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Abstract
It is well known that the heart and kidney and their synergy is essential for hemodynamic homeostasis. Since the early XIX 
century it has been recognized that cardiovascular and renal diseases frequently coexist. In the nephrological field, while 
it is well accepted that renal diseases favor the occurrence of cardiovascular diseases, it is not always realized that cardio-
vascular diseases induce or aggravate renal dysfunctions, in this way further deteriorating cardiac function and creating a 
vicious circle. In the same clinical field, the role of venous congestion in the pathogenesis of renal dysfunction is at times 
overlooked. This review carefully quantifies the prevalence of chronic and acute kidney abnormalities in cardiovascular 
diseases, mainly heart failure, regardless of ejection fraction, and the consequences of renal abnormalities on both organs, 
making cardiovascular diseases a major risk factor for kidney diseases. In addition, with regard to pathophysiological aspects, 
we attempt to substantiate the major role of fluid overload and venous congestion, including renal venous hypertension, in 
the pathogenesis of acute and chronic renal dysfunction occurring in heart failure. Furthermore, we describe therapeutic 
principles to counteract the major pathophysiological abnormalities in heart failure complicated by renal dysfunction. Finally, 
we underline that the mild transient worsening of renal function after decongestive therapy is not usually associated with 
adverse prognosis. Accordingly, the coexistence of cardiovascular and renal diseases inevitably means mediating between 
preserving renal function and improving cardiac activity to reach a better outcome.

Keywords Cardiovascular disease · Heart failure · Venous congestion · Worsening renal function · Acute kidney injury · 
Chronic kidney disease

Introduction

The heart and kidney are essential for cardiovascular (CV) 
homeostasis. Cardiac activity provides blood and oxygen to 
all the organs of the body, whereas the kidney plays a key 
role in the maintenance of fluid, electrolyte and acid–base 
equilibrium, in hemoglobin synthesis as well as in the clear-
ance of metabolic waste products. Maintenance of hemody-
namic homeostasis depends on many complex and delicate 

interactions between the heart and kidney [1]. This inter-
action is fine-tuned by neurohormonal activity, including 
renin–angiotensin–aldosterone system (RAAS), sympathetic 
nervous system (SNS) and atrial natriuretic peptides (ANP).

In the early 1800s, Richard Bright described for the first 
time the association between cardiac and kidney diseases 
[2], confirmed one century later [3]. Today, there is more 
awareness of the renal consequences of cardiovascular dis-
orders (CVD) and vice versa, as well as of the accelerated 
progression of both organ failures influenced by the bidirec-
tional heart-kidney interactions. The frequent coexistence 
of CV and kidney diseases has led to a proposal of cardio-
renal syndromes (CRS) defined as “a complex pathophysi-
ological disorder of the heart and the kidneys whereby acute 
or chronic dysfunction in one organ may induce acute or 
chronic dysfunction in the other organ” [4]. This classifi-
cation provides a clinically oriented descriptive definition, 
however not yet tested in clinical practice or in clinical trials 
[5–7].
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Even though renal dysfunctions in CVD are mainly the 
result of hemodynamic changes and neurohormonal activa-
tion, in clinical practice cardiorenal interactions are more 
complex for many reasons. In fact, among them the coexist-
ence of CV and renal dysfunction often may be the result 
of shared traditional CV risk factors, such as hypertension, 
diabetes mellitus, obesity, lipid disorders and smoking, or of 
non-traditional CV risk factors such as inflammation, bone 
and mineral disorders, anemia and malnutrition [7–9].

In the nephrological field, while it is well known that 
when kidney diseases are the primary event, they favor the 
occurrence of CVD, it is less appreciated that when CVD are 
the initiating event they induce or aggravate renal dysfunc-
tions that in turn are associated with further CV deteriora-
tion. In addition, in the clinical nephrology community the 
pathophysiology of renal dysfunctions in CVD is tradition-
ally associated with reduced arterial renal perfusion and the 
role of renal congestion is at times overlooked.

In this review, renal dysfunctions in CVD, their renal and 
cardiac consequences and their related mechanisms will be 
discussed in the following dedicated sections.

