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The rate of transcription elongation plays an important role in the timing of expression of full-length transcripts as well as
in the regulation of alternative splicing. In this study, we coupled Bru-seq technology with 5,6-dichlorobenzimidazole I-3-
D-ribofuranoside (DRB) to estimate the elongation rates of over 2000 individual genes in human cells. This technique,
BruDRB-seq, revealed gene-specific differences in elongation rates with a median rate of around 1.5 kb/ min. We found that
genes with rapid elongation rates showed higher densities of H3K79me2 and H4K20mel histone marks compared to
slower elongating genes. Furthermore, high elongation rates had a positive correlation with gene length, low complexity
DNA sequence, and distance from the nearest active transcription unit. Features that negatively correlated with elon-
gation rate included the density of exons, long terminal repeats, GC content of the gene, and DNA methylation density in
the bodies of genes. Our results suggest that some static gene features influence transcription elongation rates and that
cells may alter elongation rates by epigenetic regulation. The BruDRB-seq technique offers new opportunities to in-
terrogate mechanisms of regulation of transcription elongation.

[Supplemental material is available for this article.]

Gene transcription in eukaryotes is the highly regulated process by
which RNA polymerase II (RNAPII) uses DNA as a template to
produce RNA. The stages of transcription include initiation, elon-
gation, and termination, the control of which influences gene ex-
pression. Mechanisms of transcription initiation have been studied
in detail, and much is known about transcription factor activation
and binding, pre-initiation complex formation, and RNAPII re-
cruitment (Shandilya and Roberts 2012). Furthermore, the critical
roles of regulatory sequences such as enhancer elements for de-
velopmental and tissue-specific gene regulation (Spitz and Furlong
2012) and the three-dimensional organization of the transcription
machinery have been characterized to some level (Sutherland and
Bickmore 2009). However, the importance of regulation of the rate
of transcription elongation is poorly understood.

Activation of specific gene programs, such as those regulating
early organism development, is thought to depend on gene size to
accomplish a temporal expression pattern after simultaneous
transcriptional activation (Swinburne and Silver 2008). A proposed
mechanism to delay the generation of mature RNA is the inclusion
of introns of various sizes (Seoighe and Korir 2011; Takashima et al.
2011). To fine-tune this timing mechanism in gene expression,
cells may adjust the rates of transcription elongation, splicing,
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nuclear export, and ribosome access. The rate of transcriptional
elongation has also been tied to alternative splicing patterns,
where high transcription elongation rates favor exclusion of al-
ternative exons, while slow elongation rates correlate with their
inclusion (Close et al. 2012; Shukla and Oberdoerffer 2012).

Previous studies have measured in vivo RNAPII elongation
rates in mammals using a variety of techniques including RT-PCR
(Singh and Padgett 2009), tiling microarrays (Wada et al. 2009),
and fluorescent labeling (Darzacq et al. 2007). These studies have
been limited to a single or a small number of genes and have
reported a wide range of elongation rates. A recent study utilized
GRO-seq to assess elongation rates of a much larger set of genes
activated by estradiol or tumor necrosis factor (TNF) and demon-
strated a broad range of transcriptional elongation rates among the
set of activated genes, supporting the notion that elongation rates
may be regulated (Danko et al. 2013)

Here we utilize BruDRB-seq to assess transcription elonga-
tion rates genome-wide. This technique involves the transient
inhibition of initiated RNAPII prior to elongation using 5,6-
dichlorobenzimidazolel-3-D-ribofuranoside (DRB) (Singh and
Padgett 2009). Following drug removal, RNA polymerases enter
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the elongation phase in a synchronized manner, and nascent
RNA is labeled with bromouridine (Bru), isolated with anti-BrdU
antibodies, and subjected to deep sequencing. By measuring the
width of the transcription “wave” generated during the labeling
period, the transcription elongation rates of all expressed genes
longer than 40 kb were assessed. Our study provides the largest
data set so far reported of genome-wide elongation rates in mul-
tiple cell lines. We found that high transcription elongation rates
correlated with specific gene features as well as with histone
modifications such as dimethylation of lysine 79 of histone H3
(H3K79me2) and monomethylation of lysine 20 of histone H4
(H4K20me1). These results indicate that cells may be able to fine-
tune transcription elongation rates by epigenetic regulation.

