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Abstract
Haemosporidians	 are	 among	 the	most	 common	parasites	 of	 birds	 and	often	nega-
tively	 impact	host	 fitness.	A	multitude	of	biotic	and	abiotic	 factors	 influence	these	
associations,	but	the	magnitude	of	these	factors	can	differ	by	spatial	scales	(i.e.,	local,	
regional	and	global).	Consequently,	to	better	understand	global	and	regional	drivers	
of	 avian-	haemosporidian	 associations,	 it	 is	 key	 to	 investigate	 these	 associations	 at	
smaller	 (local)	 spatial	 scales.	 Thus,	 here,	we	 explore	 the	 effect	 of	 abiotic	 variables	
(e.g.,	temperature,	forest	structure,	and	anthropogenic	disturbances)	on	haemospo-
ridian	prevalence	and	host–	parasite	networks	on	a	horizontal	spatial	scale,	compar-
ing	 four	 fragmented	 forests	and	 five	 localities	within	a	 continuous	 forest	 in	Papua	
New	Guinea.	Additionally,	we	 investigate	 if	prevalence	and	host–	parasite	networks	
differ	between	the	canopy	and	the	understory	 (vertical	stratification)	 in	one	forest	
patch.	We	found	that	the	majority	of	Haemosporidian	infections	were	caused	by	the	
genus Haemoproteus	and	that	avian-	haemosporidian	networks	were	more	specialized	
in	continuous	forests.	At	the	community	level,	only	forest	greenness	was	negatively	
associated	with	Haemoproteus	 infections,	 while	 the	 effects	 of	 abiotic	 variables	 on	
parasite	 prevalence	 differed	 between	 bird	 species.	 Haemoproteus prevalence lev-
els	were	significantly	higher	in	the	canopy,	and	an	opposite	trend	was	observed	for	
Plasmodium.	This	implies	that	birds	experience	distinct	parasite	pressures	depending	
on	 the	 stratum	 they	 inhabit,	 likely	 driven	by	 vector	 community	 differences.	 These	
three-	dimensional	spatial	analyses	of	avian-	haemosporidians	at	horizontal	and	verti-
cal	scales	suggest	that	the	effect	of	abiotic	variables	on	haemosporidian	infections	are	
species	specific,	so	that	factors	influencing	community-	level	infections	are	primarily	
driven	by	host	community	composition.
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1  |  INTRODUC TION

Parasites	 are	 ubiquitous,	 diverse,	 and	 play	 major	 ecological	 roles	
in	 terrestrial	 and	 aquatic	 ecosystems	 (García	 del	 Río	 et	 al.,	 2020;	
Poulin,	1999),	where	 they	are	a	prominent	 selective	 force	 that	 in-
fluences	fitness,	distribution,	and	evolution	of	hosts	(Poulin,	1998).	
Haemosporidians	 (Phylum	Apicomplexa)	are	blood	parasites	 trans-
mitted	by	dipteran	vectors	and	are	among	the	most	common	para-
sites	in	vertebrates	(Soares	et	al.,	2017),	including	in	birds	(Hellgren	
et	 al.,	 2009;	Valkiūnas,	2005).	 Infections	 in	birds	 generally	 impact	
host	fitness	negatively	(Atkinson,	2009;	LaPointe	et	al.,	2012;	Rivero	
&	Gandon,	2018)	and	the	introduction	of	haemosporidians	to	naïve	
bird	communities	(e.g.,	on	previously	isolated	islands)	can	have	dra-
matic	consequences	and	even	 lead	to	population	collapses	or	spe-
cies	extinctions	(Ewen	et	al.,	2012;	Freed	et	al.,	2005).

Associations	 between	 birds,	 haemosporidian	 parasites,	 and	
dipteran	vectors	are	governed	by	both	biotic	 (e.g.,	host	availability	
and	density)	and	abiotic	(e.g.,	temperature	and	precipitation)	factors	
(Chapa-	Vargas	et	al.,	2020),	in	addition	to	anthropogenic	alterations,	
such	as	deforestation	and	habitat	degradation	(Atoyan	et	al.,	2018;	
Chasar	 et	 al.,	 2009;	Marzal	 et	 al.,	 2015;	Olsson-	Pons	et	 al.,	 2015;	

Sehgal,	2010).	Temperature,	humidity,	precipitation	and	proximity	to	
water	appear	to	be	the	most	important	environmental	variables	in-
fluencing	avian-	haemosporidian	interactions	on	regional	and	global	
scales	(Illera	et	al.,	2017;	Jones	et	al.,	2013;	Mendenhall	et	al.,	2013;	
Padilla	et	al.,	2017;	Villar	Couto	et	al.,	2019).	However,	prevalence	
varies	 enormously	 between	 years	 (Bensch	 et	 al.,	 2007;	 Lachish	
et	al.,	2011;	Ricklefs	et	al.,	2005)	and	seasons	(Cosgrove	et	al.,	2008;	
Hernández-	Lara	et	al.,	2017),	even	for	climatically	similar	 localities	
on	 smaller	 spatial	 scales	 (Hernández-	Lara	 et	 al.,	 2017;	 Knowles	
et	al.,	2014;	Wood	et	al.,	2007).	Vector	communities	may	also	differ	
between	 forest	 canopy	 and	 understory	 (Bates,	 1944;	Brant	 et	 al.,	
2016;	Chakarov	et	al.,	2020;	Clements,	1999),	implying	that	parasite	
transmission	may	differ	significantly	within	a	locality.	Prevalence	at	
larger	scales	may	thus	be	driven	by	a	combination	of	small-	scale	local	
variation	in	biotic	and	abiotic	factors.

A	 first	 step	 towards	 understanding	 what	 determines	 local,	
regional,	 and	 ultimately	 global	 avian-	haemosporidian	 prevalence	
patterns	 is	 to	decipher	 the	 factors	 that	govern	prevalence	 in	 in-
dividual	 host	 species	 at	 local	 spatial	 scales.	We	 address	 this	 by	
investigating	 haemosporidian	 prevalence,	 host	 specificity,	 and	
host–	parasite	networks	of	lowland	bird	species	in	multiple	forest	

J E L  C L A S S I F I C A T I O N
Biodiversity	ecology;	Community	ecology;	Disease	ecology;	Landscape	ecology;	Parasitology

F I G U R E  1 Location	of	sampling	sites	in	northern	Papua	New	Guinea	(PNG).	Map	depicting	(a)	the	location	of	PNG	in	Oceania,	and	(b)	the	
location	of	the	Madang	province	in	Northern	PNG.	(c)	Map	of	the	Madang	province	indicating	the	10	sampling	sites	(9	in	2015	and	1	in	2013)	
located	on	an	east	to	west	axis.	Code	names	starting	with	WCA	are	within	the	continuous	Wanang	Conservation	Area.	The	WCA	Swire	
locality	was	only	sampled	in	2013
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localities	in	close	geographic	proximity	in	Papua	New	Guinea.	We	
sampled	10	abundant	bird	species	along	an	east–	west	axis	(span-
ning ~70	km)	in	4	fragmented	forest	patches	(~48	km	apart)	as	well	
as	5	 localities	within	a	 single	 continuous	primary	 forest	 (~14	km	
apart)	(Figure	1).	Additionally,	in	one	locality	within	the	continuous	
primary	forest	(Figure	1),	we	tested	the	effect	of	vertical	stratifi-
cation	by	comparing	understory	and	canopy	parasite	prevalence	
and	host–	parasite	network	structures	in	four	confamilial	host	spe-
cies pairs.