CVD and renal consequences

CV abnormalities, even subclinical ones, are frequently 
associated with a preexistent or de novo chronic kidney 
disease (CKD): i.e., estimated glomerular filtration rate 
(eGFR) < 60 ml/min and/or albuminuria or proteinuria, 
which can progress to end stage renal disease (ESRD) and 
favor CV morbidity and mortality (so-called chronic CRS). 
However, in acute CVD it is often difficult to discriminate 
the preexisting chronic renal abnormalities from the acute 
renal dysfunctions [10]. In fact, acute CVD are frequently 
associated also with acute worsening of renal function 
(WRF) or acute kidney injury (AKI) (so called acute CRS), 
even if their incidence is not rare in chronic CVD.

Association of CVD with baseline CKD

CKD is found in 6–12% of the general population [11] but 
is up to at least five times more frequent in patients with 
CVD. The prevalence of CKD is a little lower in clinical 
trials that usually exclude more severe CKD (serum cre-
atinine ≥ 2–3 mg/dl), so population-based studies provide 
more reliable data. In analyzed papers, glomerular filtration 
rate (GFR) is estimated by Cockroft and Gault, MDRD or 
CKD-EPI formulae [12–14].

The prevalence of baseline GFR < 60 ml/min has been 
reported in around 40–60% of patients with chronic heart 
failure (CHF) with both preserved or reduced ejection 
fraction [15–23], and in about 30–40% of patients with 
stable coronary artery disease (CAD), cerebrovascular or 

peripheral artery disease (PAD) [24, 25]. In these patients 
CKD usually precedes or coincides with the “onset” of heart 
failure (HF). Results of individual studies on the so-called 
chronic CRS are either meta-analyzed or reviewed [26–28].

The prevalence of GFR < 60 is similar or even higher in 
acute CVD, particularly in decompensated acute heart fail-
ure (AHF, 50–70%) [29–34], in acute coronary syndromes 
(ACS, 25–50%) [35–38], or in strokes (25–30%) [39, 40]. 
Again, the results of many studies are either meta-analyzed 
or reviewed [27, 28].

The prevalence of abnormal albuminuria or proteinuria is 
high in CHF (25–50%) [20, 41–44], and in ACS (15–20%) 
[45] relative to the general population (7%) [46]. Interest-
ingly, even if in most patients albuminuria/proteinuria were 
associated with GFR < 60, many albuminuric or proteinuric 
patients had GFR ≥ 60, thus increasing the dimension of 
CKD [20, 42, 44, 47].

Progression of preexistent CKD or de novo CKD 
in CVD

In patients with baseline CKD, the presence of stable CVD 
or subclinical CV abnormalities [left ventricular hypertro-
phy (LVH), augmented intima-media thickness or aortic cal-
cifications] was associated with a more rapid progression of 
CKD, leading even to ESRD [48–53].

Elsayed and colleagues [48] firstly demonstrated that sta-
ble CVD are also independently associated with increased 
development of new CKD, an observation that was recently 
confirmed in CHF in a very large cohort of patients with nor-
mal basal GFR [54] (Fig. 1). Also subclinical abnormalities 
of the heart (i.e., LVH) or PAD were significantly associated 
with a faster decline in eGFR with the occurrence of de novo 
CKD [50, 54–57].

Increased CV morbidity and mortality by CKD in CVD

GFR < 60 and its decline are independently associated with 
new CV events, rehospitalization and short- and long-term 
mortality in CHF [15–23, 26, 28, 58] and in chronic CAD, 
cerebrovascular disease or PAD [24, 25]. Also in AHF, ACS 
or acute stroke, GFR < 60 is significantly and independently 
associated with rehospitalization and short- and long-term 
mortality [29–33, 35–37, 39, 40]. The same was true for 
albuminuria or proteinuria in CHF [20, 41–44, 47] or ACS 
[45] even after adjusting for GFR. In summary, in CVD, 
CKD is frequently the most powerful predictor of morbid-
ity and mortality, particularly when also the ratio of blood 
urea nitrogen to creatinine is higher than the normal range 
[59, 60].
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Incidence of WRF or AKI in CVD and their 
consequences

In CVD, in addition to baseline CKD, WRF or AKI are 
frequently observed mainly in hospitalized patients. WRF 
is arbitrarily defined as acute serum creatinine increased 
by ≥ 0.5 mg/dl or alternatively by ≥ 0.3 mg/dl sometimes 
associated with a creatinine increase by ≥ 25% [6, 61–66]. 
AKI is defined according to RIFLE, AKIN or KDIGO cri-
teria [67–69]. In AHF, the use of different criteria seems to 
provide similar results in identifying acute renal dysfunction, 
its severity and also its capacity in predicting mortality [70, 
71].

