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Simple Summary: High levels of global genome methylation in HPV-associated head and neck
cancer prompted us to explore demethylation as a potential treatment by determining mechanisms
of its toxicity in HPV-positive head and neck cancer cells. Previously, we reported that demethylating
drug 5-azaC stabilizes p53 and reduces the expression of HPV genes and matrix metalloproteinases in
HPV+ head and neck cancer cells and tumors from patients enrolled in a 5-azaC window clinical trial.
Here, we extended our understanding of toxicity caused by global demethylation in HPV-associated
head and neck cancer cells by finding that 5-azaC treatment results in formation of DNA double
strand breaks that depend on transcription and replication.

Abstract: High levels of DNA methylation at CpG loci are associated with transcriptional repression
of tumor suppressor genes and dysregulation of DNA repair genes. Human papilloma virus (HPV)-
associated head and neck squamous cell carcinomas (HNSCC) have high levels of DNA methylation
and methylation has been associated with dampening of an innate immune response in virally
infected cells. We have been exploring demethylation as a potential treatment in HPV+ HNSCC
and recently reported results of a window clinical trial showing that HNSCCs are particularly
sensitive to demethylating agent 5-azacytidine (5-aza). Mechanistically, sensitivity is partially due
to downregulation of HPV genes expression and restoration of tumor suppressors p53 and Rb.
Here, for the first time, we show that 5-azaC treatment of HPV+ HNSCC induces replication and
transcription-associated DNA double strand breaks (DSBs) that occur preferentially at demethylated
genomic DNA. Blocking replication or transcription prevented formation of DNA DSBs and reduced
sensitivity of HPV-positive head and neck cancer cells to 5-azaC, demonstrating that both replication
and active transcription are required for formation of DSBs associated with 5-azaC.

Keywords: head and neck cancer; HPV; demethylation; DNA double strand breaks; transcrip-
tion; replication
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
in the world and is associated with poor prognosis in advanced cases [1,2]. Decreased
tobacco consumption has paralleled falling rates of tobacco-associated HNSCC in the
United States; however, a subset of HNSCC arising in the oropharynx (OPSCC) and caused
by the human papillomavirus (HPV) has been rapidly increasing. By 2012, the incidence of
HPV-associated HNSCC in the U.S. was higher than any HPV-associated cancer including
uterine cervical cancer [3–5]. Advanced HNSCC are treated with combinations of primary
surgical resection, cervical lymphadenectomy, radiation, or radiation given with platin
drugs, depending on institutional preference and tumor characteristics. Side effects of
concurrent radiation and chemotherapy are severe and may be lifelong: swallowing
and speech dysfunction, accelerated arteriosclerosis of neck vessels, neck muscle fibrosis,
xerostomia, accelerated dental decay, and lymphedema. Extended survival analysis of trials
comparing radiation and chemotherapy regimens suggests that side effects of concomitant
chemotherapy and radiation may decrease overall survival in the absence of recurrent
tumor [6]. Despite aggressive and morbid therapy, up to 25% of patients with HPV-
associated (HPV+) head and neck tumors suffer recurrent or metastatic disease, for which
treatment options are limited. Available HPV vaccines hold tremendous promise for
prevention of HPV+ head and neck cancer; however, given the latency between infection
and the development of HPV+ HNSCC, estimates suggest that the HPV vaccine will
not decrease HNSCC prevalence until 2060 [7]. Thus, insight into vulnerabilities and
development of less morbid, yet effective treatments for primary and recurrent HPV+
HNSCC are needed.

As a platform to identify inherent vulnerabilities for discovery of new therapies to
treat the growing population of patients with HPV+ HNSCC, we characterized biologic
and molecular differences between HPV+ and HPV- HNSCC. In addition to differences
in mutation patterns [8,9], gene expression, and protein abundance profiles [10–13], we
described differences in genome methylation [14,15]. Upon activation and metabolic
transformation into active nucleotides, the cytosine analogs 5-azacytidine (5-azaC) and
decitabine are incorporated into cellular DNA resulting in global DNA demethylation [16].
These drugs are used to treat hematologic malignancies and premalignancies with their
primary cytotoxic effects thought to be mediated through promoter demethylation leading
to expression of tumor suppressors [17]. 5-azaC and decitabine also stimulate the DNA
damage response through reactivation of DNA damage response genes that are recruited
to DNA bound by trapped DNA methyltransferases [18–20]. Due to the hypermethylation
associated with HPV positivity, we explored demethylation as a novel targeted treatment
for HPV+ HNSCC [21]. Results from the window trial of 5-azaC in HPV+ HNSCC were
promising, with expression of all HPV genes, including E6 and E7 oncogenes, being
downregulated in tumors after 5-azaC treatment. In HPV+ HNSCC, downregulation
of E6 was associated with increased p53 levels and activity contributing to tumor cell
death. Here, we probed underlying molecular mechanisms of demethylation associated
cytotoxicity in HPV+ HNSCC, finding that demethylation of HPV+ HNSCC resulted in
pathologic DNA double strand breaks (DSBs). DSBs following demethylation depended
on replication, and interestingly, demethylation was connected to DSBs through their
dependence on transcription that was markedly increased after demethylation and because
breaks occurred preferentially at demethylated DNA.

