3 . The results are shown as average (standard deviation) for total CAC as well as for LAD, LCX, and RCA separately. Ladv , adversarial loss; Lcls ,

classification loss; CAC, coronary artery calcification; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery.

FIGURE 3

Bland-Altman plots comparing automatically detected CAC volume with the manual reference volume. 95% limits of agreement are represented

by the formula: Di�erence = ±1.96× (π/2)0.5 × (b+ a×Mean0.5), with a = 10.9 and b = −17.8. Two outlier cases are colored orange. The

Bland-Altman plot of lesions with volume less than 150 mm3 is shown on the left and all lesions is shown on the right.

4.2. Ablation study

To establish whether our retraining of the original CAC

scoring network on the source domain led to adequate

performance, the CAC scoring network was evaluated on NLST

test set (Section CAC scoring on CCTA) and compared with

the originally reported results (16). Results are listed in Table 2

(column 3 showing NCCT results). Our retained network

obtained a sensitivity of 0.89, an average FP volume of 73.6 mm3

per scan and F1 of 0.66. The sensitivity is in agreement with the

results (0.84 - 0.91) reported in the original work (16), while the

originally reported FP rate (40.7–62.8 mm3) and therefore F1

(0.84–0.89) slightly outperform our results.

To evaluate the performance of the two-stage CAC scoring

networks trained on NCCT to CCTA, the trained CNNs was

directly applied to CCTA test scans without adversarial domain

adaptation learning. This led to an average sensitivity of 0.41,

an average FP volume per scan of 139.7 mm3, and F1 of 0.16
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FIGURE 4

Automated CAC detection results in CCTA scans of four patients. The images in the first row show CCTA slices and the detected CACs are

shown as overlay in the second row. Panels (a) and (b) illustrate the two largest outliers shown by orange dots in Figure 3, and false negative

CAC are indicated by orange circles. Panels (c) and (d) show two cases with correct automatic CAC detections.

(Table 2, column 7 showing the CCTA results). Subsequently,

adding FP reduction led to an average sensitivity of 0.43, an

average FP volume of 0.58 mm3 and F1 of 0.41. Note that FP

reduction stage slightly improved the sensitivity as the region-

growing algorithm (38) used to define the lesions from the voxels

detected by the CNN may improve lesion segmentation and

lead to better agreement with manual reference that used the

region-growing algorithm to define CAC lesions.

To investigate the benefit of using the adversarial loss and

classification loss for domain adaptation, and FP reduction,

additional experiments were performed. The proposed method

obtained a volume-wise sensitivity of 0.80, average FP volume

per scan of 19.8 mm3, and F1 of 0.66. Without FP reduction,

the volume-wise sensitivity decreased to 0.78, average FP volume

per scan increased to 64.5 mm3 and consequently, F1 score

decreased to 0.41. Furthermore, removing the classification loss

Lcls from the objective function resulted in the volume-wise

sensitivity of 0.68, average FP volume per scan of 25.8 mm3, and

F1 of 0.49. Finally, as described above, removing the adversarial

loss Ladv (i.e., without adversarial domain adaptation learning)

led to sensitivity of 0.41, FP volume of 139.7 mm3 per scan, and

F1 of 0.16. Detailed results are listed in Table 2 columns 4–7.

4.3. Comparison with previous work

The performance of the proposed method was compared

with previously published methods that use deep learning for

CAC scoring in CCTA scans (22–25). Wolterink et al. (25)

proposed a method that employed paired CNNs for CAC

scoring. The first CNN was used to identify CAC-like voxels

and the second CNN was used to reduce CAC-like negatives.

Fischer et al. (22) proposed a method that firstly detected

the coronary artery centerlines and then identified CAC in

cross-sectional images along the detected centerlines using long

short-term memory (LSTM). In the study by Liu et al. (23), a

vessel focused 3D CNN was proposed for CAC detection. The

coronary arteries were firstly extracted and straightened volumes

were reformed along the coronary arteries. Thereafter, a CNN

was used for CAC detection. The results as reported in the

original work are listed in Table 3. These demonstrate that our

unsupervised method achieved competitive performance. Given

that the original implementations of these earlier studies are not

publicly available, the compared methods the results should be

used as indication only.

