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Microbes play important roles in human health and disease. Immunocompromised cancer patients are
more vulnerable to getting microbial infections. Regions of hypoxia and acidic tumor microenvironment
shape the microbial community diversity and abundance. Each cancer has its own microbiome, making
cancer-specific sets of microbiomes. High-throughput profiling technologies provide a culture-free
approach for microbial profiling in tumor samples. Microbial compositional data was extracted and
examined from the TCGA unmapped transcriptome data. Biclustering, correlation, and statistical analyses
were performed to determine the seven patient-microbe interaction patterns. These two-dimensional
patterns consist of a group of microbial species that show significant over-representation over the 7
pan-cancer subtypes (S1-S7), respectively. Approximately 60% of the untreated cancer patients have
experienced tissue microbial composition and functional changes between subtypes and normal controls.
Among these changes, subtype S5 had loss of microbial diversity as well as impaired immune functions.
S1, S2, and S3 had been enriched with microbial signatures derived from the Gammaproteobacteria,
Actinobacteria and Betaproteobacteria, respectively. Colorectal cancer (CRC) was largely composed of
two subtypes, namely S4 and S6, driven by different microbial profiles. S4 patients had increased micro-
bial load, and were enriched with CRC-related oncogenic pathways. S6 CRC together with other cancer
patients, making up almost 40% of all cases were classified into the S6 subtype, which not only resembled
the normal control’s microbiota but also retained their original ‘‘normal-like” functions. Lastly, the S7 was
a rare and understudied subtype. Our study investigated the pan-cancer heterogeneity at the microbial
level. The identified seven pan-cancer subtypes with 424 subtype-specific microbial signatures will help
us find new therapeutic targets and better treatment strategies for cancer patients.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Humanmicrobes are tiny microorganisms that live in and on us,
which play important roles in both health and diseases. Humans
rely on microorganisms to perform normal functions such as
absorbing nutrients [1], strengthening immune system [2], and
reducing the likelihood of serious microbe infections. Other
microbes can be pathogenic and cause diseases in humans [3].
Humans get initial microbes from their mom at birth, and the
microbial communities gradually grow to a mature, diverse, and
stable status as people age and their interactions with the outside
world. Trillions of microbes that inhabit the human guts, mouth,
skin and other tissues as defined by the Human Microbiome Pro-
ject (HMP) [4]. It was originally assumed that the internal organs
such as the brain, heart, lungs, among others are microbe-free
and considered sterile. Recent progress have led us to believe that
microbial species including pathogens and commensals exist in
human internal organs. For instance, blood-borne pathogens such
as Neisseria meningitidis and Streptococcus pneumoniae can cross
the blood-central nervous system (CNS) barriers and cause bacte-
rial meningitis in newborns and adults [5]. Infective endocarditis
is caused by Staphylococcus aureus infection of the inner layer of
the heart [6]. Tuberculosis (TB), a highly communicable chronic
lung disease, is caused by a bacterium called Mycobacterium tuber-
culosis (MTB). Furthermore, organ-specific commensals have been
identified in studies of healthy controls in the absence of disease,
which include the brain [7], lungs [8], pancreas [9], and more
[10,11].

Microbes prefer to live in an environment which is suitable for
their survival, in other words, environments help shape the diver-
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sity and abundance of the resident microbial communities. For
example, obligate anaerobes bacteria including Clostridiales and
many Bacteroidetes spp., are commonly found in the large intestine
(colon) of humans where they can thrive without oxygen. Unlike
most of the obligate anaerobes, facultative anaerobes such as Lac-
tobacilli and Streptococci can grow with or without oxygen and are
predominant in the small intestine [12]. Although lungs and many
other non-gastrointestinal (GI) organs create inhospitable environ-
ments for bacteria with little nutrition, Proteobacteria are often
overrepresented in several inflammatory-related extraintestinal
diseases [13]. Microbes from the outside environments are con-
stantly interacting with humans, and human microbiomes change
in accordance with the times, places and health status, but remain
stable over a period of time once established [4,14]. Environmental
microbes from the soil, water, air, food, and many other sources
can become part of the human microbiome. For instance, the soil/-
root microbiota contribute to the human gut microbiome [15].
Apart from the skin, lungs are in close contact with the surround-
ing air which contains diverse microbial species [16]. Healthcare-
associated pathogens such as Klebsiella, Staphylococcus aureus,
and Clostridium difficile (C. diff) remodel the human microbiota
across multiple body habitats [17].

Cancer is a complex and heterogeneous disease [18], which
affects nearly all organ systems in the body. Both genetic and
non-genetic factors contribute to cancer initiation and progression.
For example, TP53 gene mutations increase the risk of developing a
number of cancer types [19]. BRCA1 and BRCA2 mutations increase
the breast cancer risk [20], despite of the fact that these mutations
do not account for a significant proportion of the cases. Non-
genetic factors such as exposure to carcinogens and lifestyle
choices (i.e. smoking) strongly associated with cancer develop-
ment and progression [21,22]. The idea that microbes can cause
and promote the progression of cancer is not new and well estab-
lished. More and more carcinogenic microbes have been identified,
particularly the Human papillomavirus (HPV) has been implicated
in up to 99% of all cervical cancers [23]. H. pylori accounts for more
than 90% of gastric cancer cases [24]. Hepatitis B virus (HBV) is
responsible for 56% of liver cancer [25]. Besides cancer-causing
species, accumulated evidences have shown that dysbiosis (the
disruption of a balanced microbiome) is associated with risk of
multiple cancer types [26–30].

Recent advances in high-throughput profiling technologies have
made it possible to generate vast amounts of sequencing data,
which provides a culture-free approach for microbial profiling in
tumor samples. The Cancer Genome Atlas (TCGA) has sequenced
over 11,000 primary cancer cases from 33 most prevalent cancer
types. Revealing the tumor heterogeneity at the microbiome level
provides novel insights and targets for personalized treatment of
cancer patients [31]. Although the Pan-Cancer Atlas has published
over 27 papers on topics ranging from Pan-cancer subtyping (cell-
of-origin patterns) to functional characterization (oncogenic pro-
cesses, and signaling pathways), microbiome-based investigation
of tumor heterogeneity hasn’t been done before. In order to fill
the gap, we re-analysed the TCGA whole-transcriptome sequenc-
ing data to determine the pan-cancer microbial subtypes and
examine their interactions with the hosts.
2. Methods

2.1. TCGA transcriptome-based microbial data curation and pre-
processing

Genomic Data Commons (GDC: https://gdc.cancer.gov/) gener-
ated BAM alignment files (harmonized TCGA GRCh38) from RNA-
Seq were accessed on the Seven Bridges Platform by the Cancer
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Genomics Cloud (CGC: https://www.cancergenomicscloud.org/).
Only non-Formalin-Fixed Paraffin-Embedded (FFPE) solid primary
tumors (n = 9,232) and matched normal control samples
(n = 720) were included in the study.