2  |  MATERIAL S AND METHODS

2.1  |  Field sites and sample collection

All	samples	were	collected	 in	Madang	Province	of	northern	Papua	
New	Guinea	(PNG).	In	2015,	samples	were	collected	across	nine	sam-
pling	sites	(on	an	east	to	west	axis	from	the	coast	to	inland),	repre-
senting	four	small	forest	fragments	close	to	human	settlements	(Ohu	
Village,	Kewal	Village,	Yal	Village,	and	Molum	Village)	and	five	locali-
ties	within	the	large	continuous	forest	of	the	Wanang	Conservation	
Area	 (WCA)	 (WCA	W1,	WCA	W2,	WCA_Haus_bio_Ukiam,	WCA_
Nindemekin,	and	WCA	W4)	(Figure	1).	We	focused	on	10	common	
lowland	 species	 (Arses insularis,	 Ceyx solitarius,	 Colluricincla mega-
rhyncha,	Meliphaga analoga,	Melanocharis nigra,	Pitohui kirhocephalus,	
Rhipidura leucothorax,	Symposiachrus guttula,	Tanysiptera galatea,	and	
Toxorhamphus novaeguineae)	of	which	a	total	of	276	individuals	were	
sampled.	The	birds	were	all	captured	using	standard	mist	nets	(~3	m	
height	from	the	ground)	(Table	S1).

To	 explore	 the	 effect	 of	 vertical	 stratification	 on	 avian-	
haemosporidian	 associations,	we	 captured	 birds	 from	 the	 forest	
floor	 to	 27	m	 above	 ground	 in	 2013	 at	 the	 Swire	 Station	 local-
ity	within	WCA	(Figure	1)	using	stacked	mist	nets	(for	details	see	
Chmel	 et	 al.,	 2016).	 Stacked	 mist	 nets	 were	 only	 used	 in	 2013	
due	 to	 resource	 limitations.	 After	 the	 investigation	 of	 average	
capture	 heights	 and	 removal	 of	 species	 for	 which	 we	 had	 less	
than	 five	 individuals,	 we	 identified	 the	 following	 four	 pairs	 of	
confamilial	 understory	 and	 canopy	 species:	 Symposiachrus gut-
tula and Monarcha chrysomela	 [family:	 Monarchidae—	Monarch	
flycatchers],	 Chalcophaps stephani and Ptilinopus magnificus 
[Columbidae—	Pigeons],	 M. analoga and Xanthotis flaviventer 
[Meliphagidae—	Honeyeaters],	 and	 T. galatea and Dacelo gaudi-
chaud	[Alcedinidae—	Kingfishers])	(in	total,	135	individuals)	(Figure	
S1,	Table	S2).

Body	mass	 and	 tarsus	 length	was	measured	 for	 all	 individu-
als	 sampled,	 and	10–	20	µl	 of	blood	was	obtained	 from	 the	bra-
chial	 artery	 and	 stored	 in	 70%	 ethanol	 until	 DNA	 extractions.	
To	 test	 for	 sex-	specific	 differences,	 we	 sexed	 individuals	 using	
PCRs	with	the	primers	2550F	and	2718R	for	Passeriformes	and	
Columbiformes,	and	p2	and	p8	 for	Coraciiformes	 (Fridolfsson	&	
Ellegren,	1999).	Heterogametic	females	and	homogametic	males	
were	 distinguished	 through	 visualization	 of	 PCR	 products	 on	 a	
2%	agarose	gel.

2.2  |  Molecular identification of haemosporidians

DNA	was	 extracted	 using	 the	 Qiagen	 DNeasy®	 blood	 and	 tissue	
kit	 (Hilden,	 Germany),	 following	 the	 manufacturer's	 guidelines,	
with	 a	 prolonged	 incubation	 period	 (approximately	 12	 h	 at	 56°C).	
Haemosporidians	were	 identified	 through	nested	PCRs	with	slight	
modifications	 to	 a	well-	established	 protocol	 (Bensch	 et	 al.,	 2000;	
Hellgren	 et	 al.,	 2004).	 The	 initial	 PCRs	 were	 conducted	 in	 tripli-
cates	 using	HaemNF1	 (5′-	CATATATTAAGAGAAITATGGAG-	3′)	 and	
HaemNR3	 (5′-	ATAGAAAGATAAGAAATACCATTC-	3′)	 primers	 and	
the	PCR	master	mix	contained	a	 total	volume	of	25	μl	per	sample	
(12.5	μl	of	VWR	RedTaq	polymerase®,	1	μl	of	10	mM	concentration	
of	each	primer,	8.5	μl	of	autoclaved	MilliQ	water,	and	2	μl	of	the	DNA	
template).	These	PCRs	were	conducted	under	an	initial	step	of	3	min	
at	94°C	and	20	cycles	of	30	s	at	94°C,	30	s	at	50°C,	45	s	at	72°C,	and	
10	min	at	72°C.	We	then	proceeded	with	the	second	PCRs	target-
ing	specific	haemosporidian	genera	(Haemoproteus and Plasmodium),	
using	 HaemR2	 (5′-	GCATTATCTGGATGTGATAATGGT-	3′)	 and	
HaemF	 (5′-	ATGGTGCTTTCGATATGCATG-	3′)	 primers	 (Hellgren	
et	al.,	2004).	We	did	not	investigate	Leucocytozoon parasites due to 
their	 low	prevalence	 in	New	Guinea	 (Bodawatta	et	al.,	2020).	The	
second	PCR	was	set	up	using	10	μl	of	Qiagen	multiplex	master	mix	
(Hilden,	Germany),	1	μl	of	10	mM	concentration	of	each	primer,	and	
8 μl	of	10×	diluted	product	from	the	first	PCR.	The	second	PCR	was	
conducted	with	an	initial	step	of	3	min	at	94°C	and	35	cycles	of	30	s	
at	94°C,	30	s	at	50°C,	45	s	at	72°C,	and	10	min	at	72°C.	Every	PCR	
round	contained	a	positive	control	and	a	negative	control	for	every	
16	samples.	Final	PCR	products	were	visualized	on	a	2%	agarose	gel	
containing	GelGreen®	stain	at	90	V	for	approximately	1	h.

