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Abstract: Recent advances in the microfabrication technology have made it possible to control
surface properties at micro- and nanoscale levels. Functional surfaces drastically change wettability
and condensation processes that are essential for controlling of heat transfer. However, the
direct observation of condensation on micro- and nanostructure surfaces is difficult, and further
understanding of the effects of the microstructure on the phase change is required. In this research,
the contact angle of droplets with a wall surface and the initial condensation process were analyzed
using a molecular dynamics simulation to investigate the impact of nanoscale structures and their
adhesion force on condensation. The results demonstrated the dependence of the contact angle of the
droplets and condensation dynamics on the wall structure and attractive force of the wall surface.
Condensed water droplets were adsorbed into the nanostructures and formed a water film in case of
a hydrophilic surface.
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1. Introduction

With recent advances in the micro- and nanoscale processing and measurement technology, it has
become possible to add fine structures to surfaces [1–3]. These microstructures are known to have
significant effects on wettability of liquids [4–6] and are expected to be able to control water–surface
interactions and wettability by changing the size of wall structures [7,8]. Wettability of metals and
nanostructures changes the friction of objects, chemical reaction on the surface, and crystallization
of proteins [9–15]. Mirco-nanosurface is also expected to be used as a highly efficient heat transport
device. In case of the condensation heat transfer, micro-nanostructure of a condensation surface
is quite essential for achieving a high heat transfer [16]. The condensation growth morphology
depends on micro-nanoscale surface topography [17,18]. Also, the condensation form, filmwise and
dropwise condensation, is controlled by the surface structures [19,20]. For this reason, the impact
of surface structure and wettability on the condensation characteristics has been experimentally
investigated [21–29]. However, it is still difficult to observe the initial stage of liquid condensation on
nanoscale surfaces directly and analyze the mechanism of the observed phenomena using experimental
methods alone. Wettability is affected not only by the shape and size of asperities but also the molecular
scale crystal structure of materials [30,31]. Therefore, detailed observations at the atomic scale are
required to understand the mechanism of condensation on nanoscale structures.

Analysis using a molecular simulation is one way to elucidate such nanoscale phenomena [32,33].
In previous studies, wettability and the contact angle of droplets with nanoscale surfaces were analyzed
using molecular dynamics simulations [6,34,35]. They demonstrated that the Wenzel state [36] and
Cassie-Baxter state [37] can be observed depending on the size and spacing of nanostructures, as well
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as parameters of the molecular interactions between water and surface molecules. The schematic
diagrams of the Wenzel state and Cassie-Baxter state are shown in Figure 1. Larger adsorption energy
between a wall and water puts the former in the Wenzel state. Also, the smaller the height of a structure,
the lower the gap between its wall and droplets, which puts the structure in the Wenzel state [34].
While molecular dynamics calculations have been performed for droplets on nanosurfaces, there
are not enough studies focusing on condensation, except only a few investigating condensations on
nanostructures under limited conditions [38,39]. These latter studies analyzed the temperature change
during condensation and heat flux on surfaces. In the condensation heat transfer on wall surfaces, the
size of the structure, material, and water–solid interaction are considered to play an important role.
Widely analyzing the size of structures and their interaction with water is essential for understanding
the micro- and nanostructure effects on water condensation. Therefore, in this study, we performed a
molecular dynamics simulation to reveal the condensation mechanism of water droplets from vapor
on nanoscale structures. In addition, we analyzed the contact angles in the static state in relation to the
condensation types. The wall–water interaction parameter was changed in the range of hydrophilic to
hydrophobic region.
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To investigate the effect of adhesion force of wall on the wetting and condensation, the parameter ε 
was changed as shown in Table 1, ε = 19.74 kJ/mol (hydrophilic) to 0.06168 kJ/mol (hydrophobic). 
This approach that changes the ε parameter is similar to the previous molecular dynamics simulation 
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Ewald method was employed for the calculation of Coulombic interaction. The calculation was 
performed using GROMACS [41,42]. The simulation was performed under constant number of 
molecules, volume, and temperature (NVT). The temperature was controlled by Nose–Hoover 
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2. Computational Methods