These acute complications are reported in about 15% of 
hospitalized patients with CHF [18, 28, 72] and more fre-
quently in AHF (10–50%) [28, 34, 71, 73–79]. WRF/AKI 
are also reported in ACS (10–20%) [35, 37, 38, 63, 70, 80]. 
About 1/3–2/3 of acute renal dysfunctions are transient [10, 
34, 76, 77, 80–83].

In patients with CVD, not only baseline CKD, but also 
acute renal events are independently associated with rehos-
pitalization and short- and long-term mortality in the above 
reported studies. Nevertheless, not all increases in serum 
creatinine have the same meaning and prognosis. In fact, in 
persistent WRF/AKI, the greater the severity of renal dys-
function, the greater the increase in mortality [10, 34, 35, 78, 
81–83], even though in recent studies persistent WRF was 
significantly associated with mortality only in patients with 
residual congestion [73, 76, 78] (Fig. 2). Transient WRF was 
also associated with mortality, though this outcome occurred 
less often than in patients with persistent WRF [34, 35, 77, 
81, 82]. In other studies, transient WRF was not significantly 
associated with increased mortality [10, 76, 83] particularly 
when mild [35].

Interestingly, a transient, mild WRF/AKI after patient 
decongestion may reflect adequate treatment and not nec-
essarily a worsening of prognosis [73–76, 78, 84, 85] as 

frequently happens for WRF early after the initiation of 
RAAS inhibitors [86, 87]. Notably, one study found that 
even mild WRF/AKI were associated with long-term ESRD 
[63].

Pathophysiology of renal dysfunctions 
in CVD and their consequences

CKD in subclinical CVD or coronary, cerebrovascular 
and peripheral artery disease without heart failure 
(HF)

Mechanisms of de novo CKD in these patients are poorly 
understood (Fig. 3). In long-term LVH (particularly if con-
centric) or stable CVD, shared traditional CV risk factors 
are frequently present [8, 48].

In addition, endothelial dysfunction, arterial stiffness and 
arteriosclerosis may affect renal vasculature [48, 49, 55, 88, 

Fig. 1  Incidence of CKD or 
GFR decline > 5 ml/min/year 
in patients with chronic heart 
failure (CHF) (156,743) or 
without CHF (3,414,122) (f up 
3.6 year) (Drawn from data by 
George LK et al. Circ Heart Fail 
2017 [54])
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Fig. 2  One-year death or urgent heart transplantation in acute heart 
failure (AHF) (594 patients) on the basis of worsening renal function 
(WRF) and signs of congestion at discharge (Adapted from Metra M 
et al. Circ Heart Fail 2012 [73])
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89]. In these patients, hemodynamic mechanisms, even an 
initial mild systolic and diastolic dysfunction, could have a 
consistent role [48, 50, 90, 91]. They can determine mild 
renal hypoperfusion and congestion with consequent sub-
clinical inflammation and neurohormonal activation with 
tubular damage, glomerular (and also cardiac) fibrosis and 
proteinuria [50, 55]. An additional contribution could derive 
from conventional drug toxicity, and/or from occasional per-
cutaneous interventions and contrast media [35, 36, 38, 48, 
81]. Once CKD has been established, less traditional (CKD 
dependent) CV risk factors (Table 1) and the underuse of 

cardioprotective drugs and procedures can have an important 
role in worsening heart function [7, 9, 36, 38].

Renal dysfunctions in HF

In HF the pathophysiology of renal dysfunction is compli-
cated and multifactorial [6, 9, 66, 92–102] (Fig. 4).