Positive	PCR	products	were	cleaned	using	PureIT	ExoZAP	PCR	
CleanUp	(Amplicon,	Odense,	Denmark)	and	subsequently	sequenced	
in	 a	 Sanger	 platform	 at	 Eurofins	 Denmark	 (Glostrup,	 Denmark)	
for	 the	 forward	 primer	 (HaemF).	 Samples	 with	 short	 (<479	 base	
pairs	 [bp])	 sequences	were	 also	 sequenced	 for	 the	 reverse	primer	
(HaemR2).	 Sequences	 were	 aligned	 using	 Geneious	 Prime	 v4.8.5,	
and	mismatches	were	 checked	manually.	 Aligned	 sequences	were	
then	 compared	 to	 the	MalAvi	 database	 of	 avian	malaria	 parasites	
and	related	haemosporidians	(Bensch	et	al.,	2009)	using	the	malaviR 
v0.2.0	package	in	R	(Vincenzo	et	al.,	2017).	Sequences	that	matched	
reference	lineages	in	MalAvi	with	less	than	98%	(Bensch	et	al.,	2000;	
Ricklefs	&	Fallon,	2002;	Waldenström	et	al.,	2004)	were	considered	
novel lineages.

2.3  |  Host– parasite networks, lineage 
specificity, and host phylogeny

To	explore	host–	parasite	network	 structures	 in	different	 sampling	
localities	 we	 calculated	 the	 network-	level	 specificity	 index	 (H2′)	
for	 bird–	haemosporidian	 communities	 using	 the	 R	 package	 bipar-
tite	v2.15	(Dormann	et	al.,	2008).	An	H2′	index	close	to	1	indicates	
specialized	host–	parasite	communities	with	more	one-	to-	one	inter-
actions	 between	 host	 species	 and	 parasite	 lineages,	while	 indices	
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closer	 to	 0	 indicate	 more	 generalized	 networks	 (Blüthgen	 et	 al.,	
2006).	We	then	compared	the	observed	network	specificity	values	
with	 specificities	 expected	 by	 chance	 through	 generating	 1,000	
random	networks,	 to	 investigate	whether	observed	values	deviate	
significantly	from	network	specificities	expected	by	chance.	We	also	
investigated	 haemosporidian	 lineage-	level	 specificity	 on	 the	most	
common	lineages	(infecting	>2	individuals)	between	the	continuous	
forest	 and	 the	 fragmented	 forest	 patches	 (combining	 all	 localities	
within	each	category).	We	used	 the	 threshold	of	>2 individuals as 
the	majority	of	our	haemosporidian	lineages	only	infected	one	bird	
species.	We	calculated	specificity	for	each	lineage	using	Rao's	quad-
ratic	 entropy,	 while	 incorporating	 phylogenetic	 distances	 among	
host	 species	 (accounting	 for	 the	 importance	 of	 host	 evolutionary	
histories	on	haemosporidian	specificity	levels)	using	the	raoD	func-
tion	in	the	R	package	picante	v1.8.2	(Kembel	et	al.,	2010).	Higher	Rao	
values	 indicate	more	 generalists	while	 lower	 values	 indicate	more	
specialist	lineages	(Ellis	et	al.,	2020).

We	 generated	 a	 host	 species	 phylogeny	 using	 a	 concatenated	
alignment	 of	 three	 mitochondrial	 (NADH	 dehydrogenase	 2:	 ND2,	
NADH	dehydrogenase	3:	ND3,	and	Cytochrome	b:	cytb)	and	three	
nuclear	 (Myoglobin	 intron	 2:	 Myo2,	 Glyceraldehyde-	3-	Phosphate	
Dehydrogenase	 intron	 11:	 GAPDH,	 Ornithine	 decarboxylase	 in-
trons	6	and	7:	ODC)	genes,	sourced	from	GenBank	(Table	S3)	using	
BEAST	 v1.8.4	 (Drummond	 et	 al.,	 2012).	 We	 applied	 the	 General	
Time	 Reversible	 nucleotide	 substitution	 model	 to	 the	 concate-
nated	dataset	and	ran	the	analysis	for	100	million	generations	using	
a	 relaxed	 uncorrelated	 lognormal	 distribution	 for	 the	 molecular	
clock	 model,	 and	 assuming	 a	 birth–	death	 speciation	 process	 as	 a	
tree	 prior.	 Convergence	 diagnostics	 were	 assessed	 in	 Tracer	 v1.6	
(Suchard	et	al.,	2018),	by	determining	the	effective	sample	sizes	and	
mean	distribution	values.	The	final	output	tree	was	summarized	in	
TreeAnnotator	v1.8.3	(Rambaut	&	Drummond,	2015)	as	a	maximum	
clade	credibility	(MCC)	tree	after	discarding	the	first	10	million	gen-
erations	as	burn-	in.

2.4  |  Environmental data

Environmental	 variables	 for	 individual	 sampling	 localities	 (e.g.,	
maximum	 and	 minimum	 temperature,	 elevation,	 and	 distance	 to	
large	water	bodies	[rivers	and	the	sea])	were	gathered	from	online	
databases	 (see	below).	We	used	 the	distance	 to	 rivers	as	a	proxy	
for	habitat	availability	for	vectors,	but	we	do	acknowledge	that	this	
parameter	 is	 suboptimal	 to	 fully	understand	 the	habitat	 availabil-
ity	for	vectors,	as	vectors	can	breed	in	small	water	pools,	such	as	
water	 retained	 in	 tree	 stumps	 and	bromeliads.	Nevertheless,	 this	
index	 still	 provides	 an	 indication	of	water	 availability	 in	 the	 area.	
Furthermore,	 we	 collected	 metadata	 related	 to	 human	 activities	
such	 as	 vegetation	 type	 (e.g.,	 farmlands,	 forests)	 and	Normalized	
Difference	Vegetation	 Index	 (NDVI:	a	proxy	for	 forest	greenness)	
(Grace	&	Gates,	1982),	and	distance	to	the	closest	roads	for	every	
locality.	Raster	 layers	 for	each	variable	were	gathered	from	Diva-	
GIS	 v7.5	 (https://www.diva-	gis.org/Data),	 FreeMapTools	 (https://

