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Simple Summary: Cotton aphid (Aphis gossypii Glover) (Homoptera: Aphididae) is a major pest of
cotton and other cash crops across cotton-growing areas in China. The decision to spray insecticide or
rely on biocontrol and delay spraying is often a dilemma in cotton-growing regions. In this study, we
used a laboratory experiment and a caged experiment in a garden as well as modeling to understand
the ratio of prey/predator for the abovementioned decision making. We suggested that the ratio of
prey/predator should be less than 450 for the effective biocontrol of cotton aphid at cotton seedling
stage. This finding can improve the efficiency of larger-scale cotton aphid management in China.

Abstract: The decision to delay or cancel spraying insecticides against pest aphids is dependent on
the ratio of prey/predator, which reflects how well the predator can suppress the aphid population
increase in the field. It is challenging to estimate the ratio of prey/predator due to the multiple factors
involved in the interaction between prey and predator. Cotton aphid (Aphis gossypii Glover) is a
serious pest, widely distributed in cotton-growing areas around the world. We combined different
ratios of aphids with aphid oligophagous ladybird beetles (Coccinella septempunctata Linnaeus) under
laboratory and garden conditions to investigate the critical threshold for prey/predator which
effectively reduced the cotton aphid population increase. Two kinds of modeling were developed to
understand the relationships between the ratio of prey/predator and the PGR (population growth
rate), and with the effectiveness of biocontrol (EBC). We found the critical values of PGR should be
less than −0.0806 (predators artificially released after 5 days) and then less than −0.075 (predators
released after 10 days) if EBC is less than 50%. We recommend that the ratio of prey/predator should
be less than 450 for the effective biocontrol of cotton aphids at the cotton seedling stage. These values
can be reference indices for the management of aphids in mid-summer.

Keywords: Coccinella septempunctata; critical threshold; effectiveness of biocontrol; population
growth rate
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1. Introduction

Biocontrol services, including natural enemies, are sustainable tools for managing
pests whilst conserving the environment, biodiversity, and food production [1,2]. In
agricultural production, the contribution of biocontrol to increasing yield and crop quality
was relatively small (<20%) [3], but its value to the economy and wellbeing of society is
crucial and underestimated [4–6]. For example, natural suppression of soybean aphid in
soybean was worth an average of USD 33 ha−1 [7]. Numerous technologies promoting
the efficacy of biocontrol, such as selective insecticides [8,9], environmentally friendly bio-
pesticides [10,11], augmentative biological control [12,13], habitat management [14,15], and
genetically engineered crops [16–18], have been implemented in agricultural management.
Conservation biological control (CBC), which integrates natural enemies back in to crop
systems, can minimize the likelihood of a pest outbreak, and reduce pesticide use and
pest resurgence [8,19]. Additionally, CBC is more practical, economical, environmentally
friendly, and more feasible for manipulation in an open field [20,21]. Therefore, CBC has
been used effectively in multiple ecosystems throughout the world [19,22].

Pesticides may be used in CBC to assist in reducing higher densities of pests when
there is a deficit of biocontrol agents in some cases. The threshold for insecticide application
is important to avoid unnecessary spraying, which would also kill natural enemies. There
are two factors, the economic threshold level (ETL) and the ratio of natural enemies to prey,
that determine the threshold. The prey/predator ratio has been employed successfully to
decide the releasing frequency and quantity of predators with various pests, particularly
in microcosm ecosystems [23–27], but it has been used less in open fields [28] due to the
complex interactions between prey and predator under the influence of multiple factors in
nature. It is necessary to compromise between pesticide use patterns and the biocontrol
service of natural enemies when the pest density is near to the ETL, and we need to build
some useful parameters such as the ratio of prey/predator to solve this issue. There is still
a crucial bottleneck for the effectiveness of CBC in various cropping systems.

