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We developed a general framework for hybrid quantum-classical computing of molecular and periodic
embedding approaches based on an orbital space separation of the fragment and environment degrees of
freedom.Wedemonstrate itspotentialbypresentingaspecific implementationofperiodic range-separated
DFT coupled to a quantum circuit ansatz, whereby the variational quantum eigensolver and the quantum
equation-of-motion algorithm are used to obtain the low-lying spectrum of the embedded fragment
Hamiltonian. The application of this scheme to study localized electronic states in materials is showcased
through theaccuratepredictionof theoptical propertiesof theneutral oxygenvacancy inmagnesiumoxide
(MgO). Despite somediscrepancies in the position of themain absorption band, themethoddemonstrates
competitive performance compared to state-of-the-art ab initio approaches, particularly evidenced by the
excellent agreement with the experimental photoluminescence emission peak.

Over the past decades, the electronic structure simulation of molecular and
solid-state systems has assumed an increasingly important role in the
research anddevelopment of newmaterials.While the exact computationof
ground and excited-state properties poses an exponentially scaling problem
through the solution of the Schrödinger equation,manymethods have been
developed to various degrees of approximation rendering their imple-
mentation feasible. In particular, density functional theory (DFT) has
established itself as a cheap yet effective means for the simulation of a wide
range of systems of interest. However, due to its nature, it falls short in the
description of problems that contain strongly correlated electrons. In gen-
eral, the accurate descriptionof such systems requiresmethods that consider
multiple configuration state functions (CSFs) in order to capture the
complex entanglement between the electrons. These methods of greater
accuracy come at increasingly higher computational costs approaching the
theoretical exponential scaling of the exact solution, therefore limiting their
applicability to problems of relatively small sizes.

In the past decade, significant progress has been made in the devel-
opment of quantum computers, which provide access to a new computa-
tional paradigm that promises to overcome this exponential barrier1,2. This
feat can be achieved by encoding the exponentially scaling wave function
(WF) in apolynomial numberofqubits, the fundamental processingunits of
a quantum computer, which enables the efficient representation of an
otherwise inaccessible computational space. Many algorithms have been

developed to leverage this representation for the computationof groundand
excited-state properties of chemical systems3. However, these algorithms
exceed the quantum computational capabilities of state-of-the-art devices
when applied to large problems. On one hand, this is due to the deep
quantumcircuits that arisewhenencoding a fermionicWF in a set of qubits,
while ensuring the physical nature of the generated superposition. The long
runtime of such quantum circuits exceeds the decoherence times of the
available hardware, resulting in the accumulation of errors that require error
correction to be feasible before we can gain any significant results3. On the
other hand, algorithms that trade the execution of a single long quantum
circuit for a (variational) optimization problem involving many shorter
circuits quickly become infeasible; in particular when targeting systems that
are beyond the current capabilities of classical computational hardware4.

As a short-term solution to these limitations, combined with the
interest of the computational chemistry andmaterials science communities
to leverage this new computing platform, we have seen in recent years
increasing efforts in the development of new hybrid quantum-classical
algorithms. In particular, many embedding methods have been adapted or
newly developed to leverage the quantum resources for the treatment of
embedded fragments, where, in many cases, the computation of a small
region of a larger system is offloaded to the quantum computer, while the
rest is carried out on classical hardware5–13. These efforts have been very
important for exploring the current practical limitations of noisy devices
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and for benchmarking quantum computational approaches for the simu-
lation of chemical and solid-state systems. Crucially, embedding methods
also provide the means to systematically scale the problems of interest
alongside the development of quantum computing hardware, such that the
infrastructure and resources invested now will eventually allow to reach
system sizes and an accuracy beyond what is currently feasible.

Adding to these efforts, this work presents a general framework for the
implementation of active space (AS) embedding methods. In particular, we
show how quantum computing can be used to find the ground and excited
states within an active space embedding into a mean-field level of theory
calculation. While the framework to do so is general, in this work, building
upon earlier work by some of the authors5, we extend the range-separated
DFT embedding scheme to allow embedding not only into molecular but
also into periodic environments.Wedo so by extending theCP2Kpackage14

withourproposed interface to couple to anyASsolver.To leveragequantum
computing for the treatment of the AS, we choose Qiskit Nature15,16 as the
solver.

The communication between the two codes is handled through mes-
sage passingpermitting future extensions aswell as providing a scalable path
towards quantum-centric supercomputing.

The rest of this paper is structured as follows. In the section “Results,”
we start by presenting the general theory underlying the periodic active
space embedding framework based on multiconfigurational range-
separated DFT. We then elaborate on the details of the implementation
and integration of CP2K and Qiskit Nature, before we present the results
obtained by applying the developed methodology to study the optical
properties of the neutral oxygen vacancy inmagnesiumoxide. Finally, in the
section “Discussion,”we discuss the results obtained in this work and draw
conclusions.Complete details about themethods canbe found in the section
“Methods”.

Results
Any active space embedding approach, where a subset of electrons and
orbitals of a system—the fragment—are embedded in an effective
potential generated by the remaining electrons of the systems and all the
ion cores—the environment—may be implemented in the general fra-
mework presented in this work. Here, we use the framework of multi-
configurational range-separated density functional theory (rsDFT)17–24

and the Gaussian and plane waves (GPW) approach25, whereby the
embedding potential is obtained from a mean-field method, while the
fragment Hamiltonian is solved with a correlated wave function ansatz.
The approach and infrastructure we have developed are completely
general; it can treat bothmolecular and periodic systems, it supports spin-
polarized and unpolarized calculations, describes the core electrons
explicitly or through pseudopotentials, and can be combined with both
classical WF and quantum circuit ansatzes alike.