www.freem	aptoo	ls.com/),	 Humanitarian	 Data	 Exchange	 v1.52.9	
(https://data.humda	ta.org/),	GeoNetwork	–		FAO	(http://www.fao.
org/geone	twork/),	 Copernicus	 Global	 Land	 Service	 (https://land.
coper	nicus.eu/globa	l/produ	cts/ndvi)	and	CHELSA	databases	(Beck	
et	al.,	2020;	Karger	et	al.,	2017,	2020;	https://chels	a-	clima	te.org/).	
Raster	layers	and	shapefiles	were	uploaded	to	QGIS	v3.14.0	(QGIS	
Geographic	 Information	 System.	 QGIS	 Association,	 2016)	 and	 to	
extract	values	for	each	locality,	one	vector	file	with	the	coordinates	
for	 each	 locality	 was	 created	 (Figures	 S2	 and	 S3).	 Raster	 layers	
for	abiotic	variables	were	combined	with	the	Merge	tool	from	the	
GDAL	package	(Qin	&	Zhu,	2020),	and	mean	values	of	every	local-
ity	from	all	the	layers	were	extracted	with	the	Point	Sampling	Tool	
Plugin	v0.5.3	(Jurgiel,	2020).

We	used	NDVI	to	estimate	forest	greenness	as	a	proxy	for	for-
est	 structure.	NDVI	 has	 been	 used	 extensively	 to	 evaluate	 forest	
structure	(Grace	&	Gates,	1982),	yet	we	acknowledge	the	inherent	
limitations	(e.g.,	not	capturing	the	changes	in	forest	interior)	of	this	
measure.	Nonetheless,	NDVI	 provides	 a	 normalized	 value	 for	 for-
est	 greenness	 that	 is	 comparable	 across	 study	 sites	 and	 even	 be-
tween	 studies.	NDVI	was	 calculated	 using	 the	 following	 equation	
NDVI	=	 (NIR	−	RED)/(NIR	+	RED),	where	NIR	 is	 the	near-	infrared	
and	RED	the	visible	band	(Myneni	et	al.,	1995).	It	measures	the	de-
gree	of	absorption	by	chlorophyll	in	red	wavelengths	(Myneni	et	al.,	
1995),	the	index	values	fall	between	−1	and	1,	with	values	around	−1	
representing	clouds	and	water,	 values	around	0	 representing	bare	
soil,	and	values	close	to	1	representing	forested	areas	with	maximum	
greenness	(i.e.,	forest	cover)	(Atoyan	et	al.,	2018).	For	environmental	
variables	that	had	a	low	resolution	for	the	exact	GPS	coordinate,	we	
used	the	value	of	the	adjacent	pixel	(<800	m	from	the	original	point)	
to	that	locality.	We	used	the	NNJoin	Plugin	v3.1.3	(Tveite,	2019),	to	
calculate	nearest	neighbor	relationships	(Eppstein	et	al.,	1997)	from	
each	locality	to	rivers,	roads,	and	the	sea	(Tables	S1	and	S4;	Figures	
S2	and	S3).

2.5  |  Statistical analyses

Statistical	 analyses	were	 conducted	 using	R	 v3.6.3	 (R	Core	 Team,	
2020).	 Haemosporidian	 parasites	 genera	 (Haemoproteus spp. and 
Plasmodium	 spp.)	 were	 analyzed	 separately,	 using	 binomial	 (pres-
ence/absence	 of	 parasites)	 generalized	 linear	 models	 (GLMs),	 and	
phylogenetic	 generalized	 linear	 mixed	 models	 (PGLMMs).	 Due	 to	
very	 low	prevalence	 (<5%)	of	Plasmodium,	only	Haemoproteus	was	
included	 in	 the	 analyses	 in	 the	 2015	 dataset	 (Table	 1;	 Table	 S1).	
Furthermore,	because	M. nigra and P. kirhocephalus had high parasite 
prevalence	 in	 all	 localities,	with	 little	 to	 no	 variation	 (99%–	100%),	
they	were	excluded	from	the	linear	models	(Table	1).

First,	 we	 examined	 the	 collinearity	 of	 abiotic	 variables	 using	
Pearson's	correlation	tests	with	the	function	ggpairs	from	the	R	pack-
age GGally	 v2.0.0	 (Schloerke	et	al.,	2019),	 and	 found	 that	multiple	
variables	that	were	significantly	correlated	with	each	other	(Figure	
S4).	 Thus,	 for	 the	 final	 analyses,	 we	 only	 included	 variables	 that	
were	not	collinear	(NDVI,	Minimum	temperature,	Distance	to	roads).	

https://www.diva-gis.org/Data
https://www.freemaptools.com/
https://www.freemaptools.com/
https://data.humdata.org/
http://www.fao.org/geonetwork/
http://www.fao.org/geonetwork/
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://chels-climate.org/
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Although,	NDVI	was	positively,	yet	nonsignificantly,	correlated	with	
the	vegetation	type	(Pearson	correlation:	r =	.6270,	p =	.1001),	we	
chose	 to	 include	 NDVI	 rather	 than	 vegetation	 type	 due	 to	 NDVI	
being	more	accurate.	We	further	checked	spatial	autocorrelation	of	
environmental	 variables	 considering	 latitude	 and	 longitude	 of	 the	
sampling	localities	using	Monte	Carlo	tests	with	the	function	man-
tel.rtest	 from	the	R	package	ade4	v1.7–	18	(Thioulouse	et	al.,	2018)	
and	found	no	autocorrelations	(NDVI:	p =	.5138,	Mantel	r =	−.0527;	
Minimum	temperature:	p =	 .6706,	Mantel	 r =	−.0943;	Distance	to	
roads: p =	.0622,	Mantel	r =	.2916;	based	on	9999	replicates).

We	performed	both	community-	level	and	species-	level	models	
to	investigate	the	effect	of	the	abiotic	variables	on	Haemoproteus in-
fections	(as	the	dependent	variable)	in	2015.	In	the	community	level,	
we	 conducted	 PGLMM	 using	 the	 pglmm	 function	 in	 phyr v1.1.0. 
package	 to	 account	 for	 host	 phylogenetic	 relationship	 (Li	 et	 al.,	
2020).	Here	we	 included	host	species,	site,	sex,	NDVI,	distance	to	
the	roads,	and	minimum	temperature	as	the	independent	variables	
and	the	distance	to	sea	as	a	random	effect	to	control	for	the	spatial	
arrangement	 of	 the	 sampling	 sites	 (our	 sampling	 sites	 are	 located	
in	an	east–	west	spatial	scale	from	the	sea:	Figure	1).	Following	the	
guidelines	in	Crawley	(2013),	we	did	model	selection	procedures	for	
the	 PGLMMs,	 and	 variables	 that	 were	 not	 significant	 were	 elimi-
nated	from	the	model,	 resulting	 in	a	 final	model	which	considered	
species	and	NDVI	as	variables	with	significant	 influence.	We	used	
type-	II	analysis	of	variance	(ANOVAs)	from	the	car	package	v3.0.9	
(Fox	&	Weisberg,	2019)	to	obtain	the	p-	values	for	the	variables.	The	
species-	level	 models	 (separate	 GLM	 per	 species)	 were	 conducted	
similarly	 to	 the	 community-	level	 analyses,	 without	 host	 species.	
To	investigate	the	effect	of	vertical	stratification	(data	gathered	in	
2013),	we	used	separate	models	for	Haemoproteus and Plasmodium 
infections	with	the	stratum	(understory	or	canopy),	sex,	and	family	
as	independent	variables.