2. Results
2.1. 5-Azacytidine Causes DNA Double Strand Breaks in HPV-Associated Head and Neck
Cancer Cells

We previously reported that HPV+ HNSCCs are significantly more sensitive to 5-azaC
than HPV- HNSCC, and this sensitivity was partially due to downregulation of HPV gene
expression, marked stabilization and activation of p53, and induction of apoptosis [21].
Since 5-azaC and decitabine cause replication-associated DNA damage, we questioned



Cancers 2021, 13, 21 3 of 19

whether DNA damage may be an additional factor contributing to toxicity. Repair of
5-azaC associated DNA damage requires Fanconi anemia (FA)-dependent homologous
recombination (HR) [20], and enhanced sensitivity of HPV+ tumors may be due to partially
defective HR repair in HPV+ HNSCC [22–24]. To begin exploring if DNA damage and
DNA damage response contribute to 5-azaC induced toxicity in HPV+ HNSCC, DNA
damage was monitored daily after 5-azaC treatment. As indicated by the increased levels of
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H2AX, 5-azaC induced DNA damage in HPV+ (SCC090 and UMSCC47) cell lines [20,25]
(Figure 1A). Rad51 is required for HR and colocalizes with
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H2AX at stalled replication
forks caused by 5-azaC or decitabine [20,25,26]. To determine if HR was involved in the
repair of lesions after demethylation,
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H2AX and Rad51 immunofluorescent staining was
performed. Confirming DNA damage indicated by immunoblots (Figure 1A), 5-azaC
treatment of HPV+ HNSCC cells increased
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H2AX foci, but RAD51 was not induced and
poorly colocalized with
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H2AX in HPV+ UMSCC47 (Figure 1B). These data are consistent
with reports describing defective homologous recombination in HPV+ cells [22–24].

To confirm and further characterize the nature of 5-azaC-induced DNA damage,
pulsed-field gel electrophoresis (PFGE) was employed. PFGE uses alternating electrical
current to separate large genomic DNA fragments created by double strand breaks, but not
by other types of DNA damage, including deamination, depurination, oxidation, alkylation,
or single strand breaks [27–29]. DNA DSBs were detected 72 h after 5-azaC treatment in
all HPV+ HNSCC cell lines tested (SCC090, UMSCC47, and UMSCC104) (Figure 2A and
Figure S1) and were observed at concentrations ranging from 1 to 30 µM and increased
in a dose-dependent manner (Figure 2B and Figure S2). In addition to cell lines, primary
early passage cells (passage 3) derived from an HPV+ tonsil squamous cell carcinoma also
revealed DSBs following 72 h of 5-azaC treatment (Figure S1).

To determine if DSBs in response to 5-azaC were specific to HPV+ HNSCC, we assayed
a panel of HPV-negative normal and cancer cells, including osteosarcoma cells U2OS, colon
cancer cells HCT116, human kidney epithelial cells 293T, and head and HPV-negative head
and neck cancer cells SCC35 (Figure S3). 5-azaC at concentrations up to 30 µM did not
induce DNA DSBs in any of the tested cell lines. As expected, hydroxyurea (HU) induced
formation of DSBs in SCC35 cells (Figure S3).

5-azaC incorporation into DNA after metabolic conversion is required for DNA
demethylation, but 5-azaC is also incorporated into RNA. To determine if 5-azaC incorpora-
tion into RNA is required for DSBs formation, cells were treated with the 5-azaC analogue,
decitabine (5-azaC-2′-deoxycytidine), which is only incorporated into DNA [16,30]. As
observed with 5-azaC, increasing doses of decitabine also induced DSBs in a concentration-
dependent manner (Figure 2C). These data suggest that incorporation of 5-azaC into DNA
induces DSBs formation in HPV+ head and neck cancer cells and that DSBs are not cell line
specific or dependent on the immortalization of cell lines.

To confirm the type of DNA damage after 5-azaC treatment of HPV+ HNSCC, cells
(UMSCC47 and SCC090) were analyzed using the comet assay in which DSBs result
in “tails” in both alkaline and neutral conditions, whereas single strand breaks (SSBs)
cause tails only in alkaline conditions. Following 5-azaC treatment, tails were detected
in both alkaline and neutral assay conditions (Figure 3A,B). These results are consistent
with PFGE data and confirm that treatment of HPV+ HNSCC with 5-azaC induced DSBs.
Representative photomicrographs and measurement of tail DNA content from at least 50
cells each are shown (Figure 3A,B).
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H2AX and β-tubulin as a control. (B) HPV+ cells, UMSCC47, were treated with
20 µM of 5azaC for 72 h and subsequently fixed and immunostained with
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H2AX and
Rad51 antibodies; representative images (left) and quantification (right) are shown. Scale
bars, 10 µm. Values indicate the mean ± SD with n ≥ 50 cells in 2 biological replicates.
Student’s t test was performed to test significance. * p-value < 0.05; n/s (not significant)
indicates p-value > 0.05.