Cotton aphid (Aphis gossypii Glover) is one of the serious r-strategy pests in cotton-
growing areas worldwide, causing economic losses from 10% to 30% [29–31]. Populations
have persisted within a cotton growing season for 4–5 months in various geographic
areas [32–34], where it is an early-through mid-season pest: extending to late season if broad-
spectrum insecticides have reduced the role of natural enemies [33]. Natural enemies can
regulate aphid populations effectively and mitigate outbreaks and yield loss [17,30,33–36].
Previous studies recommended that a ratio of prey/predator of less than 300 in a cotton
crop at seedling stage would indicate efficient biocontrol [37,38] and insecticide application
would not be required. In China, there have been higher levels of resistance in aphids
to pesticides [39,40]. Consequently, a critical threshold ratio of aphid/predator needs to
be quantified that will best inform decisions about appropriate insecticide spraying and
the effectiveness of natural enemies, and thus help mitigate the resistance of cotton aphid
to insecticides.

In this study, we conducted a laboratory experiment and a caged experiment in
a garden to investigate aspects of the complex interaction between cotton aphid and a
predator, the ladybird beetle, which is the dominant and most effective natural enemy
in open cotton fields, and to determine with confidence the ratio of aphid/predator that
should provide biocontrol of cotton aphid. The following questions were addressed: (1)
How does the prey/predator ratio affect the population growth rate of aphid? (2) Does the
ratio of prey to predator affect the efficacy of biocontrol for aphid?

2. Materials and Methods

The experiments were conducted under constant temperatures in laboratory and
fluctuating temperatures in a garden in Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences, Urumqi, Xinjiang, China (43◦51′57′′ N, 87◦33′51′′ E). The
average daily temperature ranged from 9 ◦C to 35 ◦C, the average temperature was 20 ◦C
(for details see the Supplementary Materials Figure S1).
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Cotton aphids were collected from Shihezi Agriculture Station, Xinjiang Province,
China (44◦20′2′′ N, 86◦02′42′′ E), and transferred to cotton seedlings in the laboratory and
cultured for three generations before use in the experiments. The predator ladybird beetles
(Coccinella septempunctata Linnaeus) were purchased from the Fujian Yan Xuan Biological
Technology Co. Ltd. (Fuzhou, China).

The cotton seedlings (Xinluzao 61 variety) were planted in plastic pots (length, height,
and width of 20, 14, and 16 cm, respectively) with commercial potting mix, with 1 plant per
pot. A total of 2400 plants were grown in an enclosed, insect-proof greenhouse of 30 m2

and used at the 6–7 euphylla leaf stage.
Experiment 1: Biocontrol under stable temperature regimes in the laboratory. Three

factors were considered: (1) temperature at 3 levels—24 ◦C, 27 ◦C, and 30 ◦C; (2) predator
ladybird beetles (C. septempunctata) at 4 levels—0, 1, 2, and 4 predators per cotton plant
according to long-term field data (Lu, unpublished); and (3) aphid density (200, 400, and
800 per cotton plant). This experiment was conducted in a complete randomized design,
with 36 treatments employed; each treatment had 5 simultaneous replications.

Each plant was enclosed in a nylon net (diameter: 0.24 mm) cage (length, height, and
width of 20, 20, and 30 cm respectively) after transferring 25–70 adult aphids onto each
plant 1 week prior. After one week, we counted the aphids on each plant and removed the
surplus to the number required for each experiment (200, 400, or 800 aphids in each plant
cage). Simultaneously, the beetles were added to the plant as required for each treatment.
Cages were transferred into climate-controlled chambers (PXY-250Q-A, Keli experimental
company, Shaoguan, China) at the required temperatures. Aphids on each plant were
counted with 8 observers at 5-day intervals until their population steadily dropped near
to 0.

Experiment 2: Biocontrol under fluctuating ambient temperatures in the caged experi-
ment in the garden (CEG). The same levels of aphid density (200, 400, and 800 per plant)
and ladybird beetles (0, 1, 2, and 4 predators per plant) were used in the caged experiment
in the garden as in the laboratory experiments. The plants, aphids, and ladybird beetles
were managed as described in Experiment 1. As in Experiment 1, after transferring aphids
and predators, each plant was enclosed in a nylon net (diameter: 0.24 mm) cage (length,
height, and width of 20, 20, and 30 cm, respectively). Then, all cages with treated plants
were placed in garden under natural environmental conditions (called caged experiment
in the garden—CEG). A total of 12 treatments with 5 replications were conducted simul-
taneously. The aphid count was carried out as in Experiment 1. The weather data were
obtained from the local weather bureau.