Six categories of factors mainly contribute to renal and 
also cardiac outcomes in HF:

– shared traditional CV and renal risk factors;

Fig. 3  Pathophysiology of 
cardiorenal syndrome in sub-
clinical cardiovascular disorders 
(CVD) or coronary, cerebro-
vascular and peripheral artery 
diseases without heart failure 
(HF)

Table 1  Less traditional cardiovascular (CV) risk factors more frequent in chronic kidney disease (CKD)

ADMA asymetric dimethylarginine, CRP C-reactive protein, FGF23 fibroblast growth factor 23, EPO erythropoietin, PTH parathyroid hormone, 
RAAS renin–angiotensin–aldosterone system, TNF-α tumor necrosis factor-α

Hyperactivation of RAAS
Sympathetic over-reactivity
Insufficient pressure-natriuresis (with consequent volume overload, arterial hypertension, venous congestion and heart failure)
CKD-related mineral and bone disorders( CKD-MBD): ↑ P, ↑ FGF23,↓ Kloto, ↑ PTH, ↑ propensity for vascular calcifications, Vitamin D defi-

ciency
Endothelial dysfunction and nitric oxide inhibition
Atherosclerosis, intima media thickness, arterial stiffness
Inflammation (↑ CRP,↑ TNF-α, ↑ fibrinogen, ↑ Cytokines) and malnutrition
Accumulation of uremic toxins (ADMA, p-cresyl sulfate, indoxyl-sulfate, indole-3 acetic acid, trimethylamine N-oxide, etc.)
Hyperhomocysteinemia
Anemia (↓ EPO, iron depletion)
↑ Uric acid levels
Low or extremely high bicarbonate levels
Uremic dyslipidemia
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– hemodynamic abnormalities due to systolic and/or dias-
tolic dysfunction and congestion;

– impaired atrial contribution to diastolic ventricular filling 
in the case of atrial fibrillation

– SNS activation and the triggering of the RAAS and vaso-
pressin;

– other factors such as inflammation, atherosclerosis, arte-
rial stiffness and endothelial dysfunction, anemia ± iron 
deficiency, malnutrition, drug and procedure toxicity, in 
particular diuretic excess, and underuse of cardioprotec-
tive drugs;

– less traditional CV risk factors associated with CKD, 
including low GFR, (Table 1) and with vascular and val-
vular calcifications further worsening the heart condition.

GFR is determined by the pressure gradient between 
glomerular capillaries and the Bowman space according 
to the formula: GFR = Kf[Pgc − Pbc] − [πgc − πbc] where 
 Kf = filtration constant,  Pgc = capillary hydrostatic pressure, 
 Pbc = Bowman hydrostatic pressure, πgc = capillary oncotic 
pressure and πbc = Bowman oncotic pressure. According to 
this relationship, GFR is commonly reduced when  Pgc is 
reduced (hypotension, low renal perfusion) and/or  Pbc is 
increased (ureteral obstruction, renal congestion) [103, 104].

According to the “low flow” or “forward failure” theory, 
in patients with HF with severe reduction of cardiac output, 
particularly when systolic blood pressure (SBP)/ effective 
arterial volume are reduced, renal perfusion pressure and 
renal blood flow (RBF) are reduced as well as GFR. SNS, 

RAAS, non-osmotic vasopressin and NO depletion are the 
most important mediators of intrarenal mechanisms of adap-
tation (Fig. 5) [6, 9, 92, 94–96, 105–109].

Interestingly, in mild reduction of cardiac output, GFR 
is maintained at an almost constant rate by an increased 
filtration fraction through intrinsic renal autoregulatory 
mechanisms such as afferent vasodilatation and predomi-
nant vasoconstriction of the efferent arteriolae with a sec-
ondary increase in postglomerular resistance. Both afferent 
vasodilatation and efferent vasoconstriction increase capil-
lary hydrostatic pressure thereby counteracting the reduced 
renal perfusion. However, in severe reduction of cardiac out-
put, vasoconstriction of also the afferent arteriolae ensues 
with an increase in preglomerular resistance, and the renal 
autoregulatory capacity is exhausted with a marked decrease 
in glomerular perfusion pressure and GFR. In this setting, 
non-hemodynamic factors such as inflammatory cytokine 
release, oxidative stress and endothelial dysfunction worsen 
the hemodynamic disorders and cooperate in further altera-
tions of GFR.

The above-reported activation of neurohormonal axis 
directly and indirectly enhances also tubular reabsorption of 
NaCl and water, thus worsening fluid overload and conges-
tion even in the presence of only mild reduction in cardiac 
output [108, 110–112]. Eventually, acute renal dysfunctions 
or even acute tubular necrosis could occur; tubulo-interstitial 
fibrosis and glomerulosclerosis resulting in worsening of 
renal function in CKD patients, leading to ESRD could be 
long-term consequences [94, 106, 113]. Thus, while the 

Fig. 4  Pathophysiology of 
cardiorenal syndrome in heart 
failure (HF)
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kidneys help to maintain homeostasis in healthy subjects, in 
HF they contribute to worsening CRS. Interestingly, similar 
responses are seen in HF with normal or increased cardiac 
output where neurohormonal adaptation, salt reabsorption 
and consequent blood volume expansion initially preserve 
renal perfusion [114].