2.2. Dysfunctional Homologous Recombination Increases Sensitivity to 5-azaC

Compared to HPV-negative HNSCC, HPV+ HNSCC are more sensitive to DNA
damaging agents, and reports indicate that homologous recombination (HR) is impaired in
HPV+ HNSCC [22,23]. To determine if impaired double strand break repair sensitizes cells
to 5-azaC, HR-deficient Chinese hamster ovary (VC8) cells that lack functional BRCA2 and
VC8 cells with reconstituted BRCA2 (labeled as VC8 B2) [31] were analyzed for clonogenic
survival following 5-azaC treatment. HR-deficient VC8 cells were significantly more
sensitive to 5-azaC than isogenic HR competent cells (Figure 4A).
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H2AX and Rad51 foci formation in HPV-negative (top) and HPV-positive
(bottom) HNSCC cells after HU treatment. Scale bars, 50 µm. Values indicate the mean± SD with n≥ 50 cells in 2 biological
replicates. Student’s t test was performed to test significance. * indicates p-value < 0.05; n/s (not significant) indicates
p-value > 0.05. (C) Homologous recombination reporter results in HPV-positive (UMCSS47 and SCC090) and HPV-negative
(UNC7 and SCC61) HNSCC cells stably expressing pDRGFP and transfected or not with I-SCE1. Values indicate the mean
± SD from 2 biological replicates. Student’s t test was performed to test significance. * indicates p-value < 0.05; n/s (not
significant) indicates p-value > 0.05.

Previous studies indicate that HPV+ cells do not recruit BRCA2 or Rad51 to radiation-
induced DNA damage foci, suggesting these cells harbor HR defect and agreeing with
our data that showed absence of Rad51 colocalization with
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H2AX after 5-azaC treatment
(Figure 1B). Here, we expanded studies by analysis of HR components at foci of DNA
damage in an additional HPV+ cell line and using hydroxyurea that stalls and collapses
replication forks, a type of S-phase DNA damage for which HR is the preferred method
of repair. We used HPV-negative HNSCC cells as control and compared foci after HU
treatment with HPV+ HNSCC. Incubation of cells with HU caused DNA damage in both
HPV+ and HPV-negative HNSCC cells as indicated by the appearance of
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H2AX foci
(Figure 4B); however homologous recombination, as marked by colocalized Rad51 foci,
was activated only in HPV-negative cells (Figure 4B).

To more directly assay HR proficiency and compare HPV+ to HPV-negative cells,
we performed an HR-GFP reporter assay in HPV-positive (UMSCC47 and SCC090) and
negative (UNC7 and SCC61) HNSCC cells engineered to stably express pDRGFP [32].
Transfection of the I-SceI endonuclease induced green fluorescence in both HPV-negative
cell lines suggesting repair by HR. On the other hand, an increase in GFP expression was
not observed in either of the HPV+ cell lines (Figure 4C) supporting that these cells have a
defect in HR.
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Together, these data confirm HR defects in HPV+ HNSCC and suggest that sensitivity
to 5-azaC is enhanced by HR deficiency.

2.3. Transcription and Replication are Required for 5-Azycytidine Induced DNA Double
Strand Breaks

Demethylating agents, such as 5-azaC, increase global transcription and aberrant
transcription can lead to DNA DSBs and genomic instability [33,34]. To determine if
transcription is required for DSBs formation in HPV+ HNSCC in response to 5-azaC,
we inhibited various steps in transcription using: (1) triptolide, an RNA polymerase
inhibitor [35], (2) actinomycin D, an RNA elongation inhibitor [36], and (3) dichloro-beta-
D-ribofuranosylbenzimidazole (DRB), an inhibitor of RNA polymerase II. Transcription
inhibition is toxic to cancer cells causing both cell cycle arrest and apoptosis [37–39].
Treatment with 5-azaC for 48 h before inhibition of transcription was chosen to allow
its incorporation into DNA, but also since no DSBs were detected before 48 h of 5-azaC
treatment (Figure 2A; treatment schema in Figure 5A). Transcription inhibition by any
of the agents used markedly reduced or completely inhibited DSBs formation following
5-azaC treatment (Figure 5B, last 3 lanes). DRB treatment in the absence of 5-azaC causes
DNA double strand breaks [40], but interestingly, DSBs induced by DRB in the absence
of 5-azaC were prevented in cells treated with 5-azaC (compare lane 3 and lane 7, Figure
5B). These data reveal that transcription is required for 5-azaC to induce DSBs in HPV+
HNSCC cells.