Statistics

The population growth rate (PGR) is defined as:

r = (lnNt − lnN0)/t

where Nt is the number of aphids at a given time, N0 is the initial number of aphids in each
treatment, and t is days interval between Nt and N0 [41].

The effectiveness of biocontrol (EBC) is used to describe biocontrol efficacy and is
calculated as follows:

EBC = (Nck − Np)/Nck × 100%

where Nck and Np are the number of aphids in the predator-absent treatment and the
predator-present treatment, respectively, with the other factors the same in both treat-
ments. A simple linear regression was used to describe the relationships between (r) and
the prey/predator ratio, and between EBC and the prey/predator ratio using Origin 9.0
software (OriginLab Corporation, Northampton, MA, USA).

Because cotton aphids developed their abundance rapidly but reduced in 20–30 days,
and then declined in the field, we concerned the effectiveness of biocontrol within 10 days.
Therefore, the EBC in the caged experiment in the garden and the laboratory experiment
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under different treatments was compared at 5 days and 10 days after releasing the predator
using a general linear model (GLM). In the caged experiment in the garden, aphid and
predator numbers per seedling were fixed factors, and ECB was the dependent factor. A
full factorial design was employed, and post hoc tests were used to examine the effects of
initial number of aphids and the number of predators. Least significant difference (LSD)
was used in the post hoc test to identify the differences between treatments. For EBC in the
laboratory experiments, the numbers of aphids and predators and the temperature were
fixed factors, and ECB was the dependent factor. Similarly, a full factorial design model
was employed, and post hoc tests were used to examine the effects of the initial number of
aphids, the number of predators, and temperature. LSD was used in the post hoc test to
identify the differences between treatments.

3. Results
3.1. The Population Growth Rate of Cotton Aphid

The temperature, initial number of aphids, and numbers of predators combined
to drive the population growth rate. Under all the temperature regimes (including the
caged experiment in the garden and the laboratory experiment), the presence of one or
more predators decreased the population growth rate (r). Under the same temperature, r
decreased along with an increase in the number of predators present (Figure 1). Under all
temperature regimes, r was slightly higher along with a greater initial number of aphids.
Under increased temperature, r was lower when the other factors of initial aphid number
and predator number were the same (Figure 1). In the caged experiment in the garden, in
the treatments without predators present, the r was greater than 0 regardless of the initial
number of aphids (Figure 2).
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Figure 1. Population growth rate of cotton aphids in laboratory experiments using three initial
numbers of aphids (200, 400, and 800), four numbers of predator beetles (0, 1, 2, and 4), and three
constant temperature regimes (24 ◦C, 27 ◦C, and 30 ◦C).
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Figure 2. Population growth rate of cotton aphids in using three initial numbers of aphids (200, 400,
and 800), and four numbers of predator beetles (0, 1, 2, and 4).