Recent clinical data have shown that in persistent mild 
CHF or even in severe or acute cases, low cardiac output 
(“forward failure”) is not the major determinant of renal 
abnormalities but a great role is played by “backward fail-
ure”; this is particularly evident in right ventricular failure 
and/or in tricuspid regurgitation [115–118]. In fact, in HF, 
no correlation has been found between cardiac index and 
the reduction in GFR which is more closely associated with 
elevated central venous pressure or right atrial pressure even 
if their relationships are complex particularly in AHF [6, 96, 
99, 100, 104, 119–128].

Interestingly, renal congestion detected by intraparen-
chymal Doppler venous pattern shows an independent and 
incremental role in predicting a worse outcome in CHF 
outpatients [129, 130] and perhaps WRF/AKI [131–133]. 
Moreover, it has been shown that backward failure impairs 
GFR preferentially in the presence of forward failure includ-
ing low SBP [118, 119, 134–137].

Venous congestion in HF depends on fluid overload and/
or cardiac dysfunction sometimes with the contribution of 
a transient decreased splanchnic capacity independent of 
fluid overload [109, 128, 138–140]. From half to two thirds 
of patients with AHF experienced clinical signs of conges-
tion and/or no significant loss of weight during hospitali-
zation and both were associated with significant adjusted 

increase in mortality [121, 123, 141–147] and in WRF [119, 
121–123, 148].

Venous congestion affects renal veins where an increase 
in pressure ≥ 10–15 mmHg further alters glomerular hemo-
dynamics, renal resistances, NaCl reabsorption and renin 
and inflammatory cytokine release [149–154]. Furthermore, 
in severe HF, the increased intra-abdominal pressure sec-
ondary to visceral edema and ascites further increases renal 
venous pressure as well as neurohormonal activation with 
consequent additional deterioration of GFR and sodium and 
water excretion [6, 94, 125, 128, 150, 155–159].

In fact, it was already demonstrated that humans with 
CHF have renal venous hypertension [151]: renal vein pres-
sure was about 25 cm  H2O (15–33) versus control values 
of 15 cm  H2O (0.8–18). In those patients afferent, efferent 
and total renal resistance were markedly increased accord-
ing to constriction of glomerular arteriolae, and both RBF 
and GFR were substantially decreased [151]. Interestingly, 
Bradley et al. in those years showed that in healthy sub-
jects the experimental increase of renal vein pressure from 
3–8 mmHg to 14–22 mmHg decreases urine flow and both 
RBF and GFR [150].

In the same period, several studies in experimental ani-
mals, in which renal venous pressure was increased to values 
observed in Maxwell’s patients, confirmed the reduction in 
urine flow, NaCl excretion, RBF and also GFR after a sub-
stantial increase in renal venous pressure [149, 160, 161]. 
These data were subsequently confirmed in non oliguric ani-
mals [162–164]. Notably, results in acute experiments are 
confirmed in dogs with renal vein hypertension of 3–4 weeks 
of duration [163]. In other experimental studies conducted 

Fig. 5  Impact of acute reduction 
in cardiac output (CO) and/or in 
systolic blood pressure (SBP)/
effective arterial volume on 
renal function in heart failure 
(HF) (forward mechanism). 
AVP arginine vasopressin, CVP 
central venous pressure, GFR 
glomerular filtration rate, RAAS 
renin–angiotensin–aldoster-
one system, RBF renal blood 
flow, SNS sympathetic nervous 
system
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in the same period it was shown that the increase in renal 
vein pressure similar to values observed in CHF, linearly 
increased interstitial, intratubular and Bowman hydrostatic 
pressure [153, 164–168], as well as renal vascular resistance 
in non denervated kidneys [169–171]. Similar experimental 
increases in renal venous pressure increased renin and aldos-
terone release [152, 156, 172, 173] as well as proteinuria 
[149, 173].