Dependency of 5-azaC-induced DSBs on transcription suggests at least two potential
mechanisms: (1) aberrant transcription followed by translation of protein(s) required
for the formation of DSBs (e.g., nucleases) or (2) requirement of the physical process of
transcription. To begin distinguishing these possibilities, protein translation was inhibited
in HPV+ cells (UMSCC47) treated with 5-azaC. The translation inhibitor, cycloheximide,
did not diminish DSBs caused by 5-azaC (Figure S4) suggesting that 5-azaC induced
DSBs may be dependent on the physical process of transcription. To determine if DNA
damage after 5-azaC occurred at sites of active transcription in HPV+ HNSCC cells were
treated with the uridine analog EU to mark areas of transcription. After inhibition of
RNA polymerase I to remove the background of ribosomal RNA transcription [41], EU-
labeled control and 5-azaC treated cells were immunostained with EU and
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H2AX to
simultaneously identify sites of transcription and DNA damage, respectively (Figure 5C).
As expected, 5-azaC treatment markedly induced
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H2AX, and in these
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H2AX-positive
cells, EU and phosphorylated H2AX partially colocalized, while colocalization was not
observed in untreated cells (Figure 5C,D). While
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H2AX staining does mark DNA damage,
we recognize that it is not equivalent to DSBs; however, colocalization of transcription and
DNA damage combined with a loss of 5-azaC-induced DSBs in the absence of transcription
is consistent with the possibility that sites of active transcription are sites of DSBs formation
after 5-azaC treatment.

Since transcription is required for DSBs formation after 5-azaC treatment in HPV+
HNSCC, its inhibition may diminish toxicity of demethylation. To determine if blocking
the formation of DSBs in HPV+ cells through transcriptional inhibition changes sensitivity
to 5-azaC, clonogenic survival assays were performed using increasing doses of 5-azaC in
the presence or absence of actinomycin D (Figure 5E). Although inhibition of transcription
itself is toxic to cells, inhibition of transcription when added to 5-azaC treatment rescued a
portion of colonies relative to cells treated with 5-azaC alone (Figure 5E). Taken together,
these data suggest that 5-azaC induced DSBs in HPV+ HNSCC cells are dependent on active
transcription and that transcription is required for a portion of the 5-azaC cytotoxic effect.
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H2AX in HPV-positive UMCC47 cells treated or
not with 10 µM of 5-azaC in the presence or absence of RNA polymerase I inhibitor elipticine. Scale bars are 50 (C) and
10 (D) µm. (E) Clonogenic survival of UMSCC47 cells either treated or not with 1 ng/mL actinomycin D 48 h after initiation
of increasing doses of 5-azaC treatment (log scale). Standard deviations calculated from two independent experiments.
Student’s t test was performed to test significance. * indicates p-value < 0.05.

Cells have developed strategies to avoid or resolve collisions of transcriptional ma-
chinery with advancing replication forks because of the disastrous effects of collisions that
result in genomic instability and double strand breaks formation [42–45]. Our data suggest
that 5-azaC toxicity and DSBs depend on transcription (Figure 5B,E), and previous reports
indicate that 5-azaC induces DNA damage dependent on active replication [20]. To deter-
mine whether the demethylation associated DSBs observed in HPV+ HNSCC also depend
on replication, cells were treated with 5-azaC and then replication inhibitors (aphidicolin
or hydroxyurea) in a schema similar to that used to explore the effect of transcription
inhibition (Figure 6A). Prolonged exposure to hydroxyurea results in double strand breaks
through collapse of replication forks [46], but here, short-interval hydroxyurea treatment
(20 h) was employed as a replication inhibitor rather than as an inducer of DNA DSBs.
Since azanucleosides must be incorporated into DNA during replication to inhibit DNA
methyltransferases and cause demethylation [30], HPV+ UMSCC47 cells were treated for
48 h with 5-azaC to allow incorporation into DNA before addition of replication inhibitors
(schema in Figure 6A). Both aphidicolin and HU diminished DSBs detection following
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5-azaC treatment (Figure 6B). These results indicate that 5-azaC induced DNA double
strand breaks in HPV+ HNSCC depend on both transcription and DNA replication.
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H2AX in HPV-positive UMCC47 cells treated with
10 µM of 5-azaC for 72 h. Scale bar is 5 µm.

Since 5-azaC must be incorporated into DNA to cause demethylation, replication
inhibitors could impede 5-azaC-induced demethylation; therefore, DNA demethylation
was confirmed in cells treated with replication inhibitors, using restriction enzymes specific
to methylated CpG sites (“dependent restriction”) or unmethylated CpG sites (“sensitive
restriction”; Figure 6C). In untreated cells, an intense uncut band was observed after
sensitive restriction (green square, lane 3) but not after dependent restriction (red square,
lane 2), showing that in the absence of 5-azaC treatment genomic DNA in HPV+ HNSCC is
highly methylated. After treatment with 5-azaC, uncut DNA after sensitive restriction was
diminished (lane 6 vs. 3) while uncut DNA after dependent restriction became detectable
(lane 5 vs. 2). These data confirm that 72 h of 5-azaC treatment caused DNA demethylation.
In 5-azaC treated cells exposed to aphidicolin during the last 24 h of treatment, a similar
pattern was detected, confirming that treatment with replication inhibitors during the last
24 h of the experimental schema (Figure 6A) did not prevent DNA demethylation due to
5-azaC treatment (Figure 6C).