Non-human sequences were extracted from the BAM align-
ments using SAMtools (hosted on the CGC), and used as the inputs
for microbial identification. Kraken2 [32], a taxonomic classifica-
tion tool which relies on exact k-mer matches, was employed for
estimating microbial species abundance in each extracted file.

Kraken2 Database was built on NCBI RefSeq genomes (https://ftp.

ncbi.nlm.nih.gov/genomes/refseq/; n = 52,127) of bacterial,
archaeal, viral, and plasmid curated on 18 September 2019 (Zhao
et al.) [33]. Five r4.8xlarge AWS EC2 instances were made to run
in parallel for Kraken2 short-read taxonomy assignment.

Species-level microbial operational taxonomic units (OTUs) from
Kraken2 reports were combined across the samples in a matrix, and
all the following analyses were performed using R (4.0.2 version)
and Python (3.7 version). The phyloseq R package [34] was used
for diversity calculations and visualization with ggplot2 [35]. Rare
microbial species that were not present in at least one read count
in 0.1% of prevalence of the total samples were eliminated. In addi-
tion, to further minimize microbial contamination of tissue samples,
over 60 known contaminant genera have been identified across
multiple studies [36] were filtered out. The resulting OTU table
was then normalized to median sequencing depth in log2 scale.

2.2. Identification of pan-cancer microbial biclusters

To select informative microbial species for pan-cancer classifi-
cation, we assessed each species’s ability to separate one cancer
type from the others by calculating area under the curve (AUC).
The retained 2,863 species with AUC greater than 0.6 were used
as the features for unsupervised biclustering framework. cNMF
[37], a biclustering-based Python package with Kullback-Leibler
divergence (KL-divergence) was applied to identify the patient-
microbe interaction patterns (biclusters). We varied the number
of clusters K from 2 to 10, and set the number of iterations to 10.
The value of K that resulted in the largest value in stability was
chosen as the optimal number of biclusters. The threshold of 0.3
on average distance to KNN was used to filter out outliers, then a
final consensus solution was reached among the replicates. ’Max’
method defined by Carmona-Saez et al [38] was used for selecting
the meta-microbe with the largest row feature scores as signatures
for each bicluster.

The silhouette width [39] was used for sample cluster evalua-
tions, and selecting the most coherent samples within each cluster.
More specifically, the pairwise distances between samples using
the Jaccard dissimilarity were calculated with the vegan R package
[40]. The distances were then used for computing the silhouette
width for each sample in the cluster (v2.1.0) R package. Samples
with positive silhouette width were retained for further analysis.

2.3. Statistical analyses of microbial compositional data

Alpha diversity is to evaluate variance within a particular sample
and beta diversity is to assess how different sample communities
vary against each other. The Shannon index accounts for both abun-
dance (richness) and evenness of the species present, which is used
to characterize microbial alpha diversity in our study. Pairwise Wil-
coxon rank-sum test was used for comparisons of microbial abun-
dance between groups. Benjamini-Hochberg (BH) correction was
applied to adjust for multiple comparisons. An adjusted p-value of
0.05 or lower was considered statistically significant.

Jaccard index was calculated to estimate the degree of dissimi-
larity between a pair of microbial communities, and used as a mea-
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sure of beta diversity in this study. Permutational multivariate
analysis of variance (PERMANOVA) [41] was performed on the dis-
tance matrix to compare distances, and tested using the adonis
function with 999 permutations in the vegan R package [42]. Prin-
cipal coordinates analysis (PCoA) was carried out to obtain princi-
pal coordinates, and visualized in a three-dimensional (3D) plot
with the rgl package [43].

2.4. Microbial community correlation analyses

Pre-calculated TCGA enrichment scores (ESs) of 64 tumor-
infiltrating cell components were downloaded from the xCell web-
site (https://xcell.ucsf.edu/) [44]. For the human-mapped reads,
gene quantification was performed by using HTSeq [45] converted
to gene-level log2-transformed transcripts per million (TPM).

Specific microbial communities consist of a group of distinct
microbial species enriched in each pan-cancer subtype. The average
abundances for each microbial community across all patients were
calculated to represent their enriched levels in each community.
Spearman correlation analyses were applied to correlate the micro-
bial community abundances to (human) genes and immune cell type
characteristics, respectively. FDR corrected p-values<0.05 were con-
sidered significant. Overlapped significantly correlated genes across
all communities were selected for heatmap visualization using the
pheatmap package in R [46]. Pairwise correlation betweenmicrobial
communities was plotted using the corrplot R package [47].

2.5. Functional enrichment and gene set enrichment analysis (GSEA)

Genes that were significantly correlated with the 7 microbial
communities were functionally annotated using gene sets from
KEGG and Gene Ontology (GO) via the online software Enrichr [48].

Gene expression fold changes between one subtype versus the
remaining subtypes were calculated using the limma package
[49], and employed for GSEA analysis. In our study, GSEA was con-
ducted with the R package piano [50]. Annotated gene sets were
downloaded from the MsigDB database (version 7.2 C2 and C5).
We selected gene sets with the number of genes ranging from 10
to 500, and 1,000 permutations for significance tests. The other
parameters were set as default. Top significantly enriched gene
sets (FDR adjusted p-value < 0.05) in each subtype were ranked
according to their enrichment scores, and selected for the p-
value heatmap visualization. Selected gene sets were grouped in
functional categories by hierarchical clustering analysis, and the
heatmap was visualized by using the pheatmap package in R [51].

