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Abstract: Background/Objectives: Artificial intelligence (Al)-assisted endoscopic ultrasonography
(EUS) diagnostic tools have shown excellent performance in diagnosing gastric mesenchymal tumors.
This study aimed to assess whether incorporating clinical and endoscopic factors into Al-assisted
EUS classification models based on digital image analysis could improve the diagnostic performance
of Al-assisted EUS diagnostic tools. Methods: We retrospectively analyzed the data of 464 patients
who underwent both EUS and surgical resection of gastric mesenchymal tumors, including 294 gas-
trointestinal stromal tumors (GISTs), 52 leiomyomas, and 41 schwannomas. Al-assisted classification
models for GISTs and non-GIST tumors were developed utilizing clinical and endoscopic factors and
digital EUS image analysis. Results: Regarding the baseline EUS classification models, the area under
the receiver operating characteristic (AUC) values of the logistic regression, decision tree, random
forest, K-nearest neighbor (KNN), and support vector machine (SVM) models were 0.805, 0.673,
0.781, 0.740, and 0.791, respectively. Using the new classification models incorporating clinical and
endoscopic factors into the baseline classification models, the AUC values of the logistic regression,
decision tree, random forest, KNN, and SVM models increased to 0.853, 0.715, 0.896, 0.825, and 0.794,
respectively. In particular, the random forest and KNN models exhibited significant improvement
in performance in Delong’s test (both p < 0.001). Conclusion: The diagnostic performance of the
Al-assisted EUS classification models improved when clinical and endoscopic factors were incor-
porated. Our results provided direction for developing new Al-assisted EUS models for gastric
mesenchymal tumors.
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1. Introduction

Subepithelial tumors (SETs) are frequently coincidentally discovered during endo-
scopic examinations of the gastrointestinal (GI) tract. The frequency of upper GI SETs is
reported to be 1.6—1.9%; approximately two-thirds of upper GI SETs are present in the
stomach [1,2]. Among gastric SETs, gastric mesenchymal tumors originating from the
muscularis propria are of major concern in clinical practice. Gastric mesenchymal tumors
include benign tumors such as leiomyomas or schwannomas and malignant tumors such
as gastrointestinal stromal tumors (GIST) [3-5]. Therefore, differentiating GISTs from non-
malignant tumors, including leiomyomas and schwannomas, is important for managing
gastric mesenchymal tumors [3].

Various modalities are used to diagnose gastric SETs. White-light endoscopy enables
assessment of the size, location, and macroscopic appearance of the tumor via direct visual-
ization. However, white-light endoscopy cannot provide sufficient information regarding
the originating layer and inner characteristics of the tumor. Furthermore, endoscopic
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forceps biopsy is not always feasible due to the subepithelial nature of such tumors, par-
ticularly those located in the muscularis propria [6-9]. Computed tomography (CT) is
commonly used to diagnose gastric SETs. CT is beneficial for detecting the extragastric
invasion and metastasis of tumors. However, CT cannot detect small gastric SETs, particu-
larly when the tumor size is less than 1 cm [6,10,11]. Endoscopic ultrasonography (EUS)
provides comprehensive information on the tumor, including the originating layer, size,
shape, internal echo pattern, and heterogeneity of the tumor and the presence or absence of
internal cystic changes and calcification. Consequently, EUS is regarded as the most valu-
able diagnostic tool for evaluating gastric SETs. However, the diagnosis of SETs by EUS is
operator-dependent; thus, interobserver variability and sometimes intraobserver variability
are major limitations [12-16]. Accordingly, tissue acquisition using EUS guide, such as
EUS-guided fine-needle aspiration (EUS-FNA) and EUS-guided fine-needle biopsy (EUS-
FNB), is employed to establish a definitive histopathological diagnosis in patients with
SETs. Recent meta-analyses have shown that EUS-FNB could provide satisfactory levels of
sample adequacy and diagnostic accuracy (94.9% and 87.9%, respectively) [17]. However,
EUS-FNA /ENB is not available in all hospitals and requires advanced technical skills and
experience. Furthermore, EUS-FNA /FNB is an invasive procedure with procedure-related
adverse events such as bleeding or infection [18]. Additionally, its diagnostic accuracy rate
for small SETs is not as satisfactory as that for large SETs [10,18-20].