We performed a molecular dynamics simulation to analyze the effect of the surface structure
on the water wettability and condensation process. Coulombic and van der Waals interactions were
treated as the intermolecular interactions. The TIP4P model [40], which is the four-site model, was
employed as a water molecule model and the Lennard-Jones particle was used as the wall surface.
To investigate the effect of adhesion force of wall on the wetting and condensation, the parameter
ε was changed as shown in Table 1, ε = 19.74 kJ/mol (hydrophilic) to 0.06168 kJ/mol (hydrophobic).
This approach that changes the ε parameter is similar to the previous molecular dynamics simulation
in graphene [35]. The molecular size parameter was set to σ = 0.233 nm, the distance at which the
intermolecular potential between the two particles is zero. The LJ parameter ε = 19.74 kJ/mol, the upper
value of ε, and σ = 0.233 nm are same values used for copper, a typical hydrophilic metal [27]. The cutoff

radius for the van der Waals interaction was 1.3 nm, and timestep was set to 2.0 fs. The Ewald method
was employed for the calculation of Coulombic interaction. The calculation was performed using
GROMACS [41,42]. The simulation was performed under constant number of molecules, volume, and
temperature (NVT). The temperature was controlled by Nose–Hoover thermostat [43,44].
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Table 1. The parameters of ε in the calculation. The ε = 19.74 kJ/mol is the case of copper.

Ratio ε (kJ/mol)

1.0 19.74
0.9 17.76
0.8 15.79
0.7 13.82
0.6 11.84
0.5 9.869
0.4 7.895
0.3 5.921
0.2 3.948
0.1 1.974

1/20 0.9869
1/40 0.4935
1/80 0.2467
1/160 0.1234
1/320 0.06168

Three patterns of a nanostructure with different heights and a flat surface were employed as the
microfabricated surface as shown in Figure 2. The heights of the nanostructure were set as multiples of
the length of the lattice constant of fcc copper 0.362 nm (0.724 nm, 1.448 nm, and 2.896 nm, respectively).
The surface wall was a 10 nm square, 1.448 nm in thickness, under periodic boundary condition.
The length of the height direction of the simulation box was 50 nm.
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Figure 2. Prepared surface structure. (flat, asperity height 0.724 nm, asperity height 1.448 nm, and
asperity height 2.896 nm).

The contact angle of droplets deposited on the wall was measured using the half-angle method [45].
The schematic figure of the determination of contact angleθ on the nanosurface in this study is illustrated
as Figure 3. The contact angle was determined as the angle of the line from the triple phase point to
the apex of the drop and the line of the top of the wall. In the initial state of the simulation, a droplet
was placed 0.5 nm from the wall and its natural adsorption on the wall was analyzed. To understand
the effect of the size of the droplet on the wall, two diameters of the droplet, about 5 nm (2259 water
molecules) and about 6 nm (3787 water molecules) were explored. The contact angle was calculated
after 4 ns to reach the equilibrium at 300 K.
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Figure 3. Schematic diagram of contact angle θ measurement on nanostructures by half angle method.

The condensation process of water vapor on the nanostructured surface was calculated by 5 ns
simulation under 300 K. The initial structure of the calculation was prepared by the 2 ns calculation
under 600 K for 2259 water molecules on the surface as shown in Figure 4. We changed the LJ potential
parameter ε in three patterns, 19.74 kJ/mol, 1.974 kJ/mol, 0.06168 kJ/mol. Three calculations were
performed for each condition to obtain average values.
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Figure 4. Snapshot of water vapor and nanostructure prepared as the initial condition of the
condensation simulation.