2.6. Survival and COX regression analysis

Kaplan-Meier survival analysis with log-rank p-values of<0.05
were considered statistically significant. Two clinical endpoints,
namely overall survival (OS) and progression free survival (PFS)
were evaluated by the Cox proportional hazard (PH) regression
analysis, and were adjusted for confounders such as patient age,
gender, tumor stage and grade. Forest plots were generated to esti-
mate hazard ratios (HRs) and log-rank p-values for OS and PFS
among pan-cancer subtypes and other factors by using the ggforest
function in survminer R package [52].
3. Results

3.1. Identification of seven patient-microbe interaction patterns

Microbial reads were extracted from the TCGA RNA-Seq BAM
alignment files and mapped against a standard Kraken2 database.
14,082 species-level microbial OTU assignments of each sample’s
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Kraken2 outputs were combined into a single matrix. Patients’
(n = 9,232) and tumor-adjacent normal control samples’

(n = 720) metadata were queried via cBioPortal (https://www.cbio-

portal.org/; Table S1). 30 cancer types were analyzed, and the 720
normal controls matched to 20 different cancer types. The number
of control samples per cancer range from 1 to 113 (average: 34).
The remaining 10 cancer types lack control samples, this include
ACC, CESC, LGG, GBM, DLBC, MESO, TGCT, UCS, OV, and SKCM. To
make the tumor/normal comparison possible for the cancer types
involved in our study, we combined all 720 adjacent normal sam-
ples together as a reference group.

We did filtering processes to remove species with low fre-
quency (<0.1% prevalence) as well as potentially contaminated
genera [35], which resulted in 7,075 species-level microbial OTUs
in 9,232 patients (Table S2) available for the downstream analysis.
0 (100% prevalence), 16 (90% prevalence), and 46 (80% prevalence)
substantial core microbial species [53] that shared by all or most
patients were listed in the Table S3, with the majority of them
annotated as free-living bacteria with unknown effect on human
health and disease so far. 2,863 species with AUC values greater
than 0.6 were subsequently selected as the features for unsuper-
vised consensus non-negative matrix factorization (cNMF) analysis
[37]. cNMF identified seven biclusters (patient-microbe interaction
patterns) in the pan-cancer microbial data, as the value of K = 7
which resulted in the largest value in stability (Fig. 1a). Outliers
which were above the 0.3 on average distance of K nearest neigh-
bors (KNN) were filtered out (Fig. 1b), and a consensus NMF result
was reached among the 10 replicates. The consensus matrix heat-
map declared the existence of the 7 well-separated clusters of sam-
ples (Fig. 1c). Afterwards, a total of 424 microbial species were
identified as the meta-microbe (signatures) for the 7 biclusters
(Tables S4). Silhouette width analysis was subsequently performed
to select the most stable samples within each cluster (Fig. 1d). The
average silhouette width was 0.05, and samples with positive sil-
houette width (n = 6,612) were retained. The 6,612 patient’s micro-
bial abundance heatmap (with 424 microbial signatures) showed
clear separation of the seven patient-microbe interaction patterns
(P1-P7) (Fig. 1e).
3.2. Pan-cancer subtype and microbial signature distributions

The 6,612 patient’s classification results were used to define the
7 pan-cancer subtypes (S1-S7, Tables S5). S6 was the largest sub-
type with 41.1% (n = 2,719) of all cancer cases. Followed by S2
(n = 1,402, 21.2%) and S5 (n = 1,237, 18.7%), making the second
and third largest subtypes, respectively. S7 was a rare subtype, rep-
resenting<1% (n = 63) of all cases (Table 1). Patient percentages
from the S1, S3, and S4 subtypes each consisted of no more than
10% of all cases, and contained relatively fewer cancer types
(Table 1; Figure S1). For instance, S4 had 533 patients accounting
for 8.0% of all cases, with only 2 types of cancer in this subtype
(Table 1; Figure S1). Unlike S4, the cancer types in S5 and S6 were
broad and varied, spanning over 25 different cancer types, respec-
tively (Table 1; Figure S1).

The number of microbial signatures in each pan-cancer subtype
ranged from 34 (S6) to 108 (S3) with all major microbial phyla
including Actinobacteria, Proteobacteria, Firmicutes, and Bacteroide-
tes (Table 1; Figure S2). Among the 424 microbial signatures, 10
were derived from the Archaea, 5 from the Viruses, and the
remaining 409 species within the Bacteria Kingdom, respectively
(Tables S4). 5 of the 10 Archaea were methanogenic archaea,
which are presented naturally in the human intestinal tracts
[54]. The remaining 5 Archaea were extremophile species that
can survive in severe environments. There were 2 bacteriophages
(Geobacillus virus E2/E3) in the 424 signatures, which have been

https://xcell.ucsf.edu/
https://www.cbioportal.org/
https://www.cbioportal.org/


Fig. 1. Identification of seven patient-microbe interaction patterns. (a). The trade-off between stability (primary y-axis) and error (secondary y-axis) at each choice of K (x-
axis). K = 7 was selected as the optimal cluster number as it reached the most stable solution and relatively lower error rate. (b). Set a density threshold of 0.3 on the
histogram of average distances between clusters and their nearest neighbors. (c). The consensus matrix heatmap exhibited the clear separation of the seven clusters. (d). The
Cluster Silhouette plot illustrated the Silhouette width of the seven clusters. Each cluster was shown in a different color. The average Silhouette width was 0.05, and samples
with positive silhouette width were retained. (e). Heatmap of the relative abundance of the 424 signature microbes in the 6,612 patients. The 6,612 patients were classified
into the seven subtypes (S1-S7), and the 424 subtype-specific microbial signatures were grouped into the seven corresponding communities (M1-M7) according to the
consensus NMF biclustering. Microbial relative abundances were represented by different colors, red means higher values, and green for lower values. The heatmap displayed
seven distinct and well-separated patient-microbe interaction patterns (P1-P7). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 1
The distribution and character of the pan-cancer subtypes and microbial signatures.