3.2. Biocontrol Efficiency (EBC) Affected by Multiple Factors

In the caged experiment in the garden, the number of predators and the initial number of
aphids were the key factors determining the EBC. After releasing the predators, the number
of aphids of each treatment had declined rapidly both at 5 days (predator—F = 230.50,
df = 2, 33, p < 0.0001; initial number of aphids—F = 105.14, df = 2, 33, p < 0.0001) and
10 days (predator—F = 92.88, df = 2, 33, p < 0.0001; initial number of aphids—F = 94.14,
df = 2, 33, p < 0.0001). The effectiveness of biocontrol (EBC) was greater than 80% except
for one treatment: the EBC of the treatment with the combination of an initial number of
aphids of 800 and 1 released predator was significantly lower than that of other treatments
(Figure 3).
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Figure 3. Effectiveness of biocontrol (EBC) against cotton aphid at (a) 5 days and (b) 10 days after
releasing predators in the caged experiment in the garden (CEG) (the label in x axis presents the
initial number of aphids and predators in cages). Different letters showed the mean of EBC that was
different among each treatment in (a,b), while one-way ANOVA was used for comparison.
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In the laboratory experiment, temperature, initial aphid number, and predator number
influenced the EBC significantly 5 days after predators were released (temperature—F = 31.13,
df = 2, 108, p < 0.0001; predator—F = 1726.88, df = 2, 108, p < 0.0001; initial number of
cotton aphids—F = 1019.52, df = 2, 108, p < 0.0001) and at 10 days after predator release
(temperature—F = 282.39, df = 2, 108, p < 0.0001; predator—F = 2514.91, df = 2, 108,
p < 0.0001; initial number of cotton aphids—F = 2612.82, df = 2, 108, p < 0.0001). The EBC
is less than 30% after 5 days when one predator was released and the initial number of
aphids was 800 at all temperatures. The EBC is slightly different in all treatments after
5 days compared with after 10 days. In the treatment at 24 ◦C with an initial 800 aphids,
the population of cotton aphids slightly increased after 10 days (Figure 4).
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releasing predators in laboratory experiments under various constant temperature regimes (the label
in x axis presents the initial number of aphids and predators in cages).Different letters showed the
mean of EBC that was different among each treatment in (a,b), while one-way ANOVA was used for
comparison within one regime of temperature, respectively.

3.3. The Biocontrol Efficiency in Laboratory and Garden

The variation in EBC was smaller when the prey/predator ratio was less than 200
under different temperature regimes and with different initial numbers of cotton aphids.
However, the variation in EBC increased when the prey/predator ratio was more than
400 (Figure 5). However, there was a negative relationship between EBC (y) and the
prey/predator ratio (x) (at 5 days—y = 107.667− 0.082x, R2 = 0.871, p < 0.001; at 10 days—
y = 111.157− 0.084x, R2 = 0.74, p < 0.001). With an increasing prey/predator ratio, the
EBC of ladybird beetles against cotton aphids declined simultaneously. We estimated that
a prey/predator ratio of 700 at 5 days after release of predators, or 728 at 10 days after
release, can lead to an effective decline in EBC (<50% in both periods, usually regarded as
successful control).
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Figure 5. Effectiveness of biocontrol (EBC) by ladybird beetle predators against cotton aphids in rela-
tion to the prey/predator ratio in laboratory experiment and caged experiment in the garden (CEG).

There was a positive relationship between PGR (y) and the prey/predator ratio (lnx)
at both 5 and 10 days after release of the predators (5 days—y = −1.928 + 0.282(lnx),
R2 = 0.60, p < 0.001; 10 days—y = −1.477 + 0.214(lnx), R2 = 0.366, p < 0.001). When the
ratio is less than 932, the PGR is less than 0 at 5 days after the predators release. Furthermore,
when the ratio is less than 994, the PGR is less than 0 at 10 days after the predators release.
We considered that an EBC of less than 50% as effectively suppressing the number of cotton
aphid; therefore, based on the equations in Figure 6, the critical points of PGR should be
less than −0.0806 at 5 days after predator release and less than −0.075 at 10 days after
predator release.
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4. Discussion

The laboratory experiment and the caged experiment in the garden (CEG) showed
that ladybird beetle predators suppressed the numbers of cotton aphids in most cases but
failed when the initial number of cotton aphids was 800 with 1 predator (Figures 3 and 4).
This means that one predator cannot suppress the population growth of aphids under these
conditions due to the greater number of offspring; this is especially the case after ten days,
when the temperature was at a constant 24 ◦C, which is the optimal temperature for aphid
growth (Figure 4). In contrast, the extreme temperature of 30 ◦C tended to increase the EBC
in our study in treatments with a lower prey/predator ratio in the laboratory (Figure 4).