Results

Measuring elongation rates globally reveals variation among
genes

To study the elongation rates of RNAPII genome-wide, we de-
veloped BruDRB-seq, a technique based on nascent RNA labeling

with Bru and assaying by deep sequencing (Paulsen et al. 2013a,b).
Following a 60-min treatment of the cultured cells with DRB to
arrest RNAPII at promoter-proximal sites, the drug was washed out,
and the cells were incubated with Bru for 10 min either directly or
after a 10-min recovery period. Cells were lysed in TRIzol, and total
RNA was isolated followed by specific capturing of Bru-labeled RNA
using anti-BrdU antibodies conjugated to magnetic beads. The
captured Bru-labeled RNA was then reverse-transcribed, and the
resulting cDNA library was subjected to deep sequencing using
the Illumina HiSeq 2000 platform.

In Figure 1A (control), all expressed genes of at least 50 kb in
length in the diploid human fibroblast cell line HF1 are repre-
sented by median normalized expression (an aggregate view). As
expected for nascent RNA, the signal was fairly evenly distributed
throughout the first 50 kb of these genes. Following a 60-min DRB
treatment with Bru labeling during the last 10 min of treatment,
a substantially lower yield of reads was obtained, indicating that
transcription was severely reduced (Fig. 1A, O min). Following
drug removal, a synchronized wave of transcription was observed
moving out from the promoter (Fig. 1A, 10 min), and this wave
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Figure 1. Transcription elongation rates measured genome-wide using BruDRB-seq. (A) Aggregate view of nascent RNA reads through the first 50 kb of
large expressed genes in the human fibroblast cell line HF1. (Control) Bru labeling for 30 min. (0 min) Bru labeling during the last 10 min of a 60-min DRB
treatment. (10 min) Appearance of a nascent transcription wave at the 5’ end of genes during a 10-min recovery after DRB removal (10-min Bru labeling
during recovery period). (20 min) Advancing nascent transcription wave after a 20-min recovery time following DRB removal (Bru labeling during last
10 min of recovery). (B) Aggregate view of BruDRB-seq (10-min recovery) showing the upstream region of TSS having a low signal (A), advancing wave (B),
and region downstream from the advancing wave with low signal (C). (C) A hidden Markov model was developed to identify advancing waves and
measure their lengths, which are proportional to their elongation rates, having A, B, and C represent the three states of this model. Normalized signals of
genes in HF1 cells ordered by elongation rate for a 10-min recovery following DRB removal are shown. Examples of transcriptional recovery in individual
genes after 0-, 10-, and 20-min recovery after DRB removal in HF1 cells are shown in (D), (E), and (F).
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moved further during the next 10 min (Fig. 1A, 20 min). These
results demonstrate both the reversibility of DRB and synchro-
nicity of transcription recovery.

In order to measure elongation rates of individual genes in
a genome-wide fashion, we used an inference method based on
a three-state hidden Markov model (HMM) (Day et al. 2007; Danko
et al. 2013). The HMM was designed to identify three distinct re-
gions of each gene: (A) the region immediately upstream of the
transcription start site (TSS); (B) the advancing wave; and (C) the
region of low transcription downstream from the advancing
transcription wave (Fig. 1B). Quantile normalization was per-
formed on the BruDRB-seq trace prior to HMM analysis to elimi-
nate any effect of a gene’s expression level on the analysis (see
Methods). After applying the HMM analysis to the data from the
10-min wave in HF1 cells, we ordered the genes according to their
calculated elongation rates and found them to be quite variable
(Fig. 1C). Examples of transcription waves moving from the pro-
moters into the bodies of three individual genes following DRB
removal are shown in Figure 1, D-F.