Periodic active space embedding
To introduce the framework for AS embedding methods, we start with the
second-quantized electronic Hamiltonian in the Born-Oppenheimer
approximation. This can be written in atomic units as

Ĥ ¼
X
pq

hpqâ
y
pâq þ

1
2

X
pqrs

gpqrsâ
y
pâ

y
r âsâq þ V̂nn ; ð1Þ

where V̂nn is the Coulomb repulsion between the nuclei, while hpq and gpqrs
are one- and two-electron integrals given by

hpq ¼ ψpðxÞjĥjψqðxÞ
D E

; ð2Þ

gpqrs ¼ ψpðxÞψrðx0ÞjĝjψqðxÞψsðx0Þ
D E

: ð3Þ

The variable x (x0) is a compound variable for the electron coordinates in
space, r (r0), and its spin degree of freedom.The operators ĥ and ĝ in Eqs. (2)

and (3) account for the kinetic energy of the electrons, the electron-nuclear
attraction, and the electron-electron repulsion, and are defined as

ĥðrÞ ¼ � 1
2
∇2 þ

X
P

�ZP

jr� RPj
; ð4Þ

ĝðr; r0Þ ¼ 1
jr� r0j ; ð5Þ

where P labels the ion cores, while ZP and RP denote the corresponding
nuclear charges andnuclear positions, respectively. The indicesp, q, r, s label
general one-particle functions (spin-orbitals), whose corresponding sums
appearing inEq. (1) run through the entire basis set. Theoperator âyp (âp) is a
creation (annihilation) operator adding (removing) an electron to (from)
spin-orbital ψp(x). In an embedding approach like the one presented here,
the fragment of interest is defined in terms of an active space consisting of a
handful of active electrons and active orbitals. All the electrons that are not
part of the AS typically occupy the low-energy states of the system and are
called inactive orbitals; see Fig. 1 for an example ofAS selection inmolecules
andmaterials. Once the AS has been identified, a corresponding embedded
fragment Hamiltonian can be defined in amanner completely analogous to
Eq. (1), that is

Ĥ
frag ¼

X
uv

Vemb
uv âyuâv þ

1
2

X
uvxy

guvxyâ
y
uâ

y
xâyâv ; ð6Þ

with the only difference that the sums are limited to the active orbitals,
labeled by the indices u, v, x, y, and that the one-electron integrals, hpq, have
been replaced by the elements of an embedding potential, V emb

uv . This
potential accounts for the interactions between the inactive and active
electrons in addition to the contributions from the one-electron integrals.
Notice that until this point, this formulation is completely general; we have
not yet specified how to compute the embedding potential. In principle, one
could define an operator that explicitly accounts for all many-body
interactions between the inactive and active subsystems, though probably,
this would result in a methodology that is computationally as expensive as
solving directly the entire problem with such an approach. Therefore, in
practice, the embedding potential introduces approximations to describe
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Fig. 1 | Examples of possible active and inactive space selections for an isolated
and periodic system alike.The left column depicts the qualitativemolecular orbitals
of a water molecule. The right column depicts the molecular orbitals localized
around the positively charged boron vacancy in hexagonal boron nitride. In both
cases, only a small number of orbitals is included in the active space: for water, it is
spanned by the HOMO-LUMO pair, while for boron nitride, by the localized defect
orbitals.
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the low-energy degrees of freedom and the interactions between active and
inactive subsystems. For example, one such option would be to use the
Hartree-Fock (HF) approximation for the inactive electrons, such that the
active electrons only interact with the inactive ones in amean-fieldmanner.
In this case, V emb

uv would simply correspond to the elements of the Fock
matrix. Similarly, as we will discuss in more detail in the next section,
describing the environment using DFT translates into an embedding
potential similar to the Kohn-Sham (KS) one. It is important to realize that,
in general, V emb

uv always depends on the inactive electronic degrees of
freedom, but possibly also on the active subsystem, in which case the
resulting embedding scheme has to be solved self-consistently (see Fig. 2).

To compute the total energy of the system, we can start from the
expectation value of Eq. (1)with respect to the totalWFof the system, that is

E ¼ ΨjĤjΨ� � ¼ X
pq

hpqDpq þ
1
2

X
pqrs

gpqrsdpqrs þ Vnn ; ð7Þ

where

Dpq ¼ ΨjâypâqjΨ
D E

; ð8Þ

dpqrs ¼ Ψjâypâyr âsâqjΨ
D E

; ð9Þ

are the elements of the one- and two-particle reduced density matrices
(RDMs), D and d, respectively. By separating the one-particle RDM (1-
RDM) into inactive and active components, D =DI+DA, and factorizing
the elements of the inactive two-particle RDM (2-RDM) into a product of
1-RDMs (see Appendix A.1 and A.2 of Rosssmannek et al.5 for a detailed
derivation), we can express the total energy as a sum of inactive and active
parts, E = EI+ EA, with

EI ¼
X
ij

hij þ V emb
ij

� �
DI

ij þ Vnn ; ð10Þ

and

EA ¼
X
uv

V emb
uv DA

uv þ
1
2

X
uvxy

guvxyd
A
uvxy : ð11Þ

In Eq. (10) and (11), the indices i, j label inactive orbitals, and the super-
scripts I andAon the density-matrix elements emphasize towhich subspace
they belong (even though the indices and sums implicitly account for that
information). At last, notice that the choice of one-particle functions is
completely general: one can choose localizedmolecular orbitals in the caseof
molecules, crystalline orbitals, or Wannier functions in solid-state systems,
or a combination thereof, e.g., to describe point defects in materials.

To extend the formalism to periodic range-separatedDFT embedding,
the first ingredient is the definition of the one-particle embedding potential,
with elements

V emb
pq ¼ FI;LR

pq þ VSR
H;pq½ρI � þ V SR

H;pq½ρA� þ V SR
xc;pq½ρ� ; ð12Þ

where the elements of the inactive long-range Fock operator are defined as

FI; LR
pq ¼ hpq þ VLR

H;pq½ρI � þ VLR
HFX;pq½ρI � ; ð13Þ

along with the classical Hartree potential, VH[ρ], the exact Hartree-Fock
exchange potential, VHFX[ρ], and the DFT exchange-correlation potential,
Vxc[ρ], evaluated over the indicated electron densities, ρ

I, ρA and ρ = ρI+ ρA

(see the Supplementary Information (SI) for the explicit definition of these
operators in a one-particle basis). The two-electron integrals over the
Coulomb operator are split into long-range (LR) and short-range (SR)
components,

ĝ ¼ ĝω;LR þ ĝω;SR ð14Þ

¼ erf ðωjr� r0jÞ
jr� r0j þ erfc ðωjr� r0jÞ

jr� r0j ð15Þ

whichgive rise to the superscripts LRandSR inEqs. (12) and (13).The range
separation is obtained with the error function and its complement (as
indicated by Eq. (15)), where ω is the range-separation (RS) parameter of
units a�1

0 .
In practice, two issues arise for the direct computation of the inactive

energy and embedding potential according to Eqs. (10) and (12). First, it is
computationally disadvantageous when the inactive subsystem becomes
very large. Second, for periodic calculations, the sums concerning the
electron-electron, electron-nuclear, and nuclear-nuclear interactions are
conditionally convergent, and cannot be easily separated into inactive and
active components. Hence, we express the inactive terms indirectly as the
difference between the total system and the (localized) active subsystem.We
can achieve this by defining the inactive 1-RDM and electron density as
DI =D−DA and ρI = ρ− ρA, respectively. Reformulating Eq. (13) by
replacing ρI = ρ− ρA, yields