Recently, a reduction in RBF and GFR and an increase 
in interstitial hydrostatic pressure were observed in the con-
gested kidney with a novel rat model of renal congestion 
[174]. Three days of renal congestion induced glomerular 
and tubular interstitial injury triggered by pericyte loss 
[174].

In summary, in HF, forward and backward mechanisms 
frequently coexist and are strictly interconnected. The 
importance of congestion for explaining renal dysfunction 
is in part reported in many reviews [6, 93–96, 102, 104, 125, 
127, 128, 139, 158, 159, 175] even though the mechanisms 
of the adverse effects of congestion on renal function are not 
fully elucidated. Clinical and physiological data reported 
in humans and also in experimental animals allow us to 
substantiate the concept that renal venous hypertension, 
together with SNS/RAAS activation, increases glomerular 
pressure in the efferent pole of glomerular capillaries (thus 
decreasing the A-V pressure gradient), and favors interstitial 
edema of the encapsulated kidney with an increase in inter-
stitial, intratubular and Bowman hydrostatic pressure. As a 
consequence, the net filtration pressure is further reduced 
and consequently so is GFR; moreover, NaCl reabsorption 
is further increased and a vicious cycle is generated thereby 

worsening both cardiac and renal function (Figs. 5, 6). The 
renal effects of congestion are particularly evident in the 
presence of reduced cardiac output and/or SBP.

In these patients, even a mild reduction in cardiac out-
put also increases the pressure in the right atrium, the ratio 
between right atrial pressure to pulmonary capillary wedge 
pressure and also increases the venous return owing to the 
fluid overload. Accordingly, the right cardiac filling pres-
sure is further increased and the left ventricle is relatively 
underfilled (in diastole) with consequent further impairment 
of forward output [98, 118, 137, 176, 177].

As reported above (Table 1), also CV risk factors due 
to CKD or vascular or valvular calcification contribute to 
cardiac and renal damage and mortality [7–9].

Acute renal dysfunctions (WRF/AKI) in CVD

In CVD, WRF/AKI, particularly if persistent, are markers 
of a severe setting in which both severe HF and CKD fre-
quently coexist, which makes patients particularly vulner-
able to acute renal dysfunctions [18, 35, 73, 81, 178–181]. 
So, all the mechanisms reported above to explain renal dys-
function are involved, in particular decreased renal perfu-
sion, venous congestion with increased right atrial pressure 
and renal venous pressure, neurohormonal activation and 
inflammation. Other predisposing factors frequently detected 
by multivariable analysis are baseline CKD, diabetes, hyper-
tension, vascular disease, old age and anemia [18, 35, 77, 
79–81, 148, 178–180, 182, 183].

Among precipitating factors, the worsening of congestion, 
too little fluid loss or vice versa diuretic excess, a substantial 

Fig. 6  Impact of congestion on 
kidney function in heart failure 
(HF) (backward mechanism). 
CVP central venous pressure, 
GFR glomerular filtration rate, 
RAAS renin–angiotensin–aldos-
terone system, RBF renal blood 
flow, SNS sympathetic nervous 
system
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decrease in SBP, nephrotoxic agents or percutaneous inter-
ventions with contrast media have to be considered [10, 18, 
73–77, 79, 84, 85, 179, 180, 183–186].

How can AKI/WRF generate long-term mortality? First, 
they may be markers of CVD severity [18, 73, 181]. Sec-
ond, when persistent, they may worsen CVD through fluid 
overload, anemia, neurohormonal activation and inflamma-
tion [6, 60, 70, 154]. Third, they can favor long-term ESRD 
further worsening CVD [63, 187, 188].

Therapeutic approaches for treatment of HF 
with renal dysfunctions

The goal of treatment is to counteract the major modifi-
able pathophysiological abnormalities. So, the main target 
is to fight against hemodynamic abnormalities and to pre-
serve euvolemia, pressure homeostasis and renal function. 
Another important goal is to avoid the underuse of CV drugs 
and interventions in patients with moderate to severe CKD 
[189–191]. In addition, it is necessary to differentiate WRF/
AKI due to aggressive decongestion that is frequently tran-
sitory and with benign prognosis, from persistent dysfunc-
tions. Finally, these patients should be treated early by a 
team involving cardiologists and nephrologists [191].