Images in digital form are made up of pixels, which are the fundamental building
blocks of a flat image. Our prior study showed that analyzing digital EUS images can
offer unbiased data to distinguish between GISTs and non-GIST tumors in gastric mes-
enchymal tumors; it can reduce variations in interpretation among different observers [21].
The scoring system, which involves digital image analysis and clinical characteristics,
demonstrates high sensitivity and specificity for predicting GISTs in gastric mesenchy-
mal tumors [4]. Artificial intelligence (AlI) technology has recently been applied to the
medical field, particularly with deep learning techniques involving convolutional neural
networks [18,22,23]. This technology is increasingly being used in endoscopic diagnostics,
particularly for identifying and evaluating esophageal cancer, gastric cancer, and colorectal
polyps, as well as for assessing pancreatic lesions [24-27]. Al-assisted EUS diagnostic
tools have been introduced in gastric SETs to overcome the limitations of the current di-
agnostic modalities [18,28]. They have demonstrated excellent diagnostic performance in
diagnosing GI SETs in a recent meta-analysis [16]. However, the current Al-assisted EUS
diagnostic tools also have limitations. Previous studies have shown that the diagnostic
accuracy of Al-assisted EUS diagnostic tools for detecting SETs decreases as tumor size
decreases [29]. Considering these studies included EUS image data alone for Al-assisted
EUS diagnostic tools, this limitation may arise from the fact that EUS characteristics of
GISTs, such as marginal irregularity and cystic changes, are often not clearly discernible
in EUS images of small-sized GISTs. According to previous studies, gastric GISTs are
associated with clinical and endoscopic characteristics such as age, sex, tumor location,
and ulceration [4,14,30]. Thus, Al-assisted EUS diagnostic tools, including clinical and
endoscopic factors and digital EUS image analysis, could improve diagnostic performance
for gastric mesenchymal tumors. Therefore, we aimed to evaluate whether incorporating
clinical and endoscopic factors into an Al-assisted EUS diagnostic tool based on digital
image analysis could improve diagnostic performance compared with Al-assisted EUS
diagnostic tools using EUS images alone.

2. Materials and Methods
2.1. Study Population

The information of 464 patients who received EUS and surgical resection of gastric SETs
at Pusan National University Hospital from March 2009 to August 2021 was retrospectively
reviewed. Among them, 294 patients with GISTs, 52 with leiomyomas, and 41 with
schwannomas were included in this study. Based on the potential for malignancy, these
patients were grouped into GIST and non-GIST groups. This study was reviewed and
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received approval by the Institutional Review Board of Pusan National University Hospital
(IRB number: 2405-007-139).

2.2. EUS

EUS was performed using a radial-scanning echoendoscope (GF-UM2000 and
GF-UE260-AL5; Olympus, Tokyo, Japan) at 7.5 MHz. All tests were conducted while
the patient was under intravenous conscious sedation using midazolam with or without
propofol. After injecting 200-500 mL of deaerated water into the stomach, tumors were ex-
amined. A minimum of 10 EUS images were captured for every lesion and stored digitally
in Windows bitmap format. A single experienced endosonographer (G.H.K.) reviewed the
EUS images without knowing about the final diagnosis. A single EUS image of the highest
quality was selected for each lesion to undergo further digital image analysis on a standard
desktop computer.