3. Results and Discussions

Figure 5 and Tables 2 and 3 show the calculated contact angles when the droplets with sizes of 5
nm and 6 nm were on the wall surface. Both contact angle dependence on the water–wall interaction
and height of pillar showed similar trends with the previous study on graphene [35]. In Tables 2
and 3, the numbers on the gray background correspond to the Wenzel state, the numbers without any
background represent the Cassie-Baxter state, while no number means no droplet. The contact angle
was determined as the angle at the top of the surface of asperity. The part where the angle could not
be calculated corresponds to the area where the solid–liquid part was not formed stably because the
liquid spread over the entire surface. Figure 6 shows a snapshot of the case, where water molecules
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spread into a film and the contact angle could not be determined on the plane of ε = 19.74 kJ/mol.
When the adsorption force of the wall was large, water spread into a film on both the flat and uneven
surfaces. Even when there was unevenness, water adhered to the available contact area and did
not form droplets. The process of forming such a liquid film is consistent with previous molecular
simulations on copper surfaces [39]. This behavior is similar to that of macroscopic films spread thinly
when droplets are adsorbed on a hydrophilic surface [46,47]. Two layers of water molecules were
found on the surface in the case of a film formed by 5 nm droplets on the flat surface. The hydrophilic
surface adsorbed water molecules and aligned them. The boundary ε for the wetting state changing
from Wenzel to Cassie-Baxter was 1.974 or 0.9869 kJ/mol, depending on the pillar height. There was no
difference in the size of the droplets.
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Figure 5. Relation between the water–wall interaction and the contact angle. The surface with asperity
resulted in the increase of the contact angle.

Table 2. Contact angle and wetting state of 5-nm droplets on each surface. The numbers on the gray
background correspond to the Wenzel state, whereas the numbers without background correspond to
the Cassie state.

ε (kJ/mol) Flat 0.724 nm 1.448 nm 2.896 nm
19.74 - 10.6 - -
17.76 - 8.1 - -
15.79 - 10.0 - -
13.82 - 7.5 - -
11.84 - 11.8 - -
9.869 - 7.0 - -
7.895 - 15.8 16.7 -
5.921 - 18.5 21.1 25.3
3.948 26.5 39.0 34.3 37.2
1.974 85.4 99.7 99.9 74.4
0.9869 108.8 120.0 143.4 137.5
0.4935 124.4 157.1 153.7 151.8
0.2467 143.3 167.0 162.0 171.3
0.1234 139.6 170.5 171.9 171.4

0.06168 153.0 174.5 174.6 170.5
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Table 3. Contact angle and wetting state of 6-nm droplets on each surface. The numbers on the gray
background correspond to the Wenzel state, whereas the numbers without background correspond to
the Cassie state.

ε (kJ/mol) Flat 0.724 nm 1.448 nm 2.896 nm

19.74 - - - -
17.76 - - - -
15.79 - - - -
13.82 - - - -
11.84 - - - -
9.869 - - 10.9 -
7.895 - - 12.3 -
5.921 - - 18.1 27.4
3.948 - 44.0 59.6 36.0
1.974 82.6 95.0 87.3 83.8
0.9869 103.2 124.1 130.6 140.3
0.4935 124.6 144.1 148.2 145.9
0.2467 143.7 170.1 161.8 153.0
0.1234 146.3 168.5 167.5 163.7

0.06168 152.1 173.2 170.3 170.7
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Figure 6. Snapshot of the water film on the flat and nanostructured surfaces with the Lennard-Jones
parameter ε = 19.74 kJ/mol (the left upper: 2259 water molecules, others: 3787 water molecules).

Figure 7 shows the change in the wetting state when asperity changed for a wall adsorption force
of ε = 3.948 kJ/mol and a droplet with a diameter of 6 nm. While the liquid spreads over the whole
plane on a flat wall, the Wenzel state is manifested by adding unevenness. Similarly, Figure 8 shows
how the Wenzel and Cassie states are switched depending on the size of unevenness for the wall
adsorption energy ε = 0.9869 kJ/mol. Overall, the contact angles were increased by the nanostructures
by about 10◦ to 40◦. The contact angle tended to increase with asperity and as the interaction between
water molecules and the wall surface decreased. It was also possible to estimate how the liquid film,
Wenzel state, and Cassie state changed depending on the surface adsorption force and nanoscale
unevenness size when droplets adhered to the solid surface.
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Figure 8. Droplets on nanostructures with ε = 0.9869 kJ/mol.