Subtype Number of
components

Major types Number of
cancer/Class
types

Character

Pattern1 S1 218 STAD (51.8%) ESCA (43.1%) 9 Upper GI-I
M1 53 Gammaproteobacteria (92.4%) 5

Pattern2 S2 1,402 OV (25.0%) STAD (14.1%) BRCA (12.4%) KIRC
(9.1%)

27 Upper GI-II

M2 35 Actinobacteria (82.8%) 6
Pattern3 S3 440 BRCA (54.7%) LUSC

(22.5%) KIRC (7.3%) STAD
(6.1%)

13 Chest

M3 108 Betaproteobacteria (93.5%) 2
Pattern4 S4 533 UCEC (60.0%) CRC (40.0%) 2 Lower GI

M4 84 Gammaproteobacteria (46.4%) Actinobacteria (13.1%)
Betaproteobacteria (11.9%)

11

Pattern5 S5 1,237 PRAD (11.7%) LIHC (9.0%) BLCA (7.9%) Adrenal gland tumors (5.6%) 27 Loss of microbiota diversity
M5 45 Alphaproteobacteria (20.0%) Actinobacteria (13.3%) 16

Pattern6 S6 2,719 LUAD (11.8%) LGG (9.8%) THCA (9.5%) HNSC (8.0%) 25 Normal-like
M6 34 Many 19

Pattern7 S7 63 THCA (30.2%) BRCA (12.7%) 13 Rare
M7 65 Actinobacteria (36.9%) 18

Total Pan-cancer 6,612 NA 30 NA
Microbial
signature

424 NA 37
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recognised as the key players in shaping the bacterial communities
in the human gut [55]. In addition, the Picornavirales has been
detected in human fecal samples [56]. The other 2 viruses, namely
Deep-sea thermophilic phage D6E and Abelson murine leukemia virus,
have no direct associations with human malignancies. Interest-
ingly, almost all the identified viruses and archaea, except for Sul-
3071
fodiicoccus acidiphilus, were amongst the signatures of S5 and S6
(Tables S4).

In order to investigate if there were any relations between any
of the 30 cancer types and 7 pan-cancer subtypes in the lists of sig-
nificant microbes, we conducted an intersection and a correlation
analysis. Significant microbial species for each cancer subtype
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were identified (Table S4) based on the threshold of AUC greater
than 0.6 as described in Methods. Cancer types such as ESCA, STAD,
CHOL, OV, THYM, TGCT, MESO, and UCEC have higher numbers of
significant species (range from 188 to 351), indicating more dis-
tinct microbial communities within these tumor microenviron-
ments compared to other cancers. Significant microbial species
identified from KIRC, HNSC, and LGG were generally low in num-
bers and AUC values (Table S4). The top 10 species with the highest
AUC values were selected as the most significant microbes for each
cancer type, respectively, and then collapsed to genus level. An
UpSet plot (Figure S3) was generated to visualize the 37 sets (30
cancer types + 7 pan-cancer subtypes) and set intersections among
different significant microbial lists using the ComplexUpset pack-
age [57] in R. Each bar in the bar chart shows a different combina-
tion (co-occurring) of intersected microbial genera. S3 and S2 have
57 and 13 unique microbial genus, making the largest and smallest
numbers of set size among the 7 pan-cancer subtypes, respectively
(Figure S3). The numbers of intersected microbial genera shown in
the bar chart can be used to describe the similarities and differ-
ences among the sets. For example, possible strong associations
were found between S5 and KIRC, as there were 10 shared genera
(Figure S3). Associations may also exist among S5, BRCA, THYM,
MESO, DLBC, and CHOL with 2 shared genera (Figure S3). No asso-
ciations can be found between S1 and COAD indicated by zero
shared genera (Figure S3). Correlation analysis using the Spearman
method gave more detailed and informative results. For instance,
S1 was strongly positively associated with ESCA (Figure S4). Cancer
types such as OV, STAD, and BLCA were all positively correlated
with S2 (Figure S4). S3 was mostly negatively correlated to differ-
ent types of cancer, but positively related to THCA and BRCA (Fig-
ure S4). Similarly, S4 was only positively associated with UCEC,
COAD, and READ (Figure S4). KIRC, PRAD, and many other cancer
types were positively correlated with S5 (Figure S4). S6 was found
to be positively associated with SKCM, LUSC, and HNSC, and nega-
tively associated with cancer types such as MESO and TGCT (Fig-
ure S4). Finally, there were no clear correlations found between
S7 and other groups (Figure S4).

3.3. Phylogenetic related bacteria enrichments in S1-3

There were 53 bacterial signatures in S1, with 92.4% of them
(n = 49) belonging to the class of Gammaproteobacteria (Table 1;
Figure S2). STAD (n = 113, 51.8%) and ESCA (n = 94, 43.1%) were
the two most prevalent cancer types in this subtype (Table 1; Fig-
ure S1). Notable food- and water-borne pathogens belonging to the
Gammaproteobacteria Class (e.g. Salmonella, Yersinia, and Vibrio
spp.) were present in the S1 patients (Table S4).

The 35 bacterial signatures in S2 were significantly enriched in
a sum of 1,402 cancer patients from 27 different cancer types
(Fig. 1e; Table 1; adjusted p < 0.05; Figure S5). OV (n = 350,
25.0%), STAD (n = 198, 14.1%), BRCA (n = 174, 12.4%), and KIRC
(n = 128, 9.1%) were the 4 major cancer types from this subtype
(Table 1). More than 82.8% (n = 29) of the bacterial signatures in
S2 were found in the class of Actinobacteria (especially in the gen-
era of Streptomyces and Micromonospora). Streptomyces spp. were
closely related species, and were known for their production of
antibiotics and other secondary metabolites [58]. The pathogenic
role of Streptomyces spp. remains unknown, although some of its
members have been reported to cause invasive infections in
immunocompromised patients [59–61]. The genus Micromonos-
pora was capable of producing antimicrobial agents and other
bioactive metabolites [62], and its pathogenic role in carcinogene-
sis has not been established.

A total of 440 cancer patients across 13 different cancer types
have been classified into the S3 (Table 1). The most prominent can-
cers in S3 were BRCA (n = 241, 54.7%), LUSC (n = 99, 22.5%), KIRC
3072
(n = 32, 7.3%), and STAD (n = 27, 6.1%) (Table 1; Figure S1). S3 con-
tains 108 bacterial signatures that were exclusively derived from
the Phylum of Proteobacteria (Figure S2), and were significantly
highly enriched in these 440 patients (Fig. 1e; adjusted p < 0.05;
Figure S5). More than 93.5% (n = 101) of the species were classified
into the Class of Betaproteobacteria, and the remaining 7 were
Gammaproteobacteria. Three orders including Burkholderiales
(n = 71), Rhodocyclales (n = 13), and Neisseriales (n = 10) have dom-
inated the Betaproteobacteria in the S3. Members of Burkholderiales
were pathogens which were detected in cystic fibrosis patients’
respiratory tract [63]. The order Rhodocyclales that was part of
the lower respiratory tract microbiome, were observed to correlate
with the inflammatory mediator IL-6 [64]. Few members of Neisse-
riales were identified to be human pathogens [65]. Collectively,
more than 77% of the patients in the S3 had tumors either from
the breast or chest, and were mostly enriched with harmful species
from the class of Betaproteobacteria.
3.4. Microbial community diversity and abundance in pan-cancer
subtypes

14,082 species-level microbial composition of 6,612 pan-cancer
patients and 720 adjacent normal control samples were combined
and processed as described previously, which resulted in a 7,534
species-level OTU table for the following microbial diversity and
abundance analysis (Table S6).