During EUS, endoscopic characteristics, such as the presence or absence of ulceration
and longitudinal and transverse tumor location, were recorded. The longitudinal tumor
location was classified as cardia, upper third (fundus and upper body), middle third
(midbody and angle), and lower third (antrum and pylorus). Cardia was defined as the
center of the tumor located within 2 cm distal to the esophagogastric junction [31]. The
transverse tumor location was classified as the anterior wall, lesser curvature, posterior
wall, and greater curvature.

2.3. Histopathology

The tumors were immunohistochemically classified into GIST, leiomyoma, or schwan-
noma [4,32]. A GIST was characterized as a tumor positive for c-kit, DOG-1, or CD34;
leiomyoma was identified as a tumor positive for desmin and negative for c-kit (CD117);
and schwannoma was defined as a tumor positive for 5-100 and negative for c-kit.
Histopathologic diagnosis was made by two pathologists specializing in gastroenterol-
ogy. When their diagnoses did not coincide, a consensus diagnosis was made using a
multiheaded microscope.

2.4. Digital Image Analysis

EUS can exhibit varying image characteristics depending on different contrasts during
an actual examination. Therefore, the standardization process and extraction of bright-
ness information from the EUS images were performed as described in our previous
studies [4,21]. The process of standardization employed the brightness values from the
anechoic center and outer hyperechoic rim of the echoendoscope. In the standardized
EUS images, an experienced endosonographer (G.H.K.) identified the region of interest
(ROI) for a detailed tumor analysis. This method yielded various brightness information,
including the mean brightness value (Tmean), which reflected the tumor’s echogenicity,
and the standard deviation (Tgp) of the brightness value, indicative of the heterogeneity of
echogenicity in the tumor (Figure 1) [4].
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Figure 1. An illustration of analyzing digital endoscopic ultrasonography (EUS) images. A region of
interest (ROI) is selected from the standardized image for tumor analysis. The final results for the
ROI are shown on the right-hand side of the histogram.

2.5. Al Model for Differentiating GISTs from Non-GIST Tumors

Given the relatively small size of the dataset, GIST and non-GIST tumor classification
models were trained and tested using simple algorithms like logistic regression, decision
tree, random forest, K-nearest neighbor (KNN), and support vector machine (SVM). Lo-
gistic regression, one of the most commonly used algorithms in medical data analysis,
categorizes data into two groups by employing a probability model that predicts the event
likelihood through a linear combination of independent variables [33,34]. The decision
tree algorithm classifies the data based on specific criteria, with the risk of overfitting if
built without constraints. To prevent the overfitting problem, pruning techniques, such
as setting maximum tree depth or limiting terminal nodes, are applied [35]. The random
forest algorithm improves prediction accuracy by randomly selecting features and aggre-
gating predictions from multiple decision trees. This ensemble method combines several
weak classifiers to form a stronger, more accurate classifier [36,37]. The KNN algorithm
determines a sample’s classification by the prevalent class among its closest neighbors,
with ‘K’ setting the count of neighbors to examine [38]. The SVM algorithm is a binary
linear classification technique that works by finding the optimal hyperplane to separate
different groups [39].

The data collected in this study exhibited an imbalance in sample sizes between the
two groups (294 and 93 patients in the GIST and non-GIST groups, respectively). To address
the issue of overfitting owing to an imbalanced dataset, a stratified K-fold cross-validation
technique was utilized. This process involves dividing the original data into folds, using
each fold in turn for testing and the rest for training (Figure 2). Stratified K-fold cross-
validation is particularly effective in handling imbalanced datasets in disease classification
models because it ensures that each fold maintains the same proportion in each group as
the original dataset. Therefore, this technique enhances the reliability of evaluation by
ensuring that models are not skewed towards the more prevalent group of the original
dataset [36].
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Training
K=1, validation 1 Fold 1 Fold 2 Fold 3 Fold 4
K=2, validation 2 Fold 1 Fold 2 Fold 3 Fold 4
K=3, validation 3 Fold 1 Fold 2 Fold 3 Fold 4
K=4, validation 4 Fold 1 Fold 2 Fold 3 Fold 4

Figure 2. K-fold cross-validation. In this approach, the training dataset was divided into K smaller
subsets. The model was trained on K-1 of these subsets, while the remaining subset was used as the
test set for evaluating performance. This process was repeated K times, with each of the K subsets
serving as the test set once.