FI; LR
pq ¼ Ftot

pq � V SR
H;pq½ρ� � V SR

xc;pq½ρ�
�V LR

H;pq½ρA� � VLR
HFX;pq½ρA� ;

ð16Þ

where the total rsDFT Fock operator is defined as

F tot
pq ¼ hpq þ VH;pq½ρ� þ VLR

HFX;pq½ρ� þ V SR
xc;pq½ρ� : ð17Þ

Inserting the same relation for the inactive electrondensity aswell asEq. (16)
into Eq. (12) results in

V emb
pq ¼ Ftot

pq � VLR
H;pq½ρA� � VLR

HFX;pq½ρA� : ð18Þ

Fig. 2 | Workflow diagram depicting the interaction of CP2K and Qiskit Nature.
The user configures the two classical processes and the socket for the IPC. Each process
then follows the computational steps (rectangular boxes) outlined inside their respective
frames. The data that gets computed and transferred is indicated by the rounded boxes.
Numbers in parentheses refer to the respective equations in this manuscript. The self-
consistent embedding requires a loop which is highlighted by the gray box. This loop is
terminated based on the decision (diamond shape) taken by the CP2K process.
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We can proceed analogously for the expression of the inactive energy,
obtaining

EI ¼ Etot �
X
uv

Ftot
uvD

A
uv þ ELR

H ½ρA� þ ELR
HFX½ρA� : ð19Þ

The active energy component that is needed to compute the total energy,
E = EI+ EA, simply corresponds to the ground state of the fragment
Hamiltonian, Eq. (6). Owing to the similar structure of Eqs. (1) and (6)
essentially any electronic structuremethod can be used in combinationwith
our embedding scheme. In practice, because the space spannedby the active
orbitals and electrons is relatively small, exact diagonalization or a good
approximation thereof is the method of choice. Electronically excited states
can also be targeted by the embeddingmethod, either by directly calculating
the spectrum of Ĥ

frag
or by linear response. However, one has to be careful

that the inactive subspace is normally optimized for the ground state, unless
some form of state-averaging or orbital optimization similar to classical
multiconfigurational quantum chemical methods is introduced26,27. As will
be discussed in the next section, we have used quantum circuit ansatzes to
obtain the ground and excited states energies of Eq. (6). Owing to the
dependence of the embedding potential to the AS electron density, ρA, the
methodchosen to get the spectrumof Ĥ

frag
should also provide this quantity

(more generally, it should provide the 1-RDM). Crucially, this dependence
ofVemb on ρA implies that our embedding approach requires a self-consistent
solution, whereby an updated active density is obtained at each iteration,
which is used to build a refined embedding potential and updated inactive
energy that accounts for the feedback of the active subsystem on the
environment degrees of freedom. A scheme depicting this self-consistent
loop is shown in Fig. 2, when discussing the implementation details in the
section “Quantum-classical interface implementation”.

Finally, it should be emphasized that Eqs. (18) and (19) are valid for
both themolecular and periodic embedding settings, at least when invoking
the Γ point approximation, since only the computation of the total Fock
operator and energy are affected by this change. Hence, in practice, the
presentedmethodology is a generalization ofmulticonfigurational rsDFT to
periodic systems sampled at the Γ point. Furthermore, we point out the
limiting cases provided by the RS scheme: they allow us to recover the
common HF embedding scheme (i.e., complete active space configuration
interaction) as ω approaches infinity as well as KS-DFT as ω approaches
zero. This can be seen in Eqs. (18) and (19), where the standard KS case is
evident as all LR terms simply disappear. The common HF embedding is
also evident from Eq. (17), in which the only DFT-specific term for the
exchange-correlation interaction, V SR

xc , vanishes.

Quantum-classical interface implementation
In this section, we present the implementation details of the integration of
CP2K14 and Qiskit Nature15,16. The developments of this work have been
released as part of CP2K v2024.1, Qiskit Nature v0.7.0, as well as a separate
module handling more specific parts of the integration called qiskit-
nature-cp2k28. In the first part, we discuss the technical aspects and
challenges.Later,wereviewthe future scalabilityandextensibilityof thisdesign.

Interfacing CP2K with Qiskit Nature for the implementation of an
iterative embedding scheme poses a number of challenges. While CP2K is
primarily written in Fortran and provides the means to efficiently run highly
parallelized simulations in a variety of computational setups, Qiskit Nature
(and the underlying Qiskit Qiskit software development kit (SDK)) is mostly
developed in Python and has not yet (at the time of writing) reached a com-
putationalmaturity comparable to CP2K.WhenQiskit Naturewas coupled to
other Python-based computational programs in the past, they could easily
share the samePythonruntimeexecutionenvironmentand, thus, share all data
directly inmemory5,13. For the integration discussed here, this was not possible
in such a straightforward manner. Instead, our implementation relies on a
message passing protocol in order to exchange data between the two codes.
Particularly, for this initial implementation, themessages anddata are sent over

a socket file. This is inspired by a similar architecture used by the i–Pi project29.
Additional technical details are available in the SI.

A socket is an application programming interface (API) used for inter-
process communication (IPC). Using this protocol, it is possible for the
communicating processes to run on the same physical machine or different
ones connected via the internet. The calculation proceeds identically in both
scenarios, with the only difference being the latency of the communication.
However, this is not of concern to us, since the rate-limiting factor of the
communication is (in any case) the bandwidth of the connection to the
quantum hardware. This is also a reason for the choice of using the socket
API for the communication rather than a tighter integration of the two
codes using ctypes. While the latter is likely to have a performance
advantage, the ease of further implementations to couple to other codes
outweighs. Additionally, the computation of the AS solution is also likely to
outweigh the cost of communication.