The 7,534 species distributed primarily among the Proteobacte-
ria (n = 1,569; 20.8%), Actinobacteria (n = 625, 8.3%), Firmicutes
(n = 354, 4.7%), and Bacteroidetes (n = 261, 3.4%) phyla, as well as
members of phages and viruses (n = 3,551; 47.1%). We subse-
quently compared the relative abundance (%) of the top 12 micro-
bial phyla in the seven subtypes and normal control group.
Actinobacteria and Proteobacteria were the two dominant phyla,
representing together more than 70% of the microbiota among all
groups (global-level; Fig. 2a; Table 2), and this percentage
increased to 83% at the species-level (Fig. 2d; Table 2). The other
major phyla includes Firmicutes and Bacteroidetes, along with bac-
teriophages (global-level: Proteus phage VB_PmiS-Isfahan; and
signature-level: Geobacillus virus E3; Table 2). Interestingly, the
S5 subtype has the highest relative percentage of Actinobacteria
but lowest of Firmicutes at both the global and signature-level
(Table 2).

PCoA ordination of the 7,534 species further indicated the pres-
ence of the 7 subtypes, and significant differences were seen
within the subtypes and between the normal control group
(Fig. 2b; pairwise PERMANOVA, adjusted p < 0.05, Table S7). Pair-
wise Shannon diversity comparisons not only show that S5
patients had the significantly lowest overall microbial diversity
as compared to the other groups (Fig. 2c; pairwise Wilcoxon test,
adjusted p < 0.05, Table S7), but also indicated that only the S6 sub-
type has no differences between the normal group (Fig. 2c; pair-
wise Wilcoxon test, adjusted p greater than 0.05, Table S7). The
above results were not only observed at the global-level with a
total of 7,534 species but also at the signature-level with just
424 species (Fig. 2e-f; Table S7).

Taken together, we identified 7 pan-cancer subtypes which
have significant microbial beta diversity (PCoA) differences within
the subtypes and between the normal control group. S5 has
reduced microbial alpha diversity and approximately 40% of the
untreated cancer patients were classified into the S6 subtype,
who have not experienced microbial composition changes com-
pared to the adjacent normal control group. Furthermore, the iden-
tified 424 microbial signatures represent a snapshot of microbes
that are unique to each pan-cancer subtypes.



Fig. 2. Comparisons of different microbial community diversities and abundances. Taxa composition stacked bar plots illustrated the microbial relative abundance (%; in
y-axis) of the top 12 phyla in the seven subtypes and normal control group (a. global-level; d. signature-level). 3D-view PCoA ordination plots based on Jaccard distances to
display the species-level microbial beta diversity in different samples at the global-level (b) and signature-level (e), respectively. Each point represents a sample. A total of
eight different colors were used to distinguish the seven subtypes and the normal control group. Shannon’s alpha diversity index (in y-axis) of the seven subtypes and control
group at the global-level (c) and signature-level (f), respectively.

Table 2
Top 12 microbial phyla relative abundance in the pan-cancer subtypes.

S1 S2 S3 S4 S5 S6 S7 S8

Common Phylum Proteobacteria Global 47.4 26.8 54.5 43.6 13.9 20.6 42.6 23.4
Signature 57.9 22.2 60.8 69.7 10.1 14.8 24.4 17.8

Actinobacteria Global 35.0 54.0 34.7 37.0 70.2 51.1 37.4 50.6
Signature 37.5 73.4 37.5 14.1 87.4 80.0 60.7 76.8

Firmicutes Global 4.4 3.7 1.7 8.3 1.4 3.7 6.1 3.9
Signature 0.8 0.7 0.3 5.6 0.2 0.9 0.8 1.2

Euryarchaeota Global 3.3 2.2 0.5 0.3 0.5 0.9 0.1 0.9
Signature 0.6 0.3 0.1 0.1 0.2 0.2 0.0 0.2

Bacteroidetes Global 3.3 3.2 1.4 7.8 1.3 3.2 5.2 3.1
Signature 1.6 1.8 0.8 9.0 0.8 2.1 10.1 2.5

Cyanobacteria Global 1.4 1.2 0.5 0.8 0.4 1.0 2.5 1.0
Signature 0.4 0.3 0.1 0.2 0.1 0.3 2.0 0.3

Deinococcus-Thermus Global 0.9 1.0 0.5 0.5 0.9 0.8 0.4 0.7
Signature 0.3 0.5 0.2 0.3 0.8 0.8 0.2 0.5

Planctomycetes Global 0.7 0.6 0.3 0.4 0.1 0.3 0.2 0.3
Signature 0.1 0.3 0.1 0.2 0.0 0.1 0.2 0.1

Acidobacteria Global 0.3 0.2 0.2 0.3 0.1 0.2 0.4 0.2
Signature 0.3 0.2 0.1 0.6 0.0 0.1 0.6 0.2

Phage_VB Global 1.7 6.5 5.4 0.5 11.0 17.3 4.8 15.3
Phage_E3 Signature 0.2 0.1 0.0 0.0 0.2 0.4 0.2 0.3

Distinct Phylum Spirochaetes Global 1.2 0.4 0.1 0.3 0.1 0.5 0.1 0.2
Gemmatimonadetes Signature 0.1 0.1 0.1 0.3 0.0 0.1 0.5 0.1
Tenericutes Global 0.4 0.4 0.1 0.2 0.1 0.4 0.1 0.3
Fibrobacteres Signature 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0

L. Zhao, William C.S. Cho and Jun-Li Luo Computational and Structural Biotechnology Journal 20 (2022) 3068–3079
3.5. Subtype-specific microbial communities correlation analyses

The average abundance of the microbial signatures in each
microbial community were calculated and used in Spearman corre-
lation analyses to assess associations among communities (M1-
M7), microbial alpha diversity, as well as to evaluate the correla-
tions between microbial communities and tumor-infiltrated
immune/stromal cells (Fig. 3). M3 and M5 have minor positive,
but negative correlations with the remaining 5 microbial commu-
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nities (Fig. 3a). M1, M4, and M7 were positively associated, and the
strongest positive correlation has been observed between M1 and
M4 (Fig. 3a). The 7 microbial communities correlation with the
alpha diversity indicated that M5 and M6 decreased, and the
remaining 4 communities increased microbiome diversity
(Fig. 3b). A more detailed and specific correlation analysis at the
species level revealed that S5 subtype-specific microbial signatures
such as Streptomyces lividans, MTB, and Rhodobacter sphaeroides
were strongly negatively correlated with the alpha diversity index