2.6. Statistical Analysis

All continuous variables, including age and tumor size, are expressed as mean =+ stan-
dard deviation (SD). A Student’s ¢-test was applied to evaluate the difference in continuous
variables between the GIST and non-GIST groups. Categorical variables were analyzed using
the chi-squared test or Fisher’s exact test. The performance of each classification model for
differentiating GISTs from non-GIST tumors was assessed using a receiver operating charac-
teristic (ROC) curve and Delong’s test. Statistical analyses were conducted using IBM SPSS
version 27.0 for Windows (IBM Co., Armonk, NY, USA), with a p-value of less than 0.05
considered statistically significant.

3. Results
3.1. Baseline Clinical and Endoscopic Characteristics of Patients with a Gastric Mesenchymal Tumor

The baseline characteristics of 387 patients with gastric mesenchymal tumors are
presented in Table 1. The patients included 159 men and 228 women, with a mean age
of 58.2 years. The mean size of the gastric mesenchymal tumors was 3.1 cm. Regarding
longitudinal tumor location, 37 tumors were located in the gastric cardia, 190 in the upper
third of the stomach, 134 in the middle third, and 26 in the lower third. Regarding the
transverse tumor location, 64 were located at the anterior wall, 57 at the lesser curvature,
119 at the posterior wall, and 147 at the greater curvature. Forty-five tumors had ulceration
on their surface.

Table 1. Baseline characteristics of the study population.

Characteristics Number
Age (years, mean + SD) 582+ 11.7
Sex, n (%)

Male 159 (41.1)

Female 228 (58.9)
Size (cm, mean + SD) 31+19
Longitudinal location, n (%)

Cardia 37 (9.6)

Upper third 190 (49.1)

Middle third 134 (34.6)

Lower third 26 (6.7)
Transverse location, n (%)

Anterior 64 (16.5)

Lesser curvature 57 (14.7)

Posterior 119 (30.8)

Greater curvature 147 (38.0)
Ulceration, n (%)

Absent 342 (88.4)

Present 45 (11.6)

SD, standard deviation.
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3.2. Univariate Analysis of Factors Predicting GISTs

Patients in the GIST group were significantly older compared with those in the non-
GIST group (61.9 £ 10.7 years vs. 52.1 & 12.2 years, p < 0.001). GISTs were more fre-
quently located in the upper third, and non-GIST tumors were more frequently located
in the cardia (p < 0.001). There was no difference in sex, tumor size, transverse tumor
location, and presence of ulceration between the two groups (Table 2). After poststandard-
ized image analysis, both Tmean and Tsp were successfully calculated in all EUS images.
The GIST group exhibited a significantly higher Tryean compared with the non-GIST group
(632 £18.8vs. 42.7 £ 19.2, p < 0.001). The Tsp was also significantly higher in the GIST group
than that in the non-GIST group (19.3 £ 5.1 vs. 16.2 £ 5.2, p < 0.001).

Table 2. Comparison of clinical and endoscopic characteristics and digital EUS image analysis
between gastrointestinal stromal tumor (GIST) and non-GIST groups.