Figure 2 summarizes the computational workflow of our integration
between CP2K and Qiskit Nature. The diagram depicts a user who has to
configure three parts of their calculation; the CP2K and Qiskit (Nature)
processes depicted on the left and right, respectively, as well as the socket
itself via which the messages are passed between the two codes. Both
computational codeswill start in parallel.WhileCP2Kstarts out byfinding a
low-level solution to the entire system (SCF), Qiskit can use this time to
perform certain preparational tasks that are unique to the execution of
quantum computing hardware and do not require problem-specific data.
For both programs, the user has full flexibility to leverage their respective
capabilities during these initial steps. Upon completion of their respective
steps, both codes will synchronize by performing a handshake through the
socket. If eitherprocess reaches this point before the other, it awaits the other
one. CP2K reaches this point inside its active space module, which was
released as part of CP2K v2024.1. The input to this module configures the
active fragment to be embedded into its environment and computes the
one- and two-body terms of the AS Hamiltonian (i.e., the fragment
Hamiltonian). It allowsboth single-shot and iterative embedding routines to
be performed. In Fig. 2 we have depicted the final rsDFT embedding pro-
tocol. However, some of the components do not change throughout the
course of the self-consistent embedding. These can be pre-computed only
once during the initialization procedure. A key example is the LR-electron-
repulsion integrals (ERIs) (cf. Eqs. (3) and (15)). Therefore, these only have
to be transferred to theQiskit process once.Components that dependon the
active density of the current iteration, ρA,(i), have to be updated and
exchanged during every iteration of the loop indicated by the gray frame in
Fig. 2. During every such iteration, Qiskit Nature constructs the Hamilto-
nian of the active fragment (cf. Eq. (6)) using the LR-ERIs and embedding
potential, V emb

uv ½ρA;ðiÞ�, (cf. Eq. (18)). It then proceeds with finding the
ground-state solution to this Hamiltonian using the quantum circuit ansatz
specified by the user. Upon completion, it will return the active energy,
EA,(i+1), and active 1-RDM, DA;ðiþ1Þ

uv , to the CP2K process. CP2K will then
perform a convergence check based on the total energy, E = EI+ EA,(i+1). If
convergencehas not been reached,CP2KandQiskitwill return back to their
respective steps of the embedding protocol to proceed with another itera-
tion. If this check succeeds, both processes will be signaled to terminate.
During their shutdown procedures, both processes may perform additional
post-processing steps. For example, Qiskit Nature may compute additional
properties using the final ground-state WF including the computation of
excited-state energies.

At this point one might wonder how scalable this design is for the
future. Indeed, the transfer of the two-body integrals is the limiting factor
here. If CP2K andQiskitNaturewere able to leverage a sharedmemory, this
would alleviate the need for transfer completely. However, only up to the
point where the mapped qubit Hamiltonian needs to be transferred to the
QPU (quantum processing unit). Until we have a direct high-bandwidth
connection between the CPU andQPU, this transfer of data will remain the
rate-limiting factor. Therefore, within the scope of this more general pro-
blem, we deem the current implementation and design as scalable. Fur-
thermore, future improvements toaid in the transferof data to theQPU that
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will be implemented into the quantum stackwill be accessible directly to the
end-users of our integration because it only serves as a middleman between
the two codes.

Once again, we emphasize that the presented architecture provides a
general framework for the implementation of active space embedding
approaches. From a software perspective, any two codesmay be coupled via
the described interface. From a theoretical perspective, it is straightforward
to implement other embedding approaches into an existing implementa-
tion. For example, a projection-based embedding approach such as this
earlier work by some of the authors13 can simply be implemented by adding
a new subroutine to CP2K to compute the embedding potential without
requiring any further changes to the integration protocol or the AS solver.

Optical properties of the oxygen vacancy in MgO
To test our implementation we have studied the optical properties of the F0-
center (neutral oxygenvacancy) inmagnesiumoxide,whose nature remains
unclear despite the many experimental30–33 and computational34–41 studies
carried out in the past decades. This data will allow us to compare the
accuracy of the periodic rsDFT embedding with respect to both experi-
mental spectra as well as state-of-the-art ab initio methods.

We have considered four different supercell sizes: the 2 × 2 × 2,
3 × 3 × 3 and 4 × 4 × 4 supercells constructed from the primitive unit cell,
and the 2 × 2 × 2 supercell constructed from the conventional unit cell; see
Fig. 3. The embedding calculations were performedby including 2 electrons
and 5 orbitals (10 spin-orbitals in total) in the AS, which are shown within
the band structure diagram in Fig. 4 (and are reproduced with higher
resolution in the SI). Four of the five active orbitals are localized at the
vacancy and are labeled according to the (localized) octahedral symmetry
around the defect (Oh point group). The remaining orbital included cor-
responds to the conductionbandminimum(CBM)and is a fully delocalized
conduction s-band, which we label as CBM in the following. The ground
state energy of the embedded fragmentHamiltonianwas obtained using the
variational quantum eigensolver (VQE) algorithm4 with a quantum unitary
coupled cluster singles and doubles (q-UCCSD) ansatz42, and the excited
states were obtained using the quantum equation of motion (qEOM)
approach43. A brief review of the most important quantum computing
concepts is provided in the section “Quantum computing”, along with
detailed information on the computational settings used for these calcula-
tions in section “Computational details”.

Aneutral oxygen vacancy inMgO introduces a 1 s-type localizeddefect
orbital at mid-gap that is doubly occupied in the 1A1g electronic ground
state. We shall call this orbital the mid-gap orbital. Three more defect-
localized degenerate one-particle states of t1u symmetry (p-like orbitals)
appear within the conduction band. These three orbitals are energetically
slightly above the CBM, which corresponds to the delocalized s-band. The
four orbitals localized at the oxygen vacancy and the CBMone are shown in
Fig. 4 andare believed to be responsible for the optical properties of defective
MgO; for this reason,we included them in the active spaceof our embedding
calculation, along with the 2 electrons occupying the mid-gap defect state.

Experimentally, it is well established that the absorption peak of the F0-
center is at 5.03 eV,which is extremely close to thatof theF+-center (that is, a
positively charged oxygen vacancy) at 4.96 eV30,31.We identified the vertical

excitation energies corresponding to the transition of one electron from the
mid-gap orbital to either the CBM or the t1u orbitals, denoted as
1A1g→

1CBM and 1A1g→
1T1u, respectively. In Fig. 5, we show in blue and

green the energies obtained for these states as a function of the number of
atoms in the supercell. Notice that the energies calculated with our
embedding method are obtained directly frommany-body wave functions,
thus they account for electron-hole interactions and the exciton binding
energy.We performed an extrapolation to the thermodynamic limit (TDL)
assuming a N�1

atoms convergence to correct for finite-size effects, which is
shownasdashed lines inFig. 5.Ourbest estimates are reportedat thebottom
of Table 1, along with all the energies obtained for the different supercell
sizes. The transition to the 1CBM state is predicted to be 4.60 eV, while for
the (triply degenerate) one to the 1T1u state, we get 5.78 eV. The experi-
mental absorption peak at 5.03 eV corresponds to the 1A1g →