Treatment of fluid overload and congestion

Ideally, congestion is prevented by initial salt (and water 
in hyponatremia) restriction [191, 192]. Diuretics are com-
monly used to treat fluid overload and renal congestion. 
Their dose must be tailored to not consistently exceed the 
interstitial mobilization of fluids to the vascular space [the 
so-called “plasma refill rate” (PRR)] which is continuously 
changing and in a relatively steady state condition is about 
2.5–7 ml/min in hemodialyzed patients, varying with body 
size, capillary permeability, lymphatic flow, regional blood 
flow, serum protein levels and duration of decongestion 
[193–196]. A clinical surrogate of changes in PRR could be 
hemoconcentration regarding compounds (i.e., hemoglobin) 
or cells (i.e., red blood cells) confined in the intravascular 
compartment [194]: at a given moment, an increase in hema-
tocrit or hemoglobin indicates that the removal of intravas-
cular fluids exceeds PRR. In clinical practice, despite the 
evidence that hemoconcentration is associated with better 
outcomes, the removal of intravascular fluids consistently 
greater than PRR is unwise. In fact, the diuretic doses must 
be adequately tailored to avoid severe hypovolemia, hypo-
tension, a further increase in RAAS activation, a further 
reduction of renal perfusion and GFR, and electrolyte disor-
ders. Decongestion is associated with reduced mortality [74, 
75, 84, 85, 197–199], and transient WRF after decongestion 
frequently has no negative impact on the prognosis [73–76, 
78, 84, 85, 200]; indeed, late decongestion can offset the 

negative effects of WRF [75] (Fig. 7). Also the reduction in 
abdominal pressure was associated with a significant reduc-
tion in serum creatinine [157, 201].

Loop diuretics (furosemide or torasemide in furosemide-
resistant patients) are the cornerstone of treatment. In severe 
CHF, the association of thiazide-like diuretics, such as 
metolazone and/or potassium-sparing diuretics (“sequential 
nephron blockade”) are often used to overcome the increased 
distal sodium reabsorption due to the chronic use of loop 
diuretics. In diuretic-resistant patients with metabolic alka-
losis the association of acetazolamide to loop diuretics is 
particularly effective [190, 202].

Theoretically, congestion can also be reduced by increas-
ing splanchnic vascular capacitance by ACE inhibitors 
(ACE-I) and/or β-blockers [140].

SGTL-2 inhibitors have recently shown important results 
in preventing hospitalization in diabetic patients with HF 
together with a reduction in the progression of renal disease. 
They have a diuretic effect (through a reduction of proximal 
sodium reabsorption and osmotic diuresis) and paradoxically 
a reduction of RAAS hyperactivity; in addition they inhibit 
cardiomyocyte Na/H exchanger and increase myocardial 
energetics [203–205]. Many trials were designed to evalu-
ate the SGTL-2 effect in HF patients also without diabetes 
[203] and, interestingly, in November 2019 the DAPA-HF 
first demonstrated a reduction in CV mortality and HF hos-
pitalization by SGTL-2 inhibitors in non-diabetic patients 
[203, 206].

In patients resistant to combined diuretic therapy, sodium 
and fluid retention were reduced by extracorporeal ultrafil-
tration with optimal results in most studies [207–209] also 
owing to the predictability of the amount of fluid removal 
and to the removal of cytokines and of isotonic fluids instead 

Fig. 7  Mortality according to hemoconcentration and worsening 
renal function (WRF) in 1019 patients with acute heart failure (AHF) 
(Adapted from Breidthardt T et al. Eur J Heart Fail 2017 [75])
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of hypotonic fluids which occurs with diuretics [97, 207, 
208]. However, other trials obtained contrasting results [210, 
211], also due to limitations in their design and conduction 
[212].

In the presence of severe congestion and stage IIIb, IV 
or V CKD, peritoneal dialysis could be a good therapeutic 
option to control both volume overload and uremic toxins 
and to enhance quality of life [213, 214].