Non-GIST Group GIST Group

Features (n = 93) (n = 294) p-Value
Age (years, mean + SD) 52.1+12.2 61.9 +10.7 <0.001
Sex, n (%) 0.309
Male 34 (36.6) 125 (42.5)
Female 59 (63.4) 169 (57.5)
Size (cm, mean + SD) 32+£19 31+19 0.671
Longitudinal location, n (%) <0.001
Cardia 32 (34.4) 5(1.7)
Upper third 22 (23.7) 168 (57.1)
Middle third 35 (37.6) 99 (33.7)
Lower third 4 (4.3) 22 (5.7)
Transverse location, n (%) 0.231
Anterior wall 12 (12.9) 52 (17.7)
Lesser curvature 8 (8.6) 49 (16.7)
Posterior wall 38 (40.9) 81 (27.6)
Greater curvature 35 (37.6) 112 (38.1)
Ulceration, n (%) 0.763
Absent 83 (89.2) 259 (88.1)
Present 10 (10.8) 35 (11.9)
Tmean (mean £ SD) 42,7 +19.2 63.2 £ 18.8 <0.001
Tsp (mean £ SD) 162 +52 193+ 5.1 <0.001

GIST, gastrointestinal stromal tumor; SD, standard deviation.

3.3. Developing Al Models for Differentiating GISTs from Non-GIST Tumors

In previous Al studies, many classification models for gastric mesenchymal tumors were
created using EUS images alone. Therefore, baseline classification models were developed
based on results using digital EUS image analysis, including Tmean and Tsp of the tumor. In
contrast, new classification models for gastric mesenchymal tumors have been developed
by adding clinical and endoscopic factors to digital EUS image analysis. Among the clinical
and endoscopic factors, age and longitudinal tumor location, which were significant factors
for predicting GISTs using the univariate analysis, were included. GIST and non-GIST
classification models were trained and tested using logistic regression, decision tree, random
forest, KNN, and SVM algorithms with K-fold cross-validation.

3.4. Classification Performance of AI Models

The detailed diagnostic performance of each Al model for differentiating GISTs from
non-GIST tumors is summarized in Table 3. Regarding the baseline classification models, the
area under the ROC curve (AUC) values of the logistic regression, decision tree, random forest,
KNN, and SVM models were 0.805 (95% confidence interval [CI], 0.753-0.855), 0.673 (95% CI,
0.580-0.710), 0.781 (95% CI, 0.723-0.836), 0.740 (95% CI, 0.666-0.795), and 0.791 (95% CI,
0.666-0.795), respectively (Figure 3). In the new classification models incorporating clinical and
endoscopic factors (age and tumor location) into the baseline classification models, the AUC
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values of the logistic regression, decision tree, random forest, KNN, and SVM models increased
to 0.853 (95% CI, 0.799-0.892), 0.715 (95% CI, 0.668-0.772), 0.896 (95% CI, 0.825-0.919), 0.825 (95%
CI, 0.766-0.898), and 0.794 (95% CI, 0.732-0.856), respectively (Figure 4). These differences in
the logistic regression, decision tree, and SVM models did not reach statistical significance in
Delong’s test (p = 0.057, p = 0.232, and p = 0.904, respectively). However, the random forest and
KINN models showed significant improvement in performance in Delong’s test (both p < 0.001).

Table 3. Diagnostic performance of baseline model and new model for differentiating GISTs from

non-GIST tumors.

Diagnostic Performance

AUC Sensitivity, % Specificity, % PPV, % (95% NPV, % (95%
(95% CI) (95% CI) (95% CI) (@l)) CI)
Logistic 0.805 65.6 90.9 81.8 66.3
regression (0.753-0.855) (62.5-68.5) (78.5-92.0) (80.3-85.3) (61.6-71.1)
. Decision tree 0.673 71.9 455 79.3 63.1
Baseline model (0.580-0.710) (67.5-77.1) (34.6-58.1) (76.9-83.5) (60.0-68.0)
(only EUS Random 0.781 78.1 81.8 78.5 64.0
images) forest (0.723-0.836) (74.9-84.3) (64.4-89.9) (70.2-84.9) (50.7-77 4)
KNN 0.740 78.8 84.3 85.5 62.6
(0.666-0.795) (69.6-79.4) (72.3-85.4) (79.3-88.8) (52.9-64.3)
SVM 0.791 93.9 74.9 75.1 529
(0.666—0.795) (79.9-94.9) (66.2-83.7) (73.0-80.3) (36.0-59.9)
Logistic 0.853 87.5 90.9 88.2 85.0
regression (0.799-0.892) (83.2-91.7) (80.4-95.1) (82.5-93.6) (80.4-89.7)
New model Decision tree 0.715 93.8 63.6 88.4 77.0
(integrating (0.668-0.772) (88.9-96.2) (62.9-69.2) (85.1-90.7) (76.2-83.0)
clinical and Random 0.896 93.8 81.8 91.4 75.1
endoscopic forest (0.825-0.919) (87.8-94.5) (70.6-86.7) (85.0-96.0) (70.3-79.9)
factors) KNN 0.825 93.9 81.1 93.2 80.6
(0.766-0.898) (85.5-96.4) (74.9-82.3) (84.4-96.2) (69.3-83.0)
SVM 0.794 93.9 80.5 79.5 52.2
(0.732-0.856) (85.0-96.6) (69.9-91.0) (77.4-81.8) (70.0-85.3)