DRB inhibits the transition of RNAPII from the initiation/
promoter paused stage into the elongation phase by blocking the
phosphorylation of the C-terminal domain (CTD) of RNAPII
(Dubois et al. 1994). However, DRB does not inhibit elongating
RNA polymerases, and thus, DRB treatment results in a time-
dependent clearing out of transcription from the promoter with

a receding wave of unaffected actively transcribing polymerases.
For transcribed genes longer than 200 kb in HF1 cells treated with
DRB for 60 min, the receding transcription wave can be clearly
observed (Fig. 24, yellow). The elongation patterns of two large
genes expressed in HF1 cells, MYO1B and TLE4, are shown in
Figure 2, B and C, respectively.

By incorporating a fourth state in the hidden Markov model
representing the receding wave of transcription, we were able to
analyze the correlation between the advancing and the receding
waves. A visual comparison between the states predicted by the
HMM (Fig. 2D) and the normalized signal observed in those genes
(Fig. 2F) indicates that predictions of the model were reasonably
accurate. We compared elongation rates calculated both via the
advancing (state “B”) and the receding (state “D”) wave and found
that they correlate, albeit with high variability (Fig. 2F). Because
the trailing edge of the receding wave is not as well defined as the
advancing wave and because we can include more genes by leaving
the receding wave out of the HMM, we decided to focus on the
advancing wave (three-state HMM predictions) as our metric for
elongation.

Elongation rates are similar in different cell lines

Transcription elongation rates have been explored in a limited
number of genes and only in a few cell lines (Ardehali et al. 2009;
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Figure 2. The relationship between advancing and receding transcription elongation waves. (A) Aggregate view of 189 genes longer than 200 kb in
HF1 cells during DRB treatment (yellow) or following a 10-min recovery period after DRB treatment (red). Advancing and receding transcription waves in
the large genes MYO1B (B) and TLE4 (C). (D) A four-state hidden Markov model was developed to take into account this receding wave in large genes.
Genes in HF1 cells were ordered by the length of the advancing wave (state B) and pseudocolored by state (green, A; yellow, B; orange, C; gray, D).
(E) Normalized signaling for genes ordered according to the length of state B. (F) The relationship between elongation rates calculated by the length of the
advancing wave (state B) and the distance of the trough between the end of the advancing wave and the beginning of the receding wave (state C). (PCC)

Pearson’s correlation coefficient.
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Singh and Padgett 2009; Danko et al. 2013). In this study, we used
five cell lines and BruDRB-seq to assess transcription elongation
rates genome-wide. Three of these cell lines are human fibroblasts,
and two cell lines, K562 and MCF-7, are cancer-derived. HF1 and
TM cells are normal human fibroblasts, while Cockayne syndrome
B cells (CS-B) have a genetic defect in the ERCC6 gene, which
encodes the CSB protein, resulting in a defect in transcription-
coupled DNA repair. It has been suggested that the CSB protein
associates with the elongation transcription complex, and in vitro
results suggest that CSB enhances the rate of RNAPII elongation
(Selby and Sancar 1997). The median elongation rate was found to
be similar across the five cell lines, with HF1, CS-B, and K562 being
nearly identical (~1.25 kb/min), and TM and MCF-7 rates slightly
higher than the other cell lines (~1.75 kb/min) (Fig. 3A). In addi-
tion, there was a positive correlation of elongation rates of in-
dividual genes between the cell lines when performing a pairwise
comparison (Fig. 3B). As examples, similar transcription elonga-
tion rates for the ACTN4 and PTEN genes across the five cell lines
are shown in Figure 3C. Elongation rates for the advancing tran-
scription waves of individual genes in the five cell lines are listed in
Supplemental Table 1.

A clustering method was used to identify similarities in the
observed elongation rates across the five cell lines. Quantile-nor-
malized elongation rates of ~800 genes expressed in all five cell
lines were put into a k-medoids algorithm to cluster these genes
into three groups based on similarities in elongation rates. The
gene groups selected by the algorithm were clearly distinguished
by their overall elongation rates, with a fast, slow, and variable
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intermediate group (Fig. 3D). These observations indicate that
elongation rates of individual genes are considerably conserved
among cell lines.