Fig. 3. Subtype-specific microbial communities’ correlation with immune cells and human genes. (a). Correlogram displaying the Spearman’s correlation for all pairs of
microbial communities (M1-M7) comparisons. The area of the dots were proportional to their correlation coefficients, and the color indicated the strength of the correlation
(red for positive, and blue for negative correlations). (b). Spearman’s correlation coefficient table among abundance of the seven microbial communities with the seven
selected significant tumor-infiltrating cell types and microbial alpha diversity (microbial div). (c). Spearman’s correlation coefficients heatmap between the 696 genes (in
rows) and the abundance of the seven microbial communities (in columns). Positive and negative correlations were shown in red and blue, respectively. The percentages of
different categories of RNAs were shown on the right hand of the heatmap. Protein coding genes were used for functional enrichment analysis, and the enriched pathways
were included in the bracket. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Table S4). Actinobacteria bacterium IMCC25003, Candidatus Plank-
tophila sulfonica, Rhodoluna lacicola, among several others were
strongly positively correlated with the alpha diversity index
(Table S4). Interestingly, the most frequent positive and negative
associations were seen in S4 and S5, respectively (Table S4).

Correlations between the 7 microbial communities and 64
tumor-infiltrating cell types identified key cellular components
(including memory CD4 T, natural killer T, regulatory T, T helper
type 2, osteoblasts, mast and mesangial cells) that were signifi-
cantly associated with at least one microbial community (adjusted
p < 0.05), although the correlation coefficients were generally small
(|r|< 0.3; Fig. 3b). M5 was noticeable as it has correlated with more
cellular components than other communities (Fig. 3b). For exam-
ple, memory CD4 T, T helper type 2, mast and mesangial cells were
significantly negatively correlated with the M5. Significant positive
associations were found between M5 and natural killer T or osteo-
blasts (Fig. 3b). Additionally, the absolute correlation coefficients
between tumor-infiltrating cells with the M1, M3, M4, and M7
were too small (<0.2) to consider separately (Fig. 3b).

A total of 696 genes were significantly correlated with the
abundance of the 7 microbial communities (adjusted p < 0.05),
with more than half of them (382; 54.9%) being non-coding RNAs
(Table S8). Of note, the processed pseudogenes account for a signif-
icant proportion of the associated genes (302; 43.4%). A correlation
heatmap was subsequently constructed based on the Spearman’s
correlation coefficients between the 696 genes and the 7 commu-
nities (Fig. 3c). More positive than negative correlations have been
seen in M1, M2, and M4, which were opposite in correlation direc-
tions observed in M3 and M5. The number of genes which were
either positively or negatively correlated with the M6 andM7 were
almost equal (Fig. 3c; Table S8). Among the 355 genes which were
negatively correlated with the M6, 282 were processed pseudoge-
nes (Table S8). There were 64 other classes of non-coding RNAs,
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and only 9 of them were protein coding genes (Table S8). This
group of genes were negatively correlated with the M5, M3, and
M7, and positively associated with the M4, M2, and M1, respec-
tively (Fig. 3c). A total of 341 genes were positively correlated with
the M6, and 305 of them were protein coding genes. Functional
enrichment analysis indicated that these genes were significantly
involved in pathways such as hippo signaling, RNA and snRNA
binding (Table S9). Additionally, 84 out of the 97 genes which were
negatively correlated with the M4 were protein coding genes, and
were significantly involved in 4 RNA/snRNA/protein binding path-
ways (Table S9).

In sum, the identified 7 pan-cancer microbial communities have
connections to each other. As the species have the lowest alpla
diversity and more immune cells were mostly negatively corre-
lated with the M5, we speculate that dysbiosis may disrupt
immune homeostasis. In regards to patient-microbe interactions,
the 7 microbial communities were not only correlated with the
patients’ protein coding genes involved in the binding related
pathways, but also correlated with many non-coding RNAs, espe-
cially with the processed pseudogenes.

3.6. CRC intratumor microbial heterogeneity

Colorectal cancer (CRC) is the third most prevalent and lethal
type of cancer worldwide [66]. CRC is more common in developed
countries, and is strongly linked to risk factors such as low-fiber
and high-fat diet [67], lack of physical activity [68], alcohol-
tobacco consumption, obesity, and dysbiosis [69]. Similar to what
we found previously [31], CRC is largely composed of two subtypes
including S4 and S6, characterized by distinct microbial profiles
(Fig. 4).

The cancer types in S4 were exclusively from the UCEC and CRC
(Table 1). More specifically, S4 contains 533 cancer patients with



L. Zhao, William C.S. Cho and Jun-Li Luo Computational and Structural Biotechnology Journal 20 (2022) 3068–3079
60.0% of them (n = 320) were UCEC, and the remaining 40.0% were
CRC (including 145 COAD, 42 READ, and 26 Rectosigmoid junction
cancer; Table 1; Table S5). There were 84 microbial signatures (all
bacteria) that significantly enriched in S4, and more than 46.4%
(n = 39) of them were from the order of Enterobacterales (with
the class of Gammaproteobacteria; Table 1; Figure S2). As more
than 90% of the microbial signatures in S1 were classified as
Gammaproteobacteria as well (Table 1), the phylogenetic species
relatedness may explain the observed positive correlation between
M1 and M4 (Fig. 3a). The other dominated species in S4 include
members of Bacteroidales and Clostridiales, which were in high
abundance and generally beneficial to human health (Table S4;
Table 2). In addition, the highly enriched Enterobacterales were fac-
ultative anaerobes with the majority of them being pathogenic to
humans. For example, Shigella spp. can infect and cause severe
inflammation and dysentery in the human colon [70]. Citrobacter
spp. were opportunistic intestinal and urinary tracts pathogens
[71]. The other two pathogenic Enterobacterales spp. (Salmonella
enterica and Yersinia pestis) have also been found to be enriched
in S1 (Upper GI subtype).