Finally, labeling of replication sites with thymidine analogue EdU during 5-azaC
treatment and coimmunostaining of EdU with
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H2AX showed a partial colocalization of
replication sites with the DNA damage marker (Figure 6D).
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2.4. 5-azaC-Induced DNA DSBs Are Randomly Distributed in the Genome but Are Enriched in
Demethylated DNA

To determine if demethylated DNA is associated with 5-azaC-induced DNA DSBs
in HPV+ HNSCC, intact genomic DNA or DSBs from 5-azaC treated or control cells
was gel purified following pulsed field gel electrophoresis then subjected to methylation
dependent or sensitive restriction (Figure 7A). As expected, DNA from untreated cells
was largely methylated with no band detectable after dependent restriction. After 5-azaC
treatment, intact DNA had a faint band detected after dependent restriction, but a much
more intense band after sensitive restriction suggesting that the majority of intact DNA after
5-azaC remained methylated (Figure 7A). In contrast, DNA isolated from the PFGE band
containing DSBs demonstrated similar band intensities following dependent and sensitive
restriction, suggesting that after 5-azaC treatment unmethylated DNA represented a much
larger portion of DNA in DSBs than in intact DNA (Figure 7A,B).
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Figure 7. 5-azaC induced DNA double strand breaks in HPV+ HNSCC are randomly distributed
in the genome, but occur preferentially on demethylated DNA. (A) Schematic representation of
PFGE (top) and DNA gel (bottom) showing results of sensitive and dependent restriction of DNA
corresponding to control (untreated) and 5-azaC-treated (intact or DNA DSBs) purified from PFGE
performed with HPV+ UMSCC47 cells. (B) Quantification of the DNA gel from (A).

To understand if DNA DSBs are enriched in specific genomic locations after 5-azaC
treatment, whole genome sequencing of intact and damaged DNA isolated from 5-azaC-
treated cells and purified from a pulsed field gel was analyzed. Initial analysis through
alignment of reads to chromosomes revealed no marked differences between DNA from
DSB versus intact DNA with 8% of the reads corresponding to exons and similar propor-
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tions mapping to intron, exons, or intergenic regions in both, intact DNA and double strand
breaks, samples; no strand bias was found for the genes in either intact or DSB DNA. DNA
from DSBs and intact DNA contained reads that mapped randomly to the genome with
more reads mapping to longer chromosomes.

These results demonstrate that 5-azaC-induced DSBs in HPV+ HNSCC were enriched
in demethylated DNA and randomly distributed in the genome.

2.5. Demethylation Alters the Protein Complement Associated with Chromatin in HPV+ HNSCC

To begin identifying pathways that may underlie the replication- and transcription-
dependent DNA DSB formation observed in HPV+ HNSCC after 5-azaC, proteins associ-
ated with chromatin after demethylation were identified using tandem mass spectrometry.
Demethylation increased the number of proteins associated with chromatin from 583 in
untreated cells to 656 after 5-azaC (Figure S5) of these proteins, 499 were identified in both
treated and untreated cells, 84 were observed only in untreated cells, and 157 were found
only after 5-azaC treatment. Based on proteins relocated to chromatin after demethylation,
gene ontology pathways were identified (Figure S5). The majority of significant pathways
identified related to RNA splicing and processing, but also chromatin organization Interest-
ingly, gene set enrichment analysis revealed that proteins relocating to the chromatin after
demethylation are primarily associated with RNA metabolism and chromatin organization
(Figure S5).

3. Discussion

DNA damaging drugs and radiation are a mainstay of cancer therapy, especially
for patients with head and neck squamous cell carcinoma; however, damage to normal
tissues from these therapies results in lifelong morbidity with related functional deficits
with gastric-tube dependence in over 10% of patients receiving chemoradiation for late
stage oropharyngeal cancer [47]. Acute toxicities from chemotherapy and radiation also
limit the dose and effectiveness of these therapies. In addition to morbidity, increased
non-cancer mortality is now being recognized in patients completing treatment with
concomitant chemotherapy and radiation. Late cranial neuropathies have been described
in up to 14% of patients with a mean latency of 7.7 years [48], and close to one quarter
of patients treated with chemoradiotherapy will be admitted for aspiration pneumonia
within 5 years of therapy and almost one-third of these patients will not survive this
complication [49]. The high incidence of treatment related complications has accelerated
the search for effective and less morbid therapy. Recent studies are exploring therapeutic
de-escalation with the thought that decreasing dose or field of radiation will decrease
morbidity [50]. Identification of patients with HPV+ OPSCC for deintensification of
standard therapy will be an important advancement for decreasing morbidity and mortality.
The cooperative group trial, E1308, used induction chemotherapy to select favorable
patients for de-escalation, but with mixed results [51]. We identified genetic prognostic
markers [9,52–55] and have used deep learning [56,57] and using circulating HPV DNA as
alternative methods to identify high risk patients [58]. As opposed to deintensification of
standard therapies, new treatment options that selectively target intrinsic susceptibilities
are needed, especially for younger patients with HPV-associated HNSCC [5].