1T1u, as the
excitation to the CBM is dipole-forbidden; we, therefore, overestimate the
experimental value by 0.75 eV. This result can be compared to a number of
other computational studies on the F0-center in magnesium oxide, which
have been performed with a large variety of methods from both the solid-
statephysics andquantumchemistry communities. FromTable 2wecan see
thatmost of thequantumchemistrymethodsoverestimate the absorption to
the localized 1T1u state, while FN-DMC36 and G0W0-BSE

35 reproduce the
experimental absorption peak, despite the fact that they likely target the
CBMstate rather than the defect one. Thismay suggest that the transition to
the 1T1u obtained with those methods is possibly overestimating the
experimental absorptionmaximum. Our calculations consistently predict a
blue-shifted absorption by ~0.5 eV compared to the embedded-BSE@DDH
of Vorwerk et al.39.While normally, the small (2,5) AS could be a reason for
this, the AS convergence study reported in the SI suggests otherwise, as
virtually the same results are obtained with 8 electrons in 60 orbitals. We,

Fig. 3 | The four supercells used in the calculations. Magnesium atoms are in green, oxygen atoms are in red, the oxygen vacancy is colored in black.

Fig. 4 | Band diagram of the F0-center in magnesium oxide. The closed-shell A1g

singlet-spin ground state is depicted, with two electrons occupying a defect orbital
labeled a1g within the gap. Singlet and triplet excitons occur when an electron from
themid-gap orbital is excited either to the fully delocalizedCBMstate or to one of the
three t1u defect orbitals within the conduction band (CB).
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therefore, ascribe the blue-shift to the lack of orbital relaxation in the
environment, which is optimized for the ground state only. In passing, we
also note that the observed weak dependence on the active space size in our
calculations is due to the RS parameter used in this work, ω ¼ 0:14a�1

0 . A
larger value of ω would increase the importance of the active space size, as
shown in the SI forω ¼ 0:4a�1

0 , highlighting the sensitivity of themethod to
the value used for the RS parameter. Therefore, it is important to choose an
active space that is not only relevant to the physical problem at hand, but
that is also converged with respect to the value of ω. A more detailed
discussion about this is available in the section “Methods” of the SI. Inter-
estingly, density-matrix embedding theory40 predicts the absorption to the
CBM state to be higher than the one to the localized state, perhaps owing to
themissing extrapolation to the TDL.The onlymethod that underestimates
the absorption is TDDFT, with an absorption peak centered at 4.85 eV37.

The photoluminescence (PL) of defective MgO is considerably more
complicated than the absorption, and several interpretations have been
brought forward throughout the years. Themain source of ambiguity is the
vicinity of the absorption peaks of the F0, F+, and F2+ centers, which are all
likely to be excited by incoming irradiation at 5 eV, significantly compli-
cating the assignment of the emission bands to the correct point defect and
electronic state. Experimentally, there are two very distinct peaks visible in
the PL spectrum, one at 2.3 eV and one at 3.2 eV32,33. The former has been
associated with an emission from the F0-center, while the latter to an
emission from the F+-center32,33. The initial explanation for the long-lived
nature of the 2.3 eV band was based on temperature-dependent experi-
ments carried out on samples prepared in different ways and containing
different concentrations of F0-centers and hydrogen impurities. The pro-
posedmechanism involves the escape of an electron in the conduction band
upon excitation of the F0-center, leaving behind a positively charged oxygen
vacancy, an F+-center. Hydrogen impurities in the sample then act as traps
for themobile electrons,whichmaybe thermally releasedback at a later time
into the conduction band. Two processes can happen with the released
electrons: they may encounter F+-centers left behind after the absorption
process, in which case they recombine in an excited 1T1u state of the F

0-
center that quickly emits light, or they may be recaptured by H− traps,
slowing down the overall emission process. An alternative, more straight-
forward interpretation is that the emission band is simply due to triplet
phosphorescence from a localized 3T1u state at the defect, accessed via inter-
system crossing from the excited 1T1u state. This second interpretation is the
most accepted explanation in recent computational studies, corroborated by
calculations based on advanced ab initio methodologies37–40 (in contrast to
the first interpretation based on older semi-empirical methods and
experiments32,33).

In light of this analysis, we also investigate the second pathway as the
leading emission process and compute the photoluminescence from the

relaxed 3T1u structure and state. Our results are shown by the orange and
yellow lines in Fig. 5 and listed in Table 3. The predicted value for the
emission from the localized triplet state is 2.44 eV and is in very good
agreementwith the experimental value of 2.3 eV. In particular, we aremuch
closer to this value than other methodologies, which consistently predict
higher energies for this emission band as shown in the last column of
Table 2. The better accuracy of this value with respect to experiment
compared to the singlet excitation energy obtained for the absorption to the
1T1u state is likely due to the relaxed inactive orbitals, which have been
optimized for this state in the reference SR local density approximation
(LDA) SCF calculation. These should provide a better embedding potential
compared to that for the excited singlet state, whose inactive orbitals were
optimized for the closed-shell ground state. Nevertheless, one has to be
careful when comparing different theoretical works, since these focused on
different states or mechanisms. The work by Vorwerk et al.39 reported
2.93 eV as the PL from the F+-center, hence to be compared with the
experimental value of 3.2 eV. The earlier work based on FN-DMC36 and
G0W0-BSE

35 reported the emission from the singlet state (whether theCBM
or T1u state is unclear), and have concluded that the assignment from the
experimental studies should be re-evaluated, with the 3.2 eV peak assigned
to the F0-center rather than the F+ center. All the works using approaches
based on quantum chemistry methods, that is NEVPT2-DMET, EOM-
CCSD, TDDFT, and CASPT2, analyze the transition 3T1u→

1A1g like us
and compare their results against the 2.3 eV band34,37,38,40. Here, we do the

Fig. 5 | Vertical absorption and emission energies as a function of the (inverse)
number of atoms in the supercell. Filled green squares and blue circles correspond
to calculated singlet absorption energies, while filled upside-orange and downside-
yellow triangles correspond to calculated triplet emission energies. Dashed lines are
linear extrapolation curves to the TDL, whose value is marked with a corresponding
empty symbol.