3  |  RESULTS

3.1  |  Haemosporidian prevalence and lineage 
diversity

Overall,	185	of	the	276	bird	individuals	(67.0%)	were	infected	with	
haemosporidian	 parasites	 in	 2015	 (61.2%	with	Haemoproteus and 
4.7%	with	Plasmodium)	across	the	9	sampling	sites,	while	101	of	the	
135	tested	individuals	were	infected	in	2013	at	the	WCA_Swire	lo-
cality	(67.9%	Haemoproteus	and	7.5%	Plasmodium).	Haemosporidian	
sequences	 (at	 least	479	bp)	acquired	 in	2015	belonged	to	41	 line-
ages,	 while	 35	 belonging	 to	 Haemoproteus and 6 to Plasmodium. 
From	 WCA_Swire	 (2013),	 we	 acquired	 37	 unique	 lineages	 (24	
Haemoproteus and 13 Plasmodium).	All	the	parasite	lineages	match	to	
known	lineages	in	MalAvi	database.

Due	to	the	 low	prevalence	of	Plasmodium	 in	 the	2015	dataset,	
we	 were	 unable	 to	 investigate	 the	 influence	 of	 abiotic	 variables	
on Plasmodium	 infections,	 so	 the	 subsequent	 analyses	 were	 only	
conducted on Haemoproteus. Haemoproteus	 prevalence	 differed	

significantly	 between	 host	 species	 (binomial	 GLM:	 LR χ2 =	 65.18,	
df	=	8,	p <	 .0001;	Figure	S5)	and	not	between	 locations	 (binomial	
GLM:	LR χ2 =	12.18,	df	=	8,	p =	 .1431;	Figure	S6)	suggesting	that	
some	bird	 species	 are	more	 susceptible	 to	 infections	 than	others.	
However,	 prevalence	 did	 not	 differ	 between	 the	 sexes	 (binomial	
GLM:	LR χ2 =	2.032,	df	=	3,	p =	.5658).	The	strong	host	species	ef-
fect	further	supported	conducting	statistical	analyses	on	both	host	
community	and	species	levels.

3.2  |  More specialized host– parasite networks in 
localities within continuous forest

Host–	parasite	 network	 structure	 was	 more	 specialized	 than	
expected	 by	 chance	 throughout	 continuous	 forest	 localities	
(H2′	=	 0.7645,	 null	mean1,000	 random	 iterations:	 0.6063,	p < .0001; 
Figure	 2a),	 while	 network	 structure	 of	 fragmented	 for-
ests	 displayed	 more	 random	 associations	 (H2′	 =	 0.6246,	 null	
mean1,000	random	iterations:	0.5706,	p =	 .1796;	Figure	2b).	This	was	
consistent	across	individual	localities,	except	for	two	within	the	
continuous	forest	(Figures	S7	and	S8).	This	indicates	that	avian-	
haemosporidian	 networks	 within	 the	 undisturbed	 forests	 are	
more	specialized	than	those	of	fragmented	forests.	Host	speci-
ficity	 of	 lineages	 that	 infected	more	 than	 two	 individual	 hosts	
was	significantly	positively	associated	with	lineage	abundance	in	
fragmented	forests	(lm:	F =	13.58,	R2 =	.6113,	p =	.0078),	but	not	
in	the	continuous	forest	(lm:	F =	0.0233,	R2 =	.1217,	p =	.8824)	
(Figure	2C).

3.3  |  Species- specific effects of abiotic factors on 
Haemoproteus prevalence between localities

Despite	the	significant	effect	of	 locality	on	Haemoproteus preva-
lence,	 there	 was	 no	 significant	 difference	 between	 continuous	
and	 fragmented	 forests	 (binomial	GLM:	 LR χ2 =	 0.0646,	 df	=	 1,	
p =	 .7993;	Figure	S9).	We	found	27	unique	haemosporidian	hap-
lotypes	 in	 the	 forest	 fragments	 and	26	 in	 the	 continuous	 forest	
(Figure	S10).	At	the	bird	community	level,	NDVI	was	the	only	sig-
nificant	 predictor	 of	Haemoproteus	 prevalence,	which	 decreased	
with	 increasing	 NDVI	 (binomial	 PGLMM:	 Std.error =	 3.381,	
Zscore	=	−2.480,	p =	 .0131,	Figure	S11).	However,	 species-	level	
analyses	(Table	1)	revealed	significant	effects	of	several	predictors	
on Haemoproteus	prevalence,	and	these	effects	were	host	species	
specific	(Table	1,	Figure	3).	Increased	NDVI	affected	Haemoproteus 
prevalence	negatively	for	all	species	except	in	R. leucothorax;	yet,	
the	association	was	only	significant	for	T. galatea and M. analoga 
(Table	1,	Figure	3).	On	the	other	hand,	C. solitarius,	R. leucothorax,	
and M. analoga	 bore	 higher	Haemoproteus prevalence the closer 
they	were	to	roads	(Table	1,	Figure	3).	Minimum	temperature	neg-
atively	 affected	 parasite	 prevalence	 for	 all	 host	 species,	 except	
C. megarhyncha;	however,	this	was	only	significant	for	A. insularis 
(Table	1,	Figure	3).
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3.4  |  Prevalence levels of haemosporidian genera 
differed by forest strata