Gene set enrichment

To determine whether genes with similar functions or belonging to
a particular pathway have similar transcription elongation rates,
we assessed gene enrichment clustering among genes with similar
elongation rates. We centered the average elongation rate along its
own mean and provided these values and the gene symbols as
preranked lists to the Gene Set Enrichment Analysis (GSEA) tool
(Subramanian et al. 2005). We searched for enrichment in posi-
tional, curated (BioCarta and KEGG), gene ontology, and oncology
signature gene sets obtained from the Molecular Signatures Data-
base. We used the permissive false discovery rate (FDR) P-value
suggested by the authors of GSEA (P = 25%) (Subramanian et al.
20095) and focused on the gene sets that were enriched in at least
three of the cell lines (Supplemental Table 2). We found that genes
related to organic acid and carboxylic acid metabolism were
enriched among the genes with slow elongation rates. Further-
more, genes related to regulation of the actin cytoskeleton and to
leukocyte trans-endothelial migration were enriched among genes
with higher elongation rates.

Gene sequence features correlate with elongation rates

Since at least half of the genes used for the clustering analysis de-
scribed in Figure 3D grouped strongly by elongation rate in-
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Figure 3. Comparisons of transcription elongation rates among five cell lines. (A) Cells were treated with DRB for 60 min followed by drug reversal and
immediate incubation with 2 mM Bru for 10 min. BruDRB-seq was then performed and violin plots illustrating the distribution of elongation rates in the
indicated cell lines are shown (the interquartile ranges are represented by thick vertical bars and white dots indicate the median values). Sample sizes:
(HF1) 2702; (CS-B) 1932; (TM) 2469; (K562) 2270; (MCF-7) 2399. (B) Grid of pairwise comparisons of elongation rates between each of five cell lines.
Each individual comparison includes those genes with measurable elongation rates that are expressed in both cell lines. Frequencies and linear regression
models are plotted in the upper right panels and respective Pearson’s correlation coefficients in the lower left. (C) Examples of two individual genes showing
similar elongation rates in the five cell lines. (D) Genes expressed in all five cell lines (855 genes) were clustered by normalized elongation rate into three
groups using the k-medoids method. Genes in Group 1 tend to be faster-elongating in multiple cell lines, and genes in Group 3 tend to be slower in
multiple cells. Genes belonging to Group 2 (47% of total genes) consist of genes with intermediate or variable elongation rates across cell lines. Genes are
colored by percentile ranking within each cell line (100% is highest elongation rate [red]). (HF1) Human foreskin fibroblasts; (CS-B) Cockayne syndrome
fibroblasts B; (TM) human skin fibroblasts; (K562) myelogenous leukemia; (MCF-7) breast cancer.
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dependent of cell type, we reasoned that the rate of elongation for
some genes may be correlated with specific DNA sequence features
of the transcribed DNA. Certain features, such as splice site se-
quences and sequences with a propensity to form G-quadruplexes,
have been implicated to affect RNAPII elongation rates in vitro
(Belotserkovskii et al. 2013). We investigated the correlation be-
tween elongation rates and several sequence features, including
GC content, exon density, regions of repetitive DNA, and se-
quences computationally predicted to form non-B DNA structures.
For each gene, the density of each feature from the TSS to the end
of the advancing wave was calculated and compared to its elon-
gation rate (Supplemental Table 3). Because several of these fea-
tures were not randomly distributed throughout the first 40 kb of
the genes, a simple regression analysis was inadequate to establish
a correlation. To confirm that the correlations found with these
features were not solely due to the nonrandom distribution of the
feature, we conducted a permutation analysis using a FDR-cor-
rected P-value of 0.05 as the threshold for significance (Supple-
mental Table 4).

In all cell lines analyzed, exon density (and therefore splice
site density) was negatively correlated with elongation rate (Table
1). GC content and the density of long terminal repeat sequences
were also negatively correlated with elongation rates in at least
three cell lines. It is possible that a higher GC content reduces
elongating rates due to a higher energy requirement for breaking
three hydrogen bonds between G and C versus two for Aand T. The
only DNA sequence feature to positively correlate with elongation
rate was a high density of low complexity sequences (stretches of
mono- or di-nucleotide repeats).