A total of 4 archaea, 1 virus, and 29 bacterial species were sig-
natures in S6. Unlike the taxa-dominated enrichment patterns in
S1-4, there were no such patterns observed in the S6 subtype (Fig-
ure S2). S6 contains 25 different cancer types, and more than half
of the CRC cases as mentioned above were classified into this sub-
type. There were altogether 428 CRC patients in either the S4 or S6
subtypes, and no significant OS and PFS differences were observed
between them (Fig. 4b-c) Interestingly, the 245 S6 patients from
the CRC had enriched similar microbial signatures with the normal
control group (n = 720), indicating that the S6 had ‘‘normal-like”
microbial communities and diversities (Fig. 4d-f).
Fig. 4. Identification of two microbial subtypes of CRC. (a). Heatmap of the relative abu
and normal control patients. Microbial relative abundances were represented by different
two well-separated patient-microbe interaction patterns. Kaplan-Meier survival curves
obtained by the log-rank tests. (d). Taxa composition stacked bar plots illustrated the mic
normal control group. (e). 2D-view PCoA ordination plot based on Jaccard distances to
represents a sample). Pairwise PERMANOVA was used for testing the differences among
tests (with BH correction) were used to compare the alpha diversity differences among
levels (*: p < 0.05; **: p < 0.01). (For interpretation of the references to color in this figu
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3.7. Functional annotation and clinical significance of the pan-cancer
subtypes

GSEA was performed to identify significant gene sets in each
subtype. A total of 266 most highly enriched common gene sets
from the seven pan-cancer subtypes (adjusted p-value < 0.05;
Table S10) were selected. Except for the S2 subtype, subtype-
specific gene sets were identified and shown in the p-value heat-
map (Fig. 5a). For example, multiple immune-related gene sets
were up-regulated in the S1 and S3, but were down-regulated in
the S5 subtype. S3 subtype has extracellular matrix (ECM) and
invasive-associated gene sets up-regulation (Fig. 5a). S5 has been
enriched with lipoprotein assembly and metabolism-related gene
sets. Moreover, cell cycle and CRC-related gene sets were enriched
in the S4 subtype (Fig. 5a). Canonical cancer-related gene sets were
enriched in the S6 subtype. Finally, cell signaling or cell communi-
cation pathways such as EGFR/TGFB/TNF signaling and fibronectin
binding were up-regulated in the S7 (Fig. 5a).

The associations among pan-cancer subtypes and patients’ clin-
ical outcomes in terms of OS and PFS were assessed using the mul-
tivariable Cox PH regression analysis. The Cox model was adjusted
for confounding factors such as age, gender, tumor stage and grade.
Hazard ratio (HR) of age on OS and PFS were all close to 1, indicat-
ing that age’s effect on survival was not clear (Fig. 5b-c). Compared
to female patients, males have significantly lower survival rates
(log-rank p-value < 0.05; HR greater than 1). Although many
patients’ tumor stage and grade information were not available,
higher stage was basically a poor prognostic factor for both OS
and PFS, and higher grade has generally worse prognosis compared
to the lower grade cases (Fig. 5b-c). The ‘‘normal-like” subtype S6
was serving as the reference category in the multivariate Cox
ndance of the M4 and M6 microbial signatures in the two CRC subtypes (S4 and S6)
colors, red means higher values, and green for lower values. The heatmap displayed
comparing OS (b) and PFS (c) of the two subtypes. The indicated p-values were
robial relative abundance (%; in y-axis) of the top 12 phyla in the two subtypes and
display the species-level microbial beta diversity in different samples (each point
groups. (f). Shannon’s alpha diversity index in the three groups. Pairwise Wilcoxon
groups. P-values<0.05 were considered significant, and asterisks denote significant
re legend, the reader is referred to the web version of this article.)



Fig. 5. Functional and clinical characterizations of the pan-cancer subtypes. (a). A p-value heatmap displaying the overlapped dysregulated gene sets (in rows) in the
seven pan-cancer subtypes (in columns). Values in the heatmap equal to -log10 (FDR adjusted p-value). Red color indicates gene sets with up-regulations, and green with
down-regulations. Gene sets were grouped into several different functional categories, and their functional names were shown on the right hand of the heatmap. Forest plots
of Cox regression models for OS (b) and PFS (c), which illustrated the HRs, 95% CIs, and log-rank p-values for pan-cancer subtypes and confounder factors (age, gender, tumor
stage, and grade). The p-value significance levels were labeled as follows: * p < 0.05, ** p < 0.01, and *** p < 0.001. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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model. S3 and S4 have favorable clinical outcomes, whereas S1, S2
and S7 predict poor OS and PFS. In addition, S5 was a good prog-
nostic factor for OS, although not statistically significant (Fig. 5b-c).
4. Discussion

Pan-cancer analysis of genomes, transcriptomes, and beyond
have identified subtype-specific genomic patterns, expression pro-
grams, distinct cellular identity and activities, which increased our
understanding of tumor heterogeneity. Microorganisms live on and
inside our bodies, and are increasingly being recognized for their
roles in human health and disease. Cancer patients are immuno-
compromised and more vulnerable to getting microbial infections.
However, identifying the cancer-associated microbiome and
exploring the pan-cancer microbial heterogeneity are still in the
early stages. Therefore, in our investigations, we sought to define
the tumor microbiomes and did the first attempt of revealing the
potential pan-cancer heterogeneity at the microbial level. Micro-
bial compositional profiles were estimated from the unmapped
transcriptome sequencing data. As the microbial community data
share certain similar characteristics with single cell transcriptomic
data, which is sparse and high-dimensional, we used a dimension-
ality reduction technique developed for single cell data (cNMF) to
factorize the microbial compositional profiles. A total of 7 pan-
cancer subtypes with distinct microbial community compositions
and diversities were identified and characterized for their molecu-
lar and clinical significance. Each pan-cancer subtype was enriched
for a group of microbial species that show significant over-
representation over the 7 subtypes.

We found that pan-cancer subtype S1, S2, and S3 each individ-
ually enriched with phylogenetic related species More specifically,
among the 53 bacteria signatures in S1, 49 (92.4%) of them belong
to the class of Gammaproteobacteria. Likewise, more than 82.8%
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and 93.5% of microbial signatures identified from S2 and S3 were
in the class of Actinobacteria and Betaproteobacteria, respectively.