Table 1 | Optical singlet absorption energies (in eV) of the F0-
center in MgO

Cell N�1
atoms

1A1g →
1CBM 1A1g →

1T1u

p 2 × 2 × 2 0.067 10.27 12.59

p 3 × 3 × 3 0.019 6.24 7.74

c 2 × 2 × 2 0.016 5.59 7.06

p 4 × 4 × 4 0.008 5.52 6.83

→ ∞ → 0.0 4.60 5.78

The bottom row contains the values extrapolated to the TDL.

Table 2 | Comparison of predicted optical absorption and
photoluminescence energies (in eV) obtained with different
computational methods

Method Structure 1A1g →
1CBM 1A1g →

1T1u Emission

qEOM-srLDA
(this work)

periodic 4.60 5.78 2.44

NEVPT2-
DMET@ROHF40

periodic 5.67a 5.24 2.89

embedded-
BSE@DDH39

periodic 4.13 5.23 2.93b

EOM-CCSD
(GTOs)41

periodic - 5.31 -

EOM-
CCSD (PWs)38

periodic - 5.28 3.66

TDDFT@PBE037 periodic - 4.85 2.90

FN-DMC@PBE36 periodic 5.00 - 3.80b

G0W0@LDA0-
BSE35

periodic 4.95 - 3.40b

CASPT2(2,2)34 cluster - 5.44 4.09

experiment - dark 5.0330,31 2.3032,33

Different computational studies computed the emission energies from different states, see the
footnotes and the main text for more information.
aValue corresponding to the p 4 × 4 × 4 system.
bValue obtained for the emission from a different state than 3T1u.
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same, and we get the best theoretical result so far, which corroborates the
experimental assignment of the 2.3 eV band to the F0-center, though ori-
ginating from a different mechanism than the originally proposed one.
While this is not conclusive evidence, the competing interpretation relies on
emission from the singlet state, 1T1u→

1A1g, which is normally expected to
be higher in energy than the corresponding triplet one, hence further away
from the experimental value.

Discussion
Wedeveloped a general framework for hybrid quantum-classicalmolecular
andperiodic embedding calculations basedon anorbital space separation of
the system into fragments and environments. This framework has been
implemented in the CP2K package, leveraging many of its functionalities
and taking advantage of its high parallel efficiency. The modular nature of
the implementation allows us to easily develop several types of embedding
schemes and to couple different solvers to obtain ground and excited states
energies and properties of the embedded fragmentHamiltonian. It supports
both classical wave function and quantum circuit ansatzes, and the com-
munication between CP2K and the solver is handled by sockets, which
seamlessly integrate within current supercomputing facilities but are also
ready for a more quantum-centric high-performance computing vision.

To demonstrate the potential of the new framework in practice, we have
implemented a range-separated DFT embedding scheme that enables the
study of both finite and extended systems. This approach is essentially an
extensionofmulticonfigurational range-separatedDFT toperiodic boundary
conditions and relies on the range-separation of the two-electron integrals in
long- and short-range components. Within this approach, any correlated
wave function method can, in principle, be coupled with DFT in a self-
consistent scheme, whereby the former is used to obtain the spectrum of a
fragment Hamiltonian and the latter to construct an embedding potential
generatedby the environmentdegrees of freedom. Inparticular, as part of this
work,wehave implementedan interface toQiskitNature28 that allows tomap
the fermionic fragment Hamiltonian to a qubit Hamiltonian, whose ground
and excited states can be obtained with the quantum algorithm of choice.

Thedeveloped rsDFTembedding schemehas awide application scope,
allowing the investigation of both strongly correlated molecular systems, as
well as localized electronic states in materials, such as those arising from
vacancies and impurities. To this end, we have demonstrated its accuracy
and applicability by studying the optical properties of the neutral oxygen
vacancy inMgO, whereby both defect-localized and delocalized states have
been treated on equal footing, and the low-lying spectrum of the embedded
fragment Hamiltonian has been calculated by VQE and qEOM, in com-
bination with the q-UCCSD ansatz. Our calculations for the absorption
spectrum predict a peak at 5.78 eV, a value that overestimates the experi-
mental result by 0.75 eV, but which lies in the same ballpark as other
sophisticated computational approaches. On the other hand, the predicted
PL emission of 2.44 eV from the 3T1u state almost perfectlymatcheswith the
experimentally measured signal at 2.3 eV, and provides new evidence on a
system that has eluded state-of-the-art ab initio approaches for the last
decade.While the accuracy of themethod for the absorption leaves room for
improvement, and the excellent agreement for the emission is certainly
helped by favorable error compensation, the present study shows that
current hybrid quantum-classical algorithms can reach an accuracy similar

to that of classical state-of-the-art ab initio methodologies for problems
beyond simple model systems.

Many possible future directions are envisioned based on this work. On
one hand, the periodic rsDFT embedding scheme canbe extended in several
ways. For instance, introducing orbital optimization would allow the
incorporation of the feedback from the correlated active space wave func-
tion onto the inactive long-range component; this would be particularly
important for accounting for the changes in the environment when tar-
geting states other than the ground state. Furthermore, it would make the
embedding scheme truly variational, significantly simplifying the calcula-
tion of analytical forces. State-averaging would also be a useful extension,
allowing a more balanced description of several states simultaneously. This
is fundamental in cases where near-degeneracies are prominent, such as in
molecules and materials containing open-shell transition metals. While
optimally tuned short-range LDA performed well in this study, imple-
mentingmore SR functionalswill provide alternatives to caseswhereLDA is
not sufficiently accurate.

Future directions that are not strictly tied to the rsDFT embedding
scheme are also envisaged. For instance, one possibility is to implement
orbital localization schemes based on maximally localized Wannier func-
tions andpair natural orbitals, whichwould allow the study of pristine solid-
state materials, where localized states do not arise naturally due to
symmetry-breaking of the supercell. Owing to the local nature of electron
correlation, orbital localization could also simplify the construction of
hardware efficient ansatzes, thereby potentially increasing the maximum
size of the active space. Additionally, CP2K can be interfaced with other
classical active space solvers, such as those based on selected configuration
interaction, which would also allow the study of larger fragment Hamilto-
nians solely on classical hardware.

Finally, the use of quantum computing will allow scaling the size of the
active space to sizes beyond what can be treated with purely classical
methods. While the practical applicability of this may not lie within the
foreseeable future, recent advancements show a promising trend of hybrid
quantum-classical algorithms to treat non-trivially sized active spaces44. The
flexible framework presented in this work enables researchers to leverage
these developments directly, opening upmany possible application avenues
for the future.

Methods
In this section, we first review the core quantum computing ingredients
needed to obtain the embedded fragment Hamiltonian eigenvalues, and
then we report the detailed computational settings used for the embedding
calculations.