We	 found	 significant	 differences	 in	 the	 overall	 prevalence	 of	 two	
haemosporidian	 genera	 between	 canopy	 (88.6%)	 and	 understory	
(71.1%)	hosts	 (Figure	4a)	 in	the	2013	dataset.	Haemoproteus	 infec-
tions	 were	 significantly	 greater	 in	 the	 canopy	 (80.0%)	 compared	
to	 the	 understory	 (49.5%)	 (binomial	 GLM:	 LR χ2 =	 12.12,	 df	=	 1,	
p =	.0005,	Figure	4a),	while	Plasmodium	prevalence,	although	over-
all	 low,	was	significantly	higher	in	the	understory	(22.2%)	than	the	
canopy	 (8.5%)	 (binomial	 GLM:	 LR χ2 =	 9.340,	 df	=	 1,	 p =	 .0022,	
Figure	4a).	Bird	families	were	similarly	infected	between	strata	(bi-
nomial	GLM:	LR χ2 =	3.568,	df	=	1,	p =	.3198)	and	so	were	different	
sexes	(binomial	GLM:	LR χ2 =	1.1407,	df	=	1,	p =	.5653).	There	were	
23	unique	haemosporidian	haplotypes	in	the	understory	and	14	in	
the	canopy,	of	which	17	and	12,	 respectively,	were	Haemoproteus. 
Of	these	lineages,	only	seven	were	shared	between	strata,	indicat-
ing	 strata-	specific	 distribution	 of	 haemosporidian	 lineages	 (Figure	
S12).	 Host–	parasite	 network	 structures	 of	 understory	 species	

(H2′	=	0.8364,	null	mean1,000	random	iterations:	0.7447,	p =	 .1291)	and	
canopy	(H2′	=	0.9067,	null	mean1,000	random	iterations:	0.8424,	p =	.2757)	
revealed	high	network-	level	specialization	(H2′)	however,	these	did	
not	differ	significantly	from	random	expectations	(Figures	S13A,B).	
Interestingly,	 there	were	more	 specialist	 lineages	 (when	 consider-
ing lineages in >two	individuals)	in	the	canopy	than	the	understory	
(Figure	S13C),	suggesting	that	the	high	prevalence	observed	in	the	
canopy	may	be	a	result	of	the	presence	of	more	specialized	lineages	
(Figure	4).

4  |  DISCUSSION

We	investigated	the	influence	of	environmental	and	anthropogenic	
factors	 on	 avian-	haemosporidian	 (Haemoproteus and Plasmodium)	
parasite	prevalence,	distribution,	specificity,	and	host–	parasite	net-
work	structures	 in	tropical	 lowland	birds	at	horizontal	and	vertical	
spatial scales. Haemoproteus	was	the	most	common	parasite	genus,	
aligning	with	previous	work	in	Papua	New	Guinea	(Bodawatta	et	al.,	

F I G U R E  2 Bird–	haemosporidian	
networks	and	host	specificity	in	different	
forest	categories	(continuous	vs.	
fragmented).	Networks	indicate	combined	
host–	parasite	communities	of	the	five	
localities	within	Wanang	Conservation	
Area	(a)	and	four	fragmented	forest	
patches	(b).	An	H2′	index	closer	to	1	
indicates	that	host–	parasite	communities	
are	more	specialized	(many	one-	to-	one	
associations),	while	highly	generalized	
networks	have	H2′	indices	closer	to	
0.	Observed	H2′	and	the	average	H2′	
acquired	from	1,000	null	models	are	given	
within	parentheses.	Asterisks	indicate	
significantly	different	observed	H2′	
values	compared	to	the	null	expectation.	
Haemoproteus	lineage	names	are	given	
in	gray	and	Plasmodium	lineage	names	
are	in	black.	c.	Association	between	
host	specificity	of	the	most	abundant	
haemosporidian	lineages	(Rao's	quadratic	
entropy)	and	the	lineage	abundance	in	the	
continuous	forest	and	fragmented	forests.	
Parasite	lineages	found	in	both	forest	
categories	are	given	in	gray.	Large	Rao	
values	indicate	generalist	lineages	while	
small	values	indicate	specialist	lineages.	
Host	specificity	was	only	calculated	for	
parasite	lineages	that	infected	more	than	
two	bird	individuals
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2020),	who	sampled	at	a	site	less	than	25	km	from	our	study	sites.	
However,	 Haemoproteus	 prevalence	 was	 overall	 markedly	 lower	
in	 the	 previous	 study	 (~15%).	 The	 lowland	 study	 site	 sampled	 by	
Bodawatta	 et	 al.	 (2020)	 represents	 the	 lowest	 part	 of	 the	Mount	
Wilhelm	elevational	gradient	and	includes	the	total	bird	community,	
while	our	 localities	are	part	of	an	extensive	 lowland	area	and	only	
include	 10	 abundant	 bird	 species.	 Topographical	 differences	 and	
sampled	avian	communities	of	the	two	localities	may	thus	at	least	in	
part	explain	the	observed	prevalence-	level	differences.	Plasmodium 
prevalences	were	low	(5%)	in	the	longitudinal	study,	consistent	with	
findings	by	Bodawatta	et	al.	(2020).	This	could	be	explained	by	hosts	
being	less	susceptible	to	this	genus	(Lima	&	Pérez-	Tris,	2020)	or	geo-
graphic	variation	in	the	distribution	and	density	of	Plasmodium vec-
tors	(Ferreira	et	al.,	2020).

At	 the	bird	 community	 level,	NDVI	 (greenness)	was	 the	only	
variable	 that	 significantly	 influenced	 Haemoproteus prevalence. 
However,	at	 the	bird	species	 level,	 the	picture	 is	 less	clear,	with	
species-	specific	 effects	 of	 minimum	 temperature,	 distance	 to	
roads,	and	NDVI.	Furthermore,	we	found	vertical	segregation	 in	
host–	parasite	 interactions	with	higher	prevalence	 in	 the	 canopy	
than	 the	 understory.	 Haemoproteus	 accounted	 for	 the	 majority	
of	infections	in	both	strata,	but	with	a	higher	relative	proportion	

in	 the	 canopy.	 Collectively,	 this	 not	 only	 suggests	 that	 specific	
vector	communities	may	influence	the	transmission	of	particular	
malarial	lineages	but	also	that	adaptation	to	particular	ecological	
niches	of	a	host	species	makes	them	differentially	susceptible	to	
pathogens.