Given the intrinsic sensitivity of HPV+ HNSCC to 5-azaC treatment [21] and the
tolerable side effect profile of this FDA-approved drug, 5-azaC emerges as an attractive
therapy. Demethylating drugs are used for cancer therapy and have been associated with
DNA damage; however, the cause and the type of DNA damage have not been well
characterized [20,25]. We previously reported the effects of demethylating treatment to
stabilize and activate p53 in HPV+ HNSCC. Here, we explored the type and effects of
DNA damage induced by 5-azaC in HPV+ HNSCC to explore its contribution to 5-azaC
cytotoxicity.

We found that 5-azaC and decitabine induced DNA double strand breaks in HPV+
HNSCC (Figures 2 and 3), and confirmed and expanded reports that HPV+ cells are
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defective for homologous recombination (Figure 4B,C). Our studies showed that Rad51
did not colocalize to the sites of DNA damage in HPV+ HNSCC after HU treatment
(Figure 4B) and that HPV+ cells did not activate a homologous recombination reporter after
nuclease-induced DNA strand breaks (Figure 4C) [22,23]. Using BRCA2 deficient cells, we
found that HR defects sensitize cells to demethylation (Figure 4A) consistent with reports
that 5-azaC-induced DNA double strand breaks require homologous recombination [20].
Previously we reported that demethylation increased p53 levels and activity in HPV+
HNSCC resulting in cellular toxicity. Here, our data suggest that HR defects in HPV+ head
and neck cancer cells also contribute to HPV+ HNSCC sensitivity to 5-azaC.

Since altered transcriptional activity is associated with DNA damage [33,59] and a
consequence of demethylation is induction of global transcription [60,61], the requirement
for transcription in 5-azaC-induced DNA DSBs was explored. We found that DSBs de-
pended on active transcription (Figure 5) but did not depend on new protein synthesis
(Figure S4) suggesting that the process of transcription, not a product of transcription,
was mechanistically involved in DSBs formation. The dependence on active transcription
also provides evidence against a model of 5-azaC induced DSBs involving replication
fork collapse at DMNT1-DNA crosslinks as these lesions would form in the absence of
transcription [62–64].

Transcription creates vulnerable DNA structures such as ssDNA exposed in the
transcription bubble that have increased susceptibility to spontaneous deamination and
mutagenic events [65,66]. Induction of aberrant or massive transcription also increases
the chance of conflicts between replication and transcription machinery. Since 5-azaC
toxicity depends on replication [20], the finding that replication was required for DNA
DSB formation (Figure 6) in response to 5-azaC was not unexpected and is consistent with
studies demonstrating that transcription-associated double strand breaks often involve
conflict between the transcription and replication machinery [42,44,45,67–70]. In eukaryotic
cells, these lesions generally arise from two general mechanistic etiologies: (1) through
DNA–RNA hybrids that form from the hybridization of the newly transcribed mRNA with
template DNA, thus causing an impediment to replisome progression [45,71,72], and (2)
topological stress created by the anchoring of eukaryotic DNA to nuclear pore complexes
at sites of transcription that does not allow the free rotation of DNA as the DNA and RNA
polymerases traverse the DNA [45,70]. Both of these scenarios can result in replication
fork collapse and the induction of transcription-associated recombination, leading to DSB
formation [44,45]. We are beginning to explore if these potential mechanisms are involved
in 5-azaC-induced DSBs in HPV+ HNSCC.

A question central to 5-azaC-induced DSBs in HPV+ HNSCC remained: what key
molecular differences between HPV+ and HPV- cells allow the DSBs formation in HPV+
(Figures 2 and 3), but not HPV- HNSCC cells (Figure S3) after demethylation therapy?
We were exploring an additional mechanistic explanation, but one possibility is impaired
homologous recombination repair found in several HPV-positive head and neck cancer
cells (Figure 4 and [22,23]).

Demethylation is promising for therapy for HPV+ HNSCC since it reactivates p53 and
increases apoptosis. As an additional mechanism of 5-azaC activity in HPV+ HNSCC, we
described here that HPV+ HNSCC generate DNA DSBs from demethylation treatment and
are at least partially deficient in repair pathways likely causing persistence of damaged
DNA. We demonstrated here that these transcription and replication dependent DNA
DSBs occur in both, cell lines and early passages of patient derived cells, and contributed
to cellular toxicity; however, further studies are needed to determine if DSBs contribute to
cytotoxicity HPV+ head and neck tumors after patients are treated with 5-azaC. The find-
ings presented here serve as a model for further mechanistic understanding of induction of
DNA double strand breaks in HPV+ HNSCC cells.