Quantum computing
We leverage quantum computing to find the ground and excited-state
solutions of the embedded fragment Hamiltonian (cf. Eq. (6)). We do so
through themeans of the newly developed integration between CP2K14 and
Qiskit Nature15,16 which we discussed in more detail in section “Quantum-
classical interface implementation”. In recent years, quantum computing
has made significant progress in emerging as a new computational para-
digm that promises great advances for the simulation of chemistry and
material science problems3. In particular for the latter, the ability to treat
localized fragments embedded into periodic systems using quantum com-
puting platforms is particularly appealing.While we rely on state-of-the-art
hybrid quantum-classical algorithms such as the VQE4 and qEOM43, the
presented embedding framework is not coupled to these choices and can
leverage any advancements in thefield of quantumcomputing that are yet to
come. This also holds for themodular integration of the two computational
codes, as shown earlier in section “Quantum-classical interface imple-
mentation”. In this section, we briefly review the theoretical foundations of
the quantum computational tools used throughout this work.

In order to simulate a fermionic system on a quantum computer, one
must first map the second-quantized Hamiltonian (cf. Eq. (6)) into a form
that the quantum computer can work with. Since the fundamental

Table 3 | Photoluminescence energies (in eV) of the F0-
center in MgO

Cell N�1
atoms

3T1u →
1A1g

3CBM → 1A1g

p 2 × 2 × 2 0.067 6.59 10.05

p 3 × 3 × 3 0.019 3.54 5.74

c 2 × 2 × 2 0.016 3.38 5.38

p 4 × 4 × 4 0.008 3.02 5.02

→ ∞ → 0.0 2.44 4.14

The bottom row contains the values extrapolated to the TDL.
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operational unit of a quantum computer is a two-level system, a so-called
qubit, the translation routines are referred to as fermion-to-qubitmappings.
Many such mappings exist45–50, but in this work, we employ the parity
mapping47. It maps the fermionic creation, âyp , and annihilation, âp,
operators acting on spin-orbital, p, to a tensor product of identities, I , and
Pauli matrices, fσ̂Xp ; σ̂Yp ; σ̂Zp g, which correspond to the principal single-qubit
rotations along the Cartesian axes. The mapping can be written as

âp ! �
p�2

q¼1
I q

� �
σ̂zp�1σ̂

�
p �M

q¼pþ1
σ̂Xq

� �
; ð20Þ

âyp ! �
p�2

q¼1
I q

� �
σ̂zp�1σ̂

þ
p �M

q¼pþ1
σ̂Xq

� �
; ð21Þ

where σ̂ ± ¼ ðσ̂X ± iσ̂Y Þ=2 are the so-called ladder operators. Thismapping
encodes the parity information, that is, the number of occupied fermionic
modes up to a given indexmodulo 2, into the qubit at that given index. This
is called the paritybasisof thequbits and canbe interpretedas the dual to the
occupation basis, the basis of the common Jordan-Wigner mapping45, in
which the occupation of every fermionic mode is directly encoded in the
corresponding qubit. The advantage of the parity mapping, and the reason
that we employ it here, is a trivially arising symmetry for particle-number
preserving Hamiltonians. In such cases, two qubits, namely the middle and
last one, carry redundant information, and, thus, may be removed from the
system without loss of information. This is known as the two-qubit
reduction47.

The resulting qubit Hamiltonian is a weighted sum of the form1

Ĥ
qu ¼

X
p

cpP̂p ; ð22Þ

where each Pauli string, P̂p, is a tensor product of identities and Pauli
matrices.Crucially, thenumber of unique terms in Ĥ

qu
scales asOðM4Þ, just

like the number of two-body interactions in the original second-quantized
Hamiltonian, Eq. (6).

The VQE4 is a hybrid quantum-classical algorithm to find the ground
state of any Hamiltonian. It has gained a widespread interest as an alter-
native to quantum phase estimation (QPE) since it is more amenable to
near-term quantum computers. It does so by replacing the execution of a
single long-running quantum circuit with the sampling of many shorter-
duration circuits. The fundamental principle of the VQE is based on the
expectation value computation of an observable, Ô, with respect to some
reference state, Ψ, as

Ô
� � ¼ ΨjÔjΨ� �

ΨjΨh i : ð23Þ

Finding the ground state of a Hamiltonian, Ĥ, amounts to using a para-
meterized ansatz for the WF, Ψ(θ), and variationally optimizing the para-
meters, θ, with respect to the expectation value, Ĥ

� �
. In recent years, many

variants of the VQE algorithm have been developed (see, for instance,
refs. 51–54), which oftentimes leverage specific structures found in parti-
cular ansatzes for the WF. Since we are only simulating the execution of
quantumcircuits on classical computers,we donot require improved circuit
depths or other benefits brought about by these algorithmvariants. Thus,we
employ the unaltered VQE algorithm.

Choosing an ansatz for the VQE algorithm is a difficult task. On one
hand, it has to be expressive enough to contain the true ground state in its
parameterized subspace of the entire Hilbert space. On the other hand, it
should be limited in its circuit depth implementation to ensure that it can be
executed on near-termquantum computers. Both of these properties can be
achievedbymeansofhardware efficient ansatzes (HEAs),which canevenbe
tailored to respect the limited qubit connectivity of the quantum computing
hardware.However, optimizationof such ansatzes canbe challengingdue to
the large number of variational parameters55.Moreover, chemical problems,

such as the ones we are interested in here, are constrained to the Fock space
that often exhibits additional symmetries, further restricting the size of the
subspace containing the true physical ground state. Therefore, chemistry-
inspired ansatzes have been developed which are designed to explore only
this physical subspace, a famous example of which is the quantum unitary
coupled cluster (q-UCC) ansatz42. Its major drawback is the significant
circuit depth overhead associated with the implementation of these con-
straints. Nonetheless, it is still orders of magnitude cheaper than an
implementation of the QPE algorithm42.

Manydifferent (hybrid) quantumalgorithmsexist for the computation
of excited states43,56,57; in thiswork,we rely on the qEOMmethod43. It has the
advantage that, once a ground-state solutionhas been found, one only needs
to perform additional measurements on this optimized WF. Other algo-
rithms, however, may require an entire new optimization procedure to be
completed for each targeted excited state56.