4.1  |  More specialized host– parasite networks in 
undisturbed forests

We	 did	 not	 find	 significant	 differences	 in	Haemoproteus preva-
lence	between	the	localities	within	the	continuous	forest	and	the	
fragmented	forests,	which	aligns	with	results	from	regional	spatial	
scale	 studies	 in	 the	Neotropics	 and	 the	Afrotropics	 (Belo	 et	 al.,	
2011;	Chasar	et	al.,	2009;	Loiseau	et	al.,	2010;	Rivero	de	Aguilar	
et	al.,	2018;	Sebaio	et	al.,	2012).	However,	our	 findings	contrast	
a	study	from	tropical	Australia	which	found	higher	Haemoproteus 
prevalence	in	continuous	than	fragmented	forest	(Laurance	et	al.,	
2013).	 Higher	 prevalence	 levels	 in	 continuous	 forest	 have	 been	
speculated	to	be	a	result	of	higher	vector	abundances	(Mangudo	
et	al.,	2017;	Zhou	et	al.,	2007).	Thus,	forest	structure	could	indi-
rectly	affect	parasite	infection	risk	through	influencing	the	vector	

Species
Dependent 
variable Independent variable LR χ2 df Pr (>χ2)

Arses insularis Haemoproteus NDVI 1 1 1

Minimum	temperature 6.279 1 0.0122*

Distance	to	roads −0 1 1

Ceyx solitarius Haemoproteus NDVI 3.587 1 0.0582

Minimum	temperature 1.694 1 0.1930

Distance	to	roads 3.984 1 0.0459*

Tanysiptera 
galatea

Haemoproteus NDVI 3.995 1 0.0456*

Minimum	temperature 0.8908 1 0.3453

Distance	to	roads 1.563 1 0.2112

Toxoramphus 
novaeguineae

Haemoproteus NDVI 0.2827 1 0.5950

Minimum	temperature 2.291 1 0.1302

Distance	to	roads 0.3801 1 0.5376

Rhipidura 
leucothorax

Haemoproteus NDVI 1.562 1 0.2113

Minimum	temperature 1.548 1 0.2135

Distance	to	roads 6.2813 1 0.0122*

Symposiachrus 
guttula

Haemoproteus NDVI 0.1047 1 0.7462

Minimum	temperature 0.1353 1 0.7130

Distance	to	roads 3.265 1 0.0708

Colluricincla 
megarhyncha

Haemoproteus NDVI 0.4502 1 0.5022

Minimum	temperature 0.0978 1 0.7545

Distance	to	roads 0.1434 1 0.7050

Meliphaga 
analoga

Haemoproteus NDVI 6.432 1 0.0112*

Minimum	temperature 1.802 1 0.1794

Distance	to	roads 4.949 1 0.0261*

Note: Significant	effects	are	marked	with	an	asterisk	(*).

TA B L E  1 Species-	level	effects	
based	on	binomial	GLM	analyses	of	
abiotic	variables	(NDVI	and	minimum	
temperature)	and	distance	to	roads	
(proxy	for	anthropogenic	disturbance)	on	
Haemoproteus prevalence in 2015
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abundances	 (Mangudo	 et	 al.,	 2017;	 Zhou	 et	 al.,	 2007),	 implying	
that	 vector	 sampling	 across	 forest	 types	 is	 needed	 to	 decipher	
their	 potential	 effects	on	prevalence	 levels	 between	 continuous	
and	fragmented	forests.

While	prevalences	did	not	differ	between	 the	continuous	and	
fragmented	 forests,	 host–	parasite	 network	 structures	 were	 no-
tably	 different,	 where	 continuous	 forests	 harbored	 significantly	
more	 specialized	 networks	 than	 fragmented	 forests.	 The	 greater	
specialization	 in	 continuous	 forests	 could	 imply	 that	 undisturbed	
forests	 may	 provide	 more	 stable	 environments	 with	 higher	 host	
species	richness	(Bregman	et	al.,	2014;	Sam	et	al.,	2014;	Van	Hoesel	
et	al.,	2020)	that	could	lead	to	more	specialized	associations.	Highly	
specialized	avian-	haemosporidian	networks	has	been	observed	be-
fore	in	an	undisturbed	tropical	lowland	bird	community	in	Ecuador	
(Svensson-	Coelho	 et	 al.,	 2014).	 Fragmented	 forests,	 on	 the	other	
hand,	 tend	 to	 favor	 generalist	 parasite	 lineages	 (driving	observed	
random	host–	parasite	network	structures),	which	is	evident	by	the	
observed	association	between	host	specificity	of	lineages	and	their	
abundances	 in	 the	 fragmented	 but	 not	 in	 the	 continuous	 forest.	
This	 aligns	 with	 the	 niche-	breadth	 hypothesis	 (Ellis	 et	 al.,	 2020;	
Pinheiro	 et	 al.,	 2016),	 predicting	 that	 generalist	 parasite	 lineages	
with	 broader	 host	 niches	 perform	 better	 in	 small	 forest	 patches	
than	specialist	 lineages.	The	differences	 in	 lineage	specificity	and	
abundances	in	fragmented	versus	continuous	forests	may	thus	re-
sult	 from	 (i)	 changes	 in	bird	 communities	 (abundances	 and	densi-
ties)	 (Bodawatta	 et	 al.,	 2020;	 Fecchio,	 Bell,	 et	 al.,	 2019;	 Fecchio,	
Wells,	et	al.,	2019),	(ii)	changes	in	the	potential	for	competition	be-
tween	haemosporidian	lineages	(Bodawatta	et	al.,	2020),	and/or	(iii)	
changes	in	environmental	variables	associated	with	forest	fragmen-
tation	(Afrane	et	al.,	2006).

4.2  |  Haemosporidian prevalence levels depict 
species- specific responses to environmental and 
anthropogenic factors

Of	the	environmental	variables,	only	increased	NDVI	(greenness)	led	
to	 significantly	 reduced	Haemoproteus	 prevalence,	 suggesting	 that	
minimum	 temperature	 and	 distance	 to	 roads	 do	 not	 significantly	
affect	community-	level	haemosporidian	prevalence	at	 local	 spatial	
scales.	NDVI	appears	to	be	a	good	predictor	for	vector	abundance	
and	distribution	(Roiz	et	al.,	2015)	and	has	been	shown	to	be—	in	con-
trast	to	our	findings—	positively	associated	with	Haemoproteus prev-
alence	in	seasonal	temperate	regions	(Clark	et	al.,	2020).	However,	
our	tropical	 localities	had	very	high	(0.8–	1.0)	NDVI	with	minor	dif-
ferences	between	sites,	compared	to	studies	 in	 temperate	regions	
(Fecchio	et	al.,	2020;	Ferraguti	et	al.,	2018;	Roiz	et	al.,	2015).	Thus,	
our	 results	 are	not	directly	 comparable	with	 studies	 conducted	 in	
temperate	regions	but	open	the	possibility	of	a	nonlinear	relation-
ship	between	NDVI	and	parasite	prevalence.	These	findings	support	
the	need	for	research	on	the	effect	of	NDVI	on	Haemoproteus vector 
communities	(i.e.,	biting	midges)	in	tropical	 lowlands.	We	note	that	
NDVI	is	significantly	correlated	with	elevation	above	sea-	level	and	
vegetation	type,	suggesting	that	the	observed	results	could	also	be	
due	to	other	factors	that	correlate	with	NDVI.