Proteobacteria is a phylum of Gram-negative bacteria, with
many of them having nitrogen fixation/metabolism properties.
There are five major classes of the Proteobacteria including
Alpha-, Beta-, Gamma-, Delta-, and Epsilon-Proteobacteria, which
have been identified in various human body sites [4]. The
Alphaproteobacteria is highly diverse and adaptable, which can sur-
vive with very few nutrients. Alphaproteobacteria has been identi-
fied to be the dominant phyla in the primate brain microbiome
[72]. The class Betaproteobacteria is free-living aerobic and anaero-
bic bacteria. In our study, Betaproteobacteria was found to be dom-
inant in chest-related cancers such as BRCA and LUSC.
Burkholderiales is the most abundant taxon within the Betapro-
teobacteria, accounting for more than 65% of the microbial signa-
tures in S3. Members of Burkholderiales including Bordetella
holmesii and pandoraea pulmonicola are serious human pathogens
[73,74] Gammaproteobacteria is a large class of microbes with
many of them exist as commensals, and others are well-known
human and animal pathogens including Salmonella, Yersinia, and
Vibrio. Salmonella spp. are important causes of salmonellosis, char-
acterized by inflammation of the intestine. Two species of Sal-
monella, namely S. enterica and S. bongori are in our 424
microbial list. S. enterica in S1, which is a life-threatening food-
borne bacteria that poses a threat to human and animal health. S.
bongori is associated with mild symptoms and classified into the
S4. Yersinia spp. are responsible for a number of human diseases
ranging from yersiniosis to plague. Yersinia pestis, the causative
agent of bubonic plague (Black Death), has been detected in the
presence of nucleic acid in S1 patients. Vibrio spp. are salt tolerant
bacteria occurring naturally in the marine environment. The
majority of Vibrio infections in humans are foodborne, coming from
infected seafood. As around 95% of the cancer types in S1 were
diagnosed with upper GI cancers, we speculate that the microbial
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signatures in S1 are associated with upper GI cancer. The
Gammaproteobacteria spp. also account for a significant proportion
(greater than50%) of the microbial signatures in S4, which is a pan-
cancer subtype dominated by a subset of lower GI cancer (CRC).

Actinobacteria was the second most predominant phylum after
Proteobacteria, and was more abundant in the subtypes of S2,S5,
S6, and S7. Actinobacteria share the similar morphological and
functional properties of both bacteria and fungi, and most of them
are aerobic spore-forming bacteria that play important roles in
organic matter decomposition [58]. In our study, there were more
than 25 different cancer types classified into the S2, S5, and S6,
respectively. Take example of S2, almost all ovarian (OV, n = 350)
and glioblastoma (GBM, n = 99), as well as 60% STAD (n = 198),
50% ESCA (n = 51), 50% KIRC (n = 128), 30% BRCA (n = 174), and
other 21 different cancer types were included. S2 has 29 microbial
signatures in the class Actinobacteria, and several closely related
Streptomyces spp. dominated in this pan-cancer subtype. Soil-
derived Streptomyces spp. have established symbiotic relationships
with humans and were present in various body sites [75]. Most of
these species were capable of producing antibiotics and other
bioactive metabolites, making them promising candidates for
inflammatory diseases and cancer [58,62,76]. Soil is part of
human’s natural habitat, which supports a variety of organisms
and microorganisms [15,77]. Many phylogenetic and functional
similarities have been found between the human intestinal micro-
bial niche with the soil/root microbial ecosystems [15,78]. By iden-
tifying a group of human associated Streptomyces spp., our study
helps to better understand the link between soil microbes and
human health and diseases.

The patients classified into the S5 had the lowest microbial
alpha diversity as compared to other subtypes. Although the 36
bacteria taxa distribution in S5 is wide and diverse, S5 patients
had a significant amount ofMycobacterium tuberculosis (TB) enrich-
ment (Table S7). Approximately one-quarter of the world popula-
tion have latent MTB infection, according to the World Health
Organization (WHO). Immunocompromised patients are at higher
risk of activation of latent MTB infection to active TB disease
[79,80]. Previous studies found that MTB infection was associated
with decreased gut microbiome diversity in both mice [81] and
humans [82]. In the present study, we observed the co-
occurrence of TB enrichment and loss of microbiota diversity in a
wide range of body sites (27 types of cancer involving different
organs), and the dysbiosis disrupts the immune functions in the
S5 patients. Additionally, one member of the mycobacterium tuber-
culosis complex (MTC):M. kansasii, had been highly enriched in the
S5 as well. Overrepresentation of the MTC sequences in a subset of
these patients may contribute to contamination [83]. Another
potential contamination issue was found in CRC patients classified
as S4, where it has higher microbial alpha diversity compared to
the control group, and this is contrary to what we found previously
using 16S rRNA amplicon sequencing datasets [31]. Thus, contam-
ination issues should be a concern when working with unmapped
RNA-Seq data, and a multi-analysis involving multiple indepen-
dent cohorts is preferable.

In our study, S6 was one of the largest pan-cancer subtypes
with more than 25 different cancer types, and S6-specific microbial
signatures spanning all major phyla in bacteria. S6 accounts for
approximately 40% of the untreated cancer patients who have
not experienced microbial composition changes compared to the
adjacent normal control group. In these ‘‘normal-like” patients,
the overrepresented signatures as a whole microbial community
were positively correlated with genes involved in hippo signaling,
RNA and snRNA binding pathways, and were negatively correlated
with many processed pseudogenes. Further studies are needed to
understand the underlying mechanisms responsible for the func-
tional differences between these coding and non-coding genes.
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Moreover, studying cancer microbial community structures and
functional profiles will aid future works on designing more effec-
tive and targeted cancer therapies.

5. Conclusions

In conclusion, we did the first attempt of revealing the pan-
cancer heterogeneity at the microbial level. A total of 7 pan-
cancer subtypes (S1-S7) and 424 subtype-specific microbial signa-
tures were identified and characterized for their functional role
and clinical significance. Phylogenetic related bacteria signatures
were overrepresented in S1, S2, and S3. CRC has been classified into
the S4 and S6 subtypes. S4 contains many pathogenic Enterobac-
terales spp., and was enriched with cell cycle and CRC-related gene
sets. S6 had ‘‘normal-like” features, and was one of the largest pan-
cancer subtypes spanning more than 25 different cancer types. S5
patients’ immune functions were impaired by the loss of microbial
diversity. Lastly, the rare pan-cancer subtype S7 predicts poor sur-
vival and has cell to cell communication related gene sets upregu-
lation. Our study not only examined and characterized the pan-
cancer heterogeneity at the microbial level, but also provided
promising therapeutic targets for cancer treatment.
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