5. Discussion

In this work, we have utilized an unsupervised domain

adaptationmethod described by Dou et al. (8) employing a CNN

architecture which enables CAC scoring in CCTAwhile learning

from annotated non-representative CT scans without contrast

and representative CCTA without reference annotations. For

this, the first-stage CNN as previously designed by Lessmann

et al. for CAC scoring (16) is divided into a feature generator

and a classifier. The feature generator is adapted from NCCT
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TABLE 3 Comparison with previously published results on automated coronary artery calcium scoring on CCTA.

Lesion-wise evaluation Volume-wise evaluation

Method # train # test Sensitivity FP lesion F1 Sensitivity FP volume F1

Wolterink et al. (25) 150 100 0.71 0.48 – – – –

Liu et al. (23) 80 20 – – – 0.85 – 0.83

Fischer et al. (22) 232 194 0.92 0.20 – – – –

Ours – 313 0.79 1.06 0.66 0.80 19.8 0.66

The number of labeled CCTA scans used for training (# train) and testing (# test) are listed. Performance [sensitivity, false positives (FP) per scan and F1-score] using CAC lesions and

volume are given.

to CCTA through adversarial unsupervised domain adaptation

and the classifier trained on NCCT is reused. An adversarial loss

and classification loss on source domain are used as the objective

function. The results demonstrate that the method achieves a

competitive performance.

Like previous methods for automatic calcium scoring, our

method consists of two distinct stages. In the first stage, a CNN

for CAC detection and labeling in non-contrast chest CT from

previous work (16) is adjusted for the CAC scoring in CCTA.

The ablation study showed that our retraining of the CAC

detection CNN did not lead to the same performance reported

in the original manuscript (16). However, there are several

differences. First, although training and test scans originate from

the same set, exact division on the scans into training and test

set differs. Second, the original work reported results separately

for sharp and soft kernel CT reconstructions, while we did not

distinguish between these. Like in the original work, a second

stage is used to reduce the number of false positives. Using the

described approach for CAC scoring in CCTA, simple image

processing (restricting allowed volume of CAC, limiting the

analysis to the volume of interest) substantially reduced false

positive detections. Nevertheless, retrospective analysis showed

that occasionally false positives remain inside heart and in

the coronary arteries with high HU value. Visual analysis of

the results showed small false positive detections in the distal

RCA representing contrast material. This is also reflected in the

limited Spearman correlation coefficient between the detected

and reference lesions. This might be due to the varying contrast

levels of CCTA, where parts of the coronary artery lumen

had a very high HU value. Likely, locally defined threshold

for the extraction of CAC would alleviate the problem. Future

research should investigate whether this would would benefit the

overall performance. In few cases false positive detections were

representing extra-coronary calcifications. Those were aortic

calcification in the vicinity of the coronary ostia or calcifications

in the aortic valves, which is not uncommon to automatic

calcium scoring methods(19).

Retrospective analysis of the outliers shown in Figures 3 and

4 showed that in one case, a large CAC in the RCA (625 mm3)

was detected by the CNN but removed in the FP reduction

stage because its volume exceeded the maximum expected CAC

volume. In the other case, large CAC in LCX (313 mm3) was

not detected by the CNN. In our training set, median (Q1, Q3)

CAC was 7.1 (1.6, 29.2) mm3 and 95th percentile was 188 mm3.

This shows that the volumes of our false negatives substantially

exceeded CAC examples in the training set. Adding examples

of large CAC lesions in the training set or learning specifically

focused on rare CAC examples might improve the performance.

To train the CNN for detection and labeling of CAC,

three different data sets were used. First, we reused

the CNN trained on a large set of labeled chest CTs

without contrast enhancement. To achieve unsupervised

domain adaptation, non-representative labeled cardiac

CT without contrast and representative unlabeled CCTA

were used. Future work could investigate the optimal size

of each set and the optimal way of injecting different

data into the training, e.g., training the CNN with

different non-contrast CT scan types, refinement with

specific data or introducing different data in the domain

adaptation stage.

To make the cross domain training stable with unpaired

data, the classification loss on the source domain was used.

For cross domain learning with paired data, a feature-wise loss

could be used (31). Given that we don’t have paired data or

register the images to a common space, this kind of loss is

not applicable in our study. In our work, the feature generator

was adapted from source domain to target domain, however,

the classifier was directly reused. This could be done even

though the input images to feature generator are from different

domains because the classifier performs the same task with

aligned feature distributions.