The	species-	specific	effect	of	different	environmental	variables	
on Haemoproteus	prevalence	(Figure	2)	aligns	with	results	from	other	
studies	 on	 bird	 species	 from	 both	 temperate	 and	 tropical	 regions	
(Isaksson	et	al.,	2013;	Samuel	et	al.,	2015;	Santiago-	Alarcon	et	al.,	
2019;	Van	Hoesel	 et	 al.,	 2020).	Despite	 the	 overall	 nonsignificant	
effect	of	distance	to	roads	(a	proxy	for	anthropogenic	influence),	it	
did	significantly	affect	prevalence	in	three	bird	species,	suggesting	

F I G U R E  3 Associations	of	Haemoproteus	prevalence	with	minimum	temperature	(°C),	distance	to	roads	(m)	and	NDVI	across	all	sampling	
sites	for	all	species	sampled	in	2015.	Pitohui kirhocephalus and Melanocharis nigra	were	not	included	in	these	analyses	as	all	individuals	were	
infected.	Dots	represent	infected	(100%)	or	noninfected	(0%)	individuals	and	lines	(linear	model	estimates)	show	the	prevalence	changes	
associated	with	each	variable.	Significant	effects	from	the	GLMs	are	indicated	with	asterisks.	Bird	illustrations	were	acquired	from	Lynx	
Edicions©

F I G U R E  4 Haemosporidian	prevalence	
of	canopy	and	understory	species.	Bar	
graphs	depict	mean	overall	prevalence	
of	(a)	Haemoproteus	and	(b)	Plasmodium 
across	the	species	sampled	in	the	
canopy	and	in	the	understory	at	the	
WCA_Swire	site	in	2013.	The	number	
of	samples	is	indicated	at	the	top	of	the	
bars.	Confamilial	pairs	are	indicated	with	
identical colors and silhouettes
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the	potential	for	elevated	infection	levels	with	increased	anthropo-
genic	 activity.	 The	 influence	 of	 anthropogenic	 activity	 on	 haemo-
sporidian	 prevalence	 and	 their	 vectors	 has	 been	 documented	 for	
multiple	bird	species	across	geographical	 localities,	showing	either	
positive	(Abella-	Medrano	et	al.,	2015),	negative	(Chasar	et	al.,	2009;	
Gonzalez-	Quevedo	et	al.,	2014),	or	no	 (Sehgal,	2015)	effects.	This	
is	consistent	with	our	findings,	as	the	magnitude	of	anthropogenic	
activity	effects	on	prevalence	differs	from	bird	species	to	species.

Temperature	 tends	 to	 positively	 impact	 haemosporidian	 preva-
lence	at	a	regional	scale	in	both	tropical	and	temperate	regions	(Chapa-	
Vargas	et	al.,	2020;	Padilla	et	al.,	2017;	Sehgal,	2015;	Zamora-	Vilchis	
et	al.,	2012).	However,	we	found	that	increased	minimum	temperature	
(even	minor	differences,	~1.5°C)	had	a	negative	effect	on	Haemoproteus 
prevalence	across	multiple	species	(albeit	only	significantly	for	A. insu-
laris)	 (Figure	2).	Consensus	on	the	effect	of	 temperature	on	parasite	
prevalence	in	birds	in	the	Australo-	Papuan	region	is	lacking,	as	studies	
have	 shown	positive	 (Zamora-	Vilchis	 et	 al.,	 2012)	 or	 no	 (Bodawatta	
et	al.,	2020)	effects.	Areas	with	lower	temperatures	experience	more	
rainfall	in	our	study	region,	indicating	potentially	more	vector	breeding	
habitats	(Lapointe	et	al.,	2012;	Sehgal,	2015)	that	could	lead	to	higher	
vector	abundances	and	increased	prevalence.	In	summary,	our	findings	
imply	that	the	sum	of	species-	specific	responses	to	different	environ-
mental	variables	dictate	community-	level	effects	of	abiotic	factors	in	
tropical	bird	communities.

4.3  |  Higher prevalence and reduced diversity of 
haemosporidians in the canopy

Higher	Haemoproteus	prevalence	in	the	canopy	than	the	understory	
aligns	with	previous	findings	from	the	Afrotropics	(Lutz	et	al.,	2015).	
However,	Plasmodium	prevalence	was	higher	in	the	understory	than	
canopy,	which	may	reflect	higher	mosquito	abundances	(Plasmodium 
vectors)	 at	 the	 forest	 floor.	 Our	 finding	 suggests	 that	 the	 pattern	
might	be	opposite	for	biting	midge	vectors	of	Haemoproteus that are 
conceivably	higher	in	the	canopy	as	they	tend	to	prefer	these	sites	to	
ground	strata	(Černý	et	al.,	2011;	Garvin	&	Greiner,	2003;	Swanson	
&	Adler,	2010;	Swanson	et	al.,	2012).	Only	5	of	the	32	haemosporid-
ian	 lineages	were	 shared	 between	 the	 strata,	 likely	 due	 to	 vertical	
segregation	of	vector	species	(Henry	&	Adkins,	1975),	 implying	that	
investigations	 of	 canopy	 and	 understory	 bird	 communities	 in	 a	 lo-
cality	 is	 needed	 to	 fully	 capture	host–	vector–	parasite	 diversity	 and	
associations.

5  |  CONCLUSIONS

Our	results	demonstrate	that	interactions	between	haemosporid-
ian	 parasites	 and	 tropical	 avian	 hosts	 are	 influenced	 by	 a	multi-
tude	 of	 factors	 at	 different	 taxonomic	 levels	 and	 spatial	 scales.	
Forest	 structure	 influences	 associations	 between	particular	 host	
species	 and	 parasite	 lineages,	while	 parasite	 prevalence	 of	 a	 set	
of	 host	 species	 (the	 community)	 is	 driven	 by	 a	 combination	 of	

species-	specific	environmental	effects.	Vertical	separation	within	
a	single	locality	appears	to	expose	avian	hosts	to	markedly	differ-
ent	parasite	pressures,	which	 is	 likely	driven	by	vector	communi-
ties.	 Taken	 together,	 these	 results	 emphasize	 the	 importance	 of	
investigating	avian-	haemosporidian	associations	in	space,	for	both	
individual	 host	 species	 and	 at	 the	 host	 community	 level.	 Finally,	
the	species-	specific	effects	of	environmental	variables	and	verti-
cal	 stratification	on	parasite	prevalence	 accentuate	 that	 the	 fac-
tors	driving	these	interactions	can	differ	between	global,	regional,	
and local spatial scales.
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