Role of gene neighborhoods and genomic organization

Gene expression is often determined by whether the gene is lo-
cated in an open (euchromatic) or condensed (heterochromatic)
chromatin configuration. We asked whether transcription elon-
gation rates are influenced by proximity to nearby genes, chro-
mosomal regions, or three-dimensional organization, which we
collectively refer to as “gene neighborhoods.” To examine the ef-
fects of gene neighborhoods on elongation, we compared the
measured elongation rates of genes and their proximity to neigh-
boring genes on either strand both upstream of and downstream
from the gene (Table 1; Supplemental Table 5). We found a positive
correlation between elongation rate and the distance to other
genes. Thus, active transcription nearby has a negative impact on
elongation rate. Interestingly, we also found that gene length is
positively correlated with elongation rate, though it is unclear how
longer genes are identified or marked for faster transcription. Next,

Table 1. Correlations between DNA or genomic features and
transcription elongation rates

Feature HF1 TM CS-B K562 MCF7

Exon density - - - — —
GC content - NS - - —

Long terminal repeats - NS - — NS
CpG methylation NA NA NA - -
Low complexity sequences + + + + +
Gene length + 4+ + + +
Distance from nearby transcription unit  + + + + +

(+) Positive correlation, (—) negative correlation, (NS) not statistically
significant, (NA) not assessed.

we examined whether there was a correlation between the elon-
gation rates of neighboring genes and found no statistically sig-
nificant relationship between the elongation rates of neighboring
transcribed genes (Supplemental Fig. 1A). Furthermore, inspection
of the distribution of genes and their associated elongation rates
along the different chromosomes suggests that genes with high
or low transcription elongation rates were distributed randomly
throughout the genome (Supplemental Fig. 1B).

The above analyses addressed the influence of gene proximity
as defined by a linear chromosome but do not consider the three-
dimensional organization of genes within the nucleus. Genes that
are linearly distant, even on completely different chromosomes,
may interact due to long-distance DNA looping and may be tran-
scribed by the same transcription machinery (Dekker et al. 2013).
To assess whether genes associated with each other in the same
transcriptional “factory” have similar elongation rates, we used
publicly available data from chromatin interaction analysis by
pair-end tag sequencing (ChIA-PET) for K562 and MCF-7 cells (Li
etal. 2012). The elongation rates of genes that were shown by ChIA-
PET to colocalize to the same transcription machinery were plotted
against each other as gene 1 vs. gene 2 (Supplemental Fig. 1C). The
results show that there was no significant correlation between
elongation rate and chromatin interactions (Supplemental Table 6).

Elongation rates are related to specific epigenetic modifications

While we found that some DNA sequence features correlated with
elongation rate (Table 1), some genes showed varied elongation
rates across cells lines (Fig. 3D). Thus, the elongation rates of some
genes may be regulated in a cell type-specific way, and we hy-
pothesized that cells may regulate transcription elongation rates
by specific epigenetic modifications. We first explored whether the
level of DNA methylation in the body of genes correlated with
transcription elongation rates. While methylation of CpG islands
in promoter regions has been implicated in gene silencing, the
function of CpG methylation in the body of genes is poorly un-
derstood (Jones 2012). We compared elongation rates obtained
with BruDRB-seq to published genome-wide CpG methylation
patterns (bisulfite sequencing) data for K562 and MCEF-7 cells (The
ENCODE Project Consortium 2012) and found that genes with
high levels of DNA methylation tended to elongate at slower rates
(Supplemental Table 4). This effect, however, was only noticeable
when analyzing CpG sites with a high occurrence of methylation
(at least 90%), as the correlation was not significant when in-
cluding sites with a lower occurrence (e.g., at least 50% methyla-
tion) in the analysis.

To explore whether fast or slow transcription elongation rates
may associate with the presence of specific histone modifications,
we divided the genes into four quartiles according to elongation
rates and compared them with ChIP-seq data available through
ENCODE for different histone marks that have been implicated in
transcription regulation (Ernst et al. 2011; The ENCODE Project
Consortium 2012). Of the histone marks tested, only H3K79me2
and H4K20mel were found to show a significant positive corre-
lation with elongation rates (Fig. 4A,B; Supplemental Fig. 