AUC, area under the ROC curve. CI, confidence interval. PPV, positive predictive value. NPV, negative predictive

value. EUS, endoscopic ultrasonography. KNN, K-nearest neighbor. SVM, support vector machine.

Figure 3. Receiver operating characteristic curves of baseline artificial intelligence (Al)-assisted EUS
classification models, including digital EUS image analysis alone.
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Figure 4. Receiver operating characteristic curves of new Al-assisted EUS classification models
incorporating clinical and endoscopic factors (age and tumor location) to baseline Al-assisted
classification models.

4. Discussion

In this study, we attempted to develop Al-assisted models for differentiating GISTs
from non-GIST tumors based on digital EUS image analysis of gastric mesenchymal tumors.
When only digital EUS image analysis was included, the AUC values of the logistic regres-
sion, decision tree, random forest, KNN, and SVM models were 0.805, 0.673, 0.781, 0.740,
and 0.791, respectively. The AUC values of all five models improved numerically when the
clinical and endoscopic factors were incorporated. The AUC values of the random forest
and KNN models were significantly improved to 0.896 and 0.825, respectively. To our best
knowledge, this is the first study to report Al-assisted models that could predict GISTs
using clinical and endoscopic characteristics and digital EUS image analysis.

In a recent meta-analysis involving eight retrospective studies including 2,355 patients,
Al-assisted EUS models demonstrated a sensitivity of 92% (95% CI, 89-95%), specificity
of 80% (95% CI, 75-85%), and AUC value of 0.949 for diagnosing GISTs [16]. However,
experienced endoscopists demonstrated a sensitivity of 72% (95% CI, 67-76%), specificity
of 70% (95% CI, 64-76%), and AUC value of 0.777 for diagnosing GISTs. Regarding
the performance for differentiating GISTs from leiomyomas, the Al-assisted EUS models
demonstrated a sensitivity of 93% (95% CI, 88-97%), specificity of 90% (95% CI, 88-95%),
and AUC value of 0.966. Experienced endoscopists demonstrated a sensitivity of 73%
(95% CI, 65-80%), a specificity of 75% (95% CI, 65-84%), and an AUC value of 0.819.
These results indicate a substantial improvement in diagnosing gastric mesenchymal
tumors with the incorporation of Al technologies. However, the diagnostic performance of
Al-assisted EUS models for detecting SETs <2 cm in size was not high compared with that of
SETs >2 cm in size [29], which might be because EUS characteristics of GISTs, such as
marginal irregularity and cystic changes, are not often clearly discernible in small-sized
GISTs [40]. This issue could be explained by previous Al-assisted EUS models focusing
solely on the EUS images without considering clinical and endoscopic factors.