The fundamental idea of qEOM relies on a classical computer solving
the equations of motion while a quantum computer is used for the mea-
surement of thematrix elements that go into the systemof equations.When
including only single and double excitations in the operator basis, the
measurement cost of thesematrix elements scales just like themeasurement
cost of the Hamiltonian expectation value with its number of termsOðM4Þ.
This can be seen from the expectation values that give rise to the excitation
energies that we are after

E0n ¼
0 Ôn; Ĥ; Ô

y
n

h i��� ���0D E

0 Ôn; Ô
y
n

h i��� ���0D E ; ð24Þ

where ∣0i denotes the ground state and Ô
y
n ¼ ∣ni 0h i is the excitation

operator from the ground state to the n-th excited state (and Ôn is the
matching de-excitation operator). For more details we refer the interested
reader to the original paper by Ollitrault et al.43.

Computational details
In the calculations of the neutral oxygen vacancy in magnesium oxide we
have used four supercells. For each supercell size, wehavefirst optimized the
cell parameters and geometry of the pristine system with spin-unpolarized
KS-DFT and the Perdew, Burke, andErnzerhof (PBE) functional58, together
with the geometrical response valence triple-ζ basis set59 and correlation-
consistent polarization functions (ccGRB-T basis set in CP2K). The core
electrons were described by the Goedecker-Teter-Hutter pseudopotential
optimized for thePBE functional60–62. TheDFTcalculationswere performed
within the GPW approach25,63, using plane-wave absolute and relative cut-
offs of 1000 and 50 Rydberg, respectively, and a 4-layer grid for the
numerical integration.

To create the vacancy, we removed a single oxygen atom from each
optimized pristine supercell and relaxed again the geometry of all systems
with the same settings as just discussed, while keeping the cell parameters
fixed.Note that the ground state of the F0-center inMgO is closed-shell, and
therefore spin-unpolarized DFT describes it well. To perform the rsDFT
embedding calculations, we reduced the basis set to a double-ζ plus
polarization (ccGRB-D) for all atoms but the six magnesium ones sur-
rounding the vacancy, for which we kept the triple-ζ basis. In addition, we
have also added the triple-ζ basis functions of oxygen at the vacancy site,
calculated as the center of mass of the six coordinated magnesium atoms.
Furthermore, we changed the pseudopotential to the one optimized for
hybrid functionals. We used the LDA functional in its SR form64–66 in
combination with a truncated Coulomb potential67 for the LR HF com-
ponent of the functional, using a truncation radius of 4.25Å. We shall note
that a truncation radius between 4 Å and 6 Å has been shown to provide
total energies essentially converged to an accuracy of microHartree/
atom67,68. Therefore, we expect that the use of a fixed truncation radius with
an increasing supercell size does not introduce significant errors, especially
considering that we target relative rather than absolute energies. The choice
of LDA is a constraint of our current implementation, but it nevertheless
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provides very good accuracy in combination with the optimal tuning
procedure. The development of SR generalized gradient approximation
(GGA) and meta-GGA density functionals is left for future work. The RS
parameter was set to 0:14a�1

0 , which was optimally tuned by matching the
bandgap of the largest pristine supercell to the experimental bandgap value
of 7.77 eV69. This is significantly smaller than the optimal value suggestedby
Fromager et al.21 formolecules,ω ¼ 0:4 a�1

0 , and is ascribed to two reasons.
First, the value in ref. 21 was chosen to best divide dynamic and static
electron correlation components, rather than a fit to best reproduce
molecular properties. Second, the absence of core electrondensity due to the
use of a pseudopotential alleviates the constraints on ω, and a smaller value
is expected to be a good approximation in combination with the LDA
functional21. At last, a value of 0:14a�1

0 is in line with the range generally
used in optimally tuned RS hybrid functionals as well70,71.

As the active space solver for the embedded fragment Hamiltonian we
have used the VQE algorithm4 with a q-UCCSD ansatz42. For the latter, we
employ its original formulation involving two Trotterizations1,42 matching
the implementation provided by the Qiskit Nature package16. The absorp-
tion and emission excitation energies were obtained by calculating the
lowest ten excitonic states of singlet and triplet spin symmetry, respectively,
using the qEOM approach43. The absorption energies were obtained at the
ground state geometry, and the qEOM approach was used on top of the
ground state AS embedding calculation with restricted orbitals and a spin-
unpolarized short-range density functional. For the photoluminescence, we
used instead the relaxed geometry of the 3T1u excited state, which was
optimizedusing time-dependentdensity functional theory (TDDFT)within
the Tamm-Dancoff approximation (TDA)72,73 on top of the 1A1g ground
state DFT calculation. The other computational settings were the same as
those used for the ground state geometry relaxation. The calculation of the
triplet energieswas carried outwith qEOMon top of a tripletAS embedding
calculation with unrestricted orbitals and a spin-polarized SR density
functional. TheAS embedding calculations for both singlet and triplet states
converged to an energy change of 1 × 107Eh.

Asdiscussed in the section “Optical propertiesof the oxygenvacancy in
MgO”, the active space size selected was of 2 electrons in 5 orbitals. We
should note that the q-UCCSD ansatz for 2 electrons is equivalent to an
exact diagonalization, which we confirm by also performing all calculations
using the classical full configuration interaction (FCI) solver of PySCF74. To
ensure that the energies calculated with such a small AS are converged with
respect to its size, we have performed a systematic study increasing the AS
up to 8 electrons in 60 orbitals. We have found that for this system and our
choice of ω ¼ 0:14 a�1

0 , the energies do not change significantly with
respect to AS size (see section 4 of the SI for all the details of this test and a
thorough discussion). This shows that the use of RS DFT allows for a very
compact expansion of the long-range wave function, especially in combi-
nation with a small value ofω. A direct consequence of this, and the closed-
shell nature of the ground state, is such that the energetic contribution of the
embedding on top of the reference SRLDA is minimal, and so is the change
in the ground state electron density due to the self-consistence cycles.

Finally, for the main results of this work, the quantum circuits were
simulated without the addition of artificial noise using Qiskit15 (version
0.45), though, we performed a number of simulations, including sampling
noise. These results are discussed in section 6 of the SI.

The SI provides additional theoretical and technical informationon the
embeddingmethod, alongwith absorption and emission energies calculated
with TDDFT (section 5).

Data availability
All input and output files, structure files, tabulated raw data, and scripts to
perform the simulations are available on the Materials Cloud platform at
https://doi.org/10.24435/materialscloud:47-6g.

Code availability
The software packages and their respective versions used in this work are
available as per their citations in the main text. Input files and other scripts

can be obtained together with the raw data of this work as per the next
section.
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