Neurohormonal blockers

International guidelines strongly recommend ACE-I or angi-
otensin receptor blockers (ARB) or mineralocorticoid-recep-
tor antagonists (MRA) and β-blockers to improve survival 
and prevent hospitalization; recently, also angiotensin recep-
tor-neprilysn inhibitors (ARNI) such as sacubitril-valsartan 
have been recommended [190–192]. In an updated network 
meta-analysis [215] in CHF better results on survival have 
been obtained by ACE-I plus MRA plus β-blockers or by 
ARNI plus MRA plus β-blockers. ACE inhibitors, ARB, 
MRA and ARNI improve renal perfusion and sodium and 
water retention counteracting the hemodynamic and neuro-
hormonal imbalance and long-term cardiac and renal fibro-
sis that further deteriorate both cardiac and renal function 
[216]. These drugs initially worsen GFR (increase serum 
creatinine ~ 30%) particularly when SBP decreases to less 
than 80–90 mmHg; however, later changes in GFR over time 
could be lower than in controls as well as the risk of mor-
tality [86, 87, 106]. These associations can be used also in 
the presence of CKD with special attention firstly to hyper-
kalemia in patients with less than 30 ml/min of GFR and 
secondly to maintain SBP not lower than 80–90 mm/Hg 
[190, 217]. They can also be used in patients with WRF/AKI 
without hemodynamic instability or hypotension, reducing 
the dose until renal function improves. Theoretically, neuro-
hormonal blockers can have an additional favorable effect in 
congested patients augmenting splanchnic capacitance [109, 
128, 138–140].

Inotropic and vasopressor drugs

In refractory AHF patients with reduced ejection fraction 
and systolic blood pressure ≥ 90 mm/Hg, low dose dopa-
mine, a renal vasodilator [218], could be useful to improve 
RBF and GFR even in the presence of WRF/AKI. In fact, 
dopamine infused at 1–5  μg/Kg/min with low/medium 
doses of diuretics maintains stable or increases GFR and 
reduces the incidence of WRF relative to high doses of diu-
retics ± dopamine [219–223]. Unfortunately, these data were 
overlooked in recent guidelines [190–192].

In refractory AHF patients with severe reduction of ejec-
tion fraction and with systolic blood pressure ≥ 85 mm/Hg, 
the infusion of levosimendan, an inotropic drug with arterial 

and venous dilatation properties, was associated with an 
improvement of GFR [224, 225], reduced mortality [226], 
and an increased risk of CV adverse events [192, 226]. Other 
inotropes seem associated with increased mortality [191, 
192].

Drugs counteracting nontraditional CV risk factors

Among them, in HF, the correction of anemia through 
intravenous iron improves NYAA class and symptoms, 
and reduces hospitalization [227]; a recent meta-analysis 
showed a significant reduction also in mortality [228]. Ane-
mic patients with GFR less than 30–45 ml must be treated 
with erythropoietin, avoiding overtreatment at all times.

Promising results are also reported in chronic CRS with 
Cinacalcet that reduces FGS-23 levels [229, 230].

Limitations

The present review has however some limitations. First, in 
CRS it is sometimes difficult: to understand the temporal 
causality of renal dysfunction; to highlight the role of tradi-
tional CV risk factors in simultaneously determining both 
cardiac and renal disorders; to distinguish their role from 
the direct contribution of CVD; and to discriminate the pre-
existing CKD from the acute renal dysfunction. In addition, 
studies are heterogeneous for many aspects such as selection 
bias, different inclusion criteria, formulae to estimate GFR 
and definition of acute renal dysfunction. Second, the effec-
tiveness of diagnostic procedures to better predict risk is not 
completely understood. Third, mechanisms of adverse renal 
effects of congestion and the role of other factors such as 
inflammation, endothelial dysfunction and neurohormonal 
activation are not fully clarified. Moreover, renal conges-
tion cannot be directly measured. Fourth, the ratio between 
long-term risks and benefits of therapeutic interventions, 
particularly on renal congestion, is not fully understood. 
Furthermore, data on PRR in CRS are lacking. Fifth, there 
is no strong clinical evidence of appropriate treatment. The 
few clinical trials that do exist are frequently retrospective, 
come from a single center and/or exclude severe renal dys-
function. Accordingly, large prospective trials are needed to 
better understand pathophysiological mechanisms and clini-
cal results in CRS.

Conclusions

In conclusion (Table 2), baseline CKD and AKI/WRF are 
frequently observed in patients with chronic and acute HF; 
both chronic and acute renal dysfunction are usually associ-
ated with a poor clinical outcome. CVD represent one of the 
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most important causes of renal dysfunction. Renal conges-
tion is a major contributing factor to renal dysfunction in 
HF. Finally, therapeutic principles for the treatment of CRS 
are described. 
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