To transfer the knowledge of CAC detection from NCCT

to CCTA, unsupervised domain adaptation was used. When a

limited set of annotated training data from the target domain

is available, it is common to pretrain the network with labeled

data from the source domain and fine-tune the network with

this small set (30, 39). In our case, annotated training data

from the target domain is not available and unsupervised

domain adaptation allows the training with labeled data from

the source domain and unlabelled data from the target domain.

Future work could investigate whether a small set of annotated

images from the target domain may benefit the performance,

possibly also by combining transfer learning approaches with

unsupervised domain adaptation.
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In this study, following the work by Dou et al. (8), the

knowledge about CAC detection was transferred from NCCT

to CCTA by aligning the feature distributions between the two

domains. However, Chen et al. (7) performed unsupervised

domain adaptation by aligning the domains in both image

and feature perspectives. The image alignment was used to

transform the image appearance and narrow the domain shift

between source and target domains. However, we opted for

feature alignment only because lack of visible anatomical

boundaries in non-contrast scans (arteries, cardiac chambers) to

guide the image registration renders image alignment a highly

challenging task. Moreover, very small CAC may disappear due

to registration, which would not be beneficial for learning.

Comparing the proposed method with previously published

deep learning methods on CAC scoring in CCTA scans showed

that the proposed method achieved a competitive sensitivity.

However, the number of false positive detections did not reach

the performance of supervised methods. Methods (22, 23)

that limited the ROI for CAC scoring with coronary artery

extraction, achieved a lower number of FP detections. Future

research could investigate whether limiting the the analysis to

the vicinity of the coronary arteries like proposed by Fischer et

al. (22) and Liu et al. (23) would be beneficial. For this, tracking

the coronary artery centerline (40) could be used.

Bland-Altman plot shown in Figure 3 shows

heteroskedastic-like behavior of CAC scores. This behavior is

not uncommon for CAC scoring methods, because typically

errors tend to increase with higher CAC scores (19, 24).

False negative detections tend to be larger in patients with

higher calcium burden, possibly because their lesions tend

to be larger. Moreover, larger false positive detections often

consist of non-coronary calcifications, e.g., aortic calcifications

in the vicinity of the coronary ostia or cardiac valves,

which are also typically larger in patients with a higher

coronary calcium burden. To calculate the 95% confidence

intervals of the Bland-Altman plots we accounted for the

heteroskedastic behavior by modeling the variation in absolute

differences (33).

While CCTA scans are mainly made to provide important

information on the presence and the amount of non-calcified

plaque and stenosis, cardiac CT scans without contrast

enhancement are the reference modality for quantification

of calcified coronary artery plaque. Hence, limitation of our

method is its ability to quantify calcified plaque in CCTA only.

To fully exploit information contained in CCTA, our further

work will focus on extending the method to quantification of

calcified and non-calcified plaque and stenosis.

In this work, the unsupervised domain adaptation method

was trained with 200 NCCT scans and 200 CCTA scans. Like

with any machine learning methods, training the unsupervised

domain adaptation method with more scans that include more

diversity would likely lead to more accurate performance.

Finding the optimal set size should be a topic of future research.

In the literature, a wide range in inter-observer agreement

for CAC quantification in CCTA has been reported. Specifically,

11% variability in CAC volume when utilizing a scan-specific

threshold (41) and 13–25% when using manual delineation

of CAC (42). Moreover, correlation of CAC volume between

observers of 0.89–0.98 has been reported (42, 43). In the current

study the variability between automatic and reference scores was

21%, with a correlation of 0.73. Given that no clinically used risk

categories are defined based on CAC volume or other CAC score

quantified from CCTA, it remains unclear whether the obtained

errors impact clinical decision-making. Therefore, further work

needs to investigate the value of the extracted CAC scores for

predicting cardiovascular events.

In conclusion, an unsupervised domain adaptation method

for CAC scoring that transfers knowledge from NCCT with

reference labels to CCTA without reference labels has been

presented. The results show that the method achieves a

competitive performance. This may allow for better utilization

of the existing large and annotated data sets and extend

applicability to diverse CT scans without the requirement of

extra annotations.
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