Previous studies demonstrated that many RNA-interacting proteins relocate to dam-
aged chromatin [73], suggesting that they may be involved in DNA damage repair. Our
analysis revealed that proteins associated with chromatin after 5-azaC treatment are en-
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riched in RNA-binding and RNA processing proteins (Figure S5). A detailed functional
analysis of these protein groups is being explored in our laboratories to increase under-
standing of the complex nature of transcription- and replication-dependent DNA DSBs
produced by 5-azaC in HPV-positive head and neck cancer cells. A comprehensive mech-
anistic understanding may help to determine if subsets of HPV+ HNSCC tumors have
different susceptibilities to 5-azaC toxicity through DSB induction and may suggest addi-
tional avenues to explore more effective therapeutic regimens.

4. Materials and Methods
4.1. Cells

HPV-negative (UNC7 and SCC61) and HPV+ (SCC090, UMSCC47, and UMSCC104)
HNSCC cell lines were used. HPV- cells were cultured in DMEM/F12 medium supple-
mented with 0.4 µg/mL hydrocortizone, and HPV+ cell lines were grown in DMEM with
nonessential amino acids. V-C8 and V-C8B2 cells were previously described [22]. All
media was supplemented with 10% FBS (Thermo Fisher Scientific, Waltham, MA, USA),
50 µg/mL penicillin, and 50 µg/mL streptomycin (Thermo Fisher Scientific). All cell lines
were tested negative for mycoplasma and authenticated by microsatellite testing.

To establish primary HNSCC cultures, surgical specimens were collected from con-
sented patients in PBS within 30 min of resection. Tissue was cut into 5 mm3 pieces,
disinfected by immersion in 70% ETOH for 1 min, rinsed with PBS four times, and digested
in 0.05% trypsin-EDTA supplemented with collagenase type 1A (200 units/mL) (Sigma C-
9722, St. Louis, MO, USA) in a vented flask at 37 ◦C with 5% CO2 for 10–20 min. Digestion
was stopped by adding 1 volume of FBS (Sigma). After centrifugation at 1500 rpm × 5 min,
the supernatant was aspirated, the cells were resuspended in keratinocyte serum-free
medium with supplements and 10% FBS, strained through a 100 µm nylon cell strainer
(Falcon; Becton Dickinson Labware), plated in keratinocyte serum-free medium with sup-
plements (Gibco, Gaithersburg, MD, USA/Invitrogen, Waltham, MA, USA) and 10% FBS
onto 0.1% gelatin (Millipore, St. Louis, MO, USA) coated plates, and grown at 370 C in a
5% CO2 incubator. The next day, cells were washed with PBS and grown in keratinocyte
serum-free medium with supplements until they reached 90% confluence. After near
confluence, the cells were detached with 0.05% trypsin-EDTA, the reaction was stopped
with defined trypsin inhibitor (Gibco), and the cells were plated on uncoated plates in
keratinocyte serum-free medium with supplements for experimental use.

4.2. Transfection

Cells were transfected using Lipofectamine 2000 (Invitrogen) according to manufac-
turer recommendations.

4.3. Drugs

5-Azacytidine, hydroxyurea, aphidicolin, triptolide, DRB, Actinomycin D, puromycin,
and cycloheximide were obtained from Sigma.

4.4. Homologous Recombination Reporter

HPV-positive and negative cells were transfected with pDRGFP (a gift from Maria
Jasin (Addgene plasmid # 26,475; http://n2t.net/addgene:26475; RRID:Addgene_26475)
24 and stable clones were selected on puromycin. Cells stably expressing pDRGFP were
transfected with pCBASceI (a gift from Maria Jasin (Addgene plasmid # 26,477; http://n2t.
net/addgene:26477; RRID:Addgene_26477) 25 and GFP positive cells were determined by
FACS (BD FACSCalibur) 48 h after transfection

4.5. Immunoblotting

Immunoblotting was performed as previously described [25–27]. Briefly, cells were
collected by trypsinization and lysed in radioimmunoprecipitation assay (RIPA) lysis
buffer (Sigma) with the addition of protease inhibitors (Roche, Indianapolis, IN, USA)

http://n2t.net/addgene:26475
http://n2t.net/addgene:26477
http://n2t.net/addgene:26477
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and phosphatase inhibitors (Sigma) for 15 min on ice. Insoluble material was removed by
centrifugation at 14,000 rpm for 15 min at 4 ◦C. Proteins were separated in Tris-glycine
polyacrylamide gels (Mini-PROTEAN; Bio-Rad, Hercules, CA, USA) and electrophoreti-
cally transferred onto polyvinylidene fluoride membranes. Membranes were blocked with
3% BSA in PBS and incubated with antibodies against
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H2AX (Abcam, Cambridge, MA,
USA), and tubulin (Santa Cruz, Dallas, TX, USA). After incubation with primary antibodies,
membranes were washed, incubated with secondary DyLight antimouse and antirabbit
antibodies (Thermo Scientific), and signals were visualized using a Bio-Rad imager. The
uncropped immunoblotting image was shown in Figure S6.

4.6. Pulsed-Field Gel Electrophoresis

Cells were treated with indicated drugs, collected by trypsinization, resuspended
in 1% InCert-agarose (in 37 ◦C PBS) to a final concentration of 1.5 million cells/100 µL,
and agarose plugs were separated by pulsed-field gel electrophoresis as previously de-
scribed [28].