The PGR can determine the population dynamics of aphids [42]. In our study, we
considered the PGR as an index to indicate the suppressing effect of the natural enemies
(predator ladybird beetles). When the PGR is less than 0, the population size will decline
with the passage of time. Low PGRs (negative values) indicate the rapid decline of a
population. Practically, it is hard to understand the biocontrol efficiency of a natural enemy
without controlled experiments in an open-field natural environment. Exclusion cages
can be employed to estimate the EBC of natural enemies in the garden under fluctuating
ambient temperatures, but this is a time-consuming and laborious process in larger areas.
PGR is easier to calculate using the initial density, final density, and time interval (days).
For the control of cotton aphids, in our study, when the PGR was less than −0.0806, the
control efficiency from enemy predator exceeded 50%; this means that, if the predator is
released in the period of low aphid growth, more than half of the aphid growth can be
controlled. Therefore, PGR is a good reference for understanding the biocontrol service of
natural enemies in the field over large areas.

In practice, the population of cotton aphid is regulated by multiple factors, such as
alternating temperature, extreme temperature, and the composition of natural enemies [43].
Furthermore, other agricultural practices also regulate the population dynamics of aphids
including insecticide use, plant diversity, and landscape change with the seasons in the
field [44]. Therefore, the ratio of prey to predator required to provide effective biocontrol
may be dynamic around our estimated value in the context of landscape changes and
global warming. From our modeling, we recommend the threshold prey/predator ratio
should be 728 because a ratio less than this threshold should lead to successful biocontrol
of aphids (cotton aphid numbers declined up to 50% in 5–10 days compared with aphid
numbers without the presence of predators). In our experiments, as well as through
modeling, we merely considered the limited factors and simplified these to estimate the
threshold of prey/predator in effective control of cotton aphids. These experiments and
modeling should be developed as multiple parameters to deliberate the practical threshold
of prey/predator against cotton aphids with ecofriendly actions.

Considering the efficacy of predators at different time intervals since release (10 days
is more practical), we suggest that a critical prey/predator ratio of less than 450, which is
calculated from the equation in Figure 6, should be employed for biocontrol services. If
the prey/predator ratio is less than 450 in the caged experiment in the garden, spraying
can be delayed or cancelled. However, monitoring should be conducted to estimate the
prey/predator ratio on each day before aphid peak abundance time at cotton seedling
stage, which is the critical window for aphid management.

In China, previous studies have recommended that the ratio of prey/predator is less
than 300 at cotton seedling stage [37]. Based on our experiments and modeling, when
the ratio of prey/predator is less than 450, predators can suppress aphids effectively. Our
finding promotes the use of biocontrol services and lessens the reliance on insecticides
because of the greater threshold ratio. The cotton growing area has been shrinking in many
regions in China [45], and a greater diversity of crops have been planted in the landscape,
especially wheat which harbors many predators in late May. After wheat harvesting,
predators can be driven to move into cotton fields [46]. In our study, we did not evaluate
other ladybird beetle species in the ratio of prey/predators, such as Harmonia axyridis and
Propylaea japonica, which are common in cotton fields in China [47]. Here, we suppose that
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the results from C. septempunctata can be generally applicable to the other ladybird beetle
species if they were transferred as the natural enemy units [48]. Moreover, the landscape
of cropping had more diversity, and offers the higher percentage of natural enemies in
cropping landscapes [49,50]. Soft insecticides prevail in the agricultural production system
in China [51], and the number of insecticides used has been declining rapidly with China’s
regulation policies [52]. Therefore, we recommend the ratio of prey/predator of <450 as
the threshold for suppressing cotton aphids effectively in China.

Using the ratio of prey/predator is a useful way forward for suppressing cotton aphids
in the field, especially for aphids on cotton seedlings (spring peaking). It can help to make
the critical decision on whether pesticides are sprayed or delayed in the field leading to
economic savings and ecofriendly management if spraying is delayed. Moreover, the ratio
of prey to predator can be used to balance aphid management between spring and summer,
when the two peaks of aphid abundance occur in China [35]. Reduced or delayed spraying
during the spring peak of aphids can help a greater number of predators survive, and the
efficacy of this mode of biocontrol against aphids will see benefits during the summer peak
in the field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13050400/s1, Figure S1: The change of daily tempera-
tures in a garden in Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,
Urumqi, Xinjiang.
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