Gastric SETs have several clinical characteristics, such as age and tumor location,
according to histopathology [20,40-43]. Old age and location in the gastric body and
fundus are associated with GISTs, and female sex and location in the gastric cardia are
associated with leiomyomas. Similarly, in this study, patients in the GIST group were
markedly more advanced in age compared with those in the non-GIST group, with an
average age of 61.9 years versus 52.1 years. Tumor location in the upper third of the stomach
was associated with GISTs, whereas tumor location in the gastric cardia was associated with
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non-GIST tumors. In digital EUS image analysis, Trean and Tsp were markedly elevated
in the GIST group compared with the non-GIST group, consistent with the results of our
previous studies [4,21].

Recently, Yu et al. developed Al diagnostic models to identify patients who were
diagnosed with COVID-19 using CT findings combined with laboratory tests [44]. In the
study, integrating CT results with laboratory findings significantly enhanced the diagnostic
performance in all Al diagnostic models. These findings suggest that an Al-assisted
diagnostic model incorporating various data types with imaging results can enhance
diagnostic performance. Similarly, to ascertain which clinical and endoscopic characteristics
should be included in the development process to improve the diagnostic performance of
Al-assisted EUS models, we integrated patient age and tumor location into new Al-assisted
EUS classification models for differentiating GISTs from non-GIST tumors based on the
results of univariate analysis. The AUC values of the logistic regression, decision tree,
random forest, KNN, and SVM models improved from 0.805, 0.673, 0.781, 0.740, and 0.791,
respectively, to 0.853, 0.715, 0.896, 0.825, and 0.794. Particularly, the random forest and
KNN models exhibited significant improvements in classification performance.

Compared with other studies on Al-assisted EUS models for gastric SETs, our results
exhibited a relatively low AUC value (maximum 0.896 in the random forest model) for
differentiating GISTs from non-GIST tumors. These results may be attributed to the rel-
atively small number of tumors included in the present study and use of limited data
(only Tmean and Tsp in digital EUS image analysis) based on digital EUS image analysis.
However, as previously mentioned, this study aimed to confirm that an Al-assisted EUS
models incorporating clinical and endoscopic factors could improve diagnostic perfor-
mance compared with an Al-assisted EUS models using EUS images alone. We found that
incorporating clinical and endoscopic factors into Al-assisted EUS models could improve
the classification performance for gastric mesenchymal tumors. Our findings highlight
the importance of incorporating clinical and endoscopic features in developing future
Al-assisted EUS models. We expect the relatively low AUC values in this study to increase
as we plan to use the EUS images themselves rather than limited data in digital EUS image
analysis in subsequent studies based on the results of this study.

This study has some limitations. First, this was a single-center, retrospective study.
Therefore, the sample size was relatively small; there might have been a potential bias
in the retrospective review and selection of EUS images. Second, GISTs are malignant
tumors that often require surgical resection, whereas non-GIST tumors generally do not
need to be resected. Since surgery was performed based on the clinical judgment of the
endoscopists, there was an imbalance in the composition of the study groups between
those diagnosed with GISTs and non-GIST tumors. Third, we included only EUS images
taken at 7.5 MHz to lessen differences among the images according to the use of different
frequencies. However, the EUS settings including gain and contrast, as well as different
types of echoendoscopes and EUS systems, varied in each case. Thus, we standardized
the EUS images based on the brightness values from the anechoic center and the outer
hyperechoic rim of the echoendoscope. However, this standardization process could
not completely overcome the limitations of this retrospective study. Further large-scale,
prospective, multicenter studies using consistent EUS settings are needed in future. Fourth,
since this study was a preliminary study that aimed to confirm the benefit of integrating
clinical and endoscopic features in Al-assisted EUS diagnostic model, we did not include
the interobserver variability. We plan to include the difference in the diagnostic accuracy
between endoscopists and Al models as well as the interobserver variability in further
studies on Al-assisted EUS diagnostic models.

5. Conclusions

The diagnostic performance of the Al-assisted EUS classification models improved
when clinical and endoscopic characteristics were incorporated. Our results could provide
direction for developing new Al-assisted EUS models for gastric mesenchymal tumors.
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