4.7. Immunofluorescence

Cells were grown in chamber slides, treated, fixed, immunostained, and analyzed
as previously described [25]. Cells with more than 10 foci were determined as positive.
The primary antibodies used were mouse anti-
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H2AX (Abcam) at a dilution of 1:2000 and
rabbit anti-Rad51 (Santa Cruz) at a dilution of 1:500. Secondary antimouse Alexa 555 and
antirabbit Alexa 488 were from Invitrogen and were used at a dilution 1:1000.

For EdU/EU localization with γH2AX, Click-iT EdU Imaging Kits (Invitrogen) or
Click-iT™ RNA Alexa Fluor™ 594 Imaging Kit (Invitrogen) were used according to their
instruction and
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H2AX was costained after that.

4.8. Colony Formation Assay

Cells were plated into six well plates at a density of 500 cells/well. The next day,
the cells were treated with indicated drugs. After 1 week, when colonies could be ob-
served, colonies were fixed and stained with methylene blue in methanol (4 g/L). Colonies
consisting of more than 30 cells were subsequently counted.

4.9. DNA Purification and Restriction

DNA was purified using DNeasy Blood and Tissue Kits (Qiagen, Germantown, MD,
USA). Of DNA 0.5 µg was incubated with or without restrictases from EpiTect Methyl II
DNA Restriction Kit (Qiagen) at 37 ◦C for 6 h, the enzymes were inactivated at 65 ◦C for
20 min following the digestion, the reactions were run in 1% agarose (Invitrogen) gel, and
DNA was visualized with ethidium bromide (Bio-Rad).

4.10. Subcellular Fractionation

Subcellular Protein Fractionation Kit for Cultured Cells (Thermofisher Scientific) was
used to isolate cytoplasmic, nuclear soluble, chromatin bound, and membrane proteins
from the same cells according to the manufacturer’s suggested protocol.

4.11. Mass Spectrometry

Mass spectrometry was performed at the Yale Mass Spectrometry and Proteomics
Core on the chromatin bound fraction, obtained as described above. Results were deemed
significant at 95% confidence.

4.12. Next Generation Sequencing and Analysis

After PFGE, intact DNA and DSBs bands were cut of the gel and DNA was purified
using Qiagen Gel Extraction kit. Sequencing with 5 kb reads was performed at Yale
Genomics Facility using Pacific Biosciences. Corresponding to intact DNA intact 8082 good
reads and 4431 good reads corresponding to DNA DSBs were chopped down to 100 bp in
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size. The number of chopped reads was 215K and 114K for intact and DSBs, respectively.
Reads were mapped to GRCh38 (Genome Reference Consortium Human Build 38) with
Bowtie2 resulting in 92% reads mapped for both DSBs and intact. There was no strand bias
in the mapping; intact DNA: 99,807 top and 99,531 btm; DSBs: 52,735 top and 52,355 btm.

4.13. Comet Assay

A comet assay was performed using CometAssay® Kit (2 × 20 well slides) from
Trevigen (Gaithersburg, MD, USA) according to the manufacturer’s instructions.

4.14. GSEA

Gene set enrichment analysis was performed using Broad Institute software (https:
//www.gsea-msigdb.org/gsea/index.jsp) [29,30].

5. Conclusions

Here, we demonstrated that 5-azacytidine treatment induces replication and transcrip-
tion -associated DNA double strand breaks in HPV-associated head and neck cancer cells.
Blocking replication or transcription prevented formation of DNA double strand breaks
and reduced sensitivity of HPV-positive head and neck cancer cells to 5-azacytidine. We
also found that 5-azacytidine-induced DNA double strand breaks are randomly distributed
in the genome but are enriched in demethylated DNA. Results presented here provide
evidence for a novel application of demethylation treatment in HPV+ HNSCC and serve as
a model for further mechanistic understanding of the selective induction of DNA double
strand breaks in these cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/1/21/s1, Figure S1: PFGE of HPV+ UMSCC104 cells and HPV+ tonsillar cancer cell culture
following 72 h of treatment with 5-azaC; Figure S2: PFGE showing HPV+ cell line UMSCC47 after
the treatment with 1 or 10 µM of 5-azaC daily for 3 days; Figure S3: PFGE showing HPV-negative
cell lines after the treatment with 30 µM of 5-azaC or 2mM of HU; Figure S4: 5-azaC-induced
DNA DSBs in HPV-positive HNSCC do not depend on protein synthesis (PFGE) showing HPV-
positive UMSCC47 cells treated with 20 µM of 5-azaC for 72 h with addition of cycloheximide (CHX)
where indicated in the last 12 h; Figure S5: (A) Schematic representation of the proteins located on
chromatin in HPV+ UMSCC47 cells treated or not with 5-azaC. (B) Gene set enrichment analysis
(GSEA) of proteins relocated to chromatin in HPV-positive cells after 5-azaC treatment; Figure S6.
The uncropped immunoblotting image of Figure 1A.
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