Figures 9–11 show the appearance of the convex surface in the case of ε= 19.74 kJ/mol, 1.974 kJ/mol,
and 0.06168 kJ/mol. These parameters correspond to the liquid film, Wenzel state, and Cassie-Baxter
state, respectively, in the calculation of the water droplets. When water molecules cooled down, both
condensation near the surface and in the vapor could be observed. Figure 9 shows the snapshot of
condensation with a strong water–surface interaction. Condensed water molecules formed a liquid film
and uniformly attached to the inner wall of asperities. The surface of the hydrophilic nanostructure
was wet in the initial stage of the condensation process. In addition, the small water droplets formed
in the water vapor were observed to be absorbed into the asperity surface. Figure 12 shows the
absorption behavior of water droplets intruding into the inside of asperities. It was found that the
time scale of droplet adsorption is several tens to hundreds of ps. In such a hydrophilic nanostructure,
water molecules spreading thinly inside asperities formed an orderly structure different from a bulk
liquid. Figure 13 illustrates a snapshot of the two-dimensional structure of water observed in the
nanostructured surface. This type of ordered structure is unique to confined systems such as inside
nanotubes and graphene plates [48,49]. These results indicate that water molecules in nanostructured
hydrophilic metal surfaces form unusual phase structures similar to other confined systems. Figure 10
demonstrates condensation of water on a wall with a low interaction level. When the interaction level
became smaller, smaller droplets gradually attached to the solid surface but were not uniformly spread.
Several droplets formed and gradually integrated. Figure 11 demonstrates the case of condensation
on a hydrophobic surface with a very small interaction level. Even when a small number of water
molecules formed a few clusters within the asperity, they gradually discharged to the outside of the
asperity. In the end, almost no water molecules were left inside the asperities, and the droplets were
attached to the surface.
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Figure 14 shows the average number of water molecules inside the surface nanostructure for each
case. The number of water molecules was increased for the cases of ε= 19.74 kJ/mol and ε= 1.974 kJ/mol
by adsorption on the surface. For the first 1 ns, isolated water molecules near the surface adsorbed on
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the nanostructures continuously. After 1 ns, the increase in the number of water molecules showed
jumps due to the adsorption of water droplet formed in the vapor phase. On the other hand, the
number of water molecules was decreased in the case of ε = 0.06168 kJ/mol. After 1 ns, a small number
of water molecules was trapped in the nanostructure. Figure 15 shows the mean square displacement
(MSD) of the water molecules in the nanostructure. The MSD of the case of ε = 19.74 kJ/mol and
ε = 1.974 kJ/mol is small because the water molecules on the surface were almost fixed or restricted
in the droplet. The MSD for the case of ε = 0.06168 kJ/mol is much larger than the others. The small
number of water molecules trapped in the nanostructure moved quickly on the surface.Micromachines 2019, 10, 587 9 of 12 
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As demonstrated here, the three types of condensation behavior—film, droplet, and
discharge—appeared according to the difference in the strength of the surface interaction. In particular,
when the adsorptive force was large, as is the case with copper, water molecules aggregated on the
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surface of the asperity and prepared a water film. The differences in the condensation behavior affected
the condensation speed and diffusion of water molecules on the surface.

4. Conclusions

The impact of the wall nanostructure and adsorption force on the contact angle of droplets and
condensation was analyzed using molecular dynamics simulation. As a result, the dependence of
the contact angle and condensation behavior on the microfabrication shape and size of the wall was
revealed. As the condensation behavior, the liquid film formation, droplet adsorption in the structure,
and droplet discharge process were observed. The water molecules adsorbed on the surfaces showed
little diffusion in the case of ε = 19.74 kJ/mol and ε = 1.974 kJ/mol. In addition, a two-dimensional
structure of water molecules spread into the fine structure was observed.

Author Contributions: Conceptualization, M.H.; Investigation, M.H. and M.E.; Supervision, A.K. and S.I.; Writing
original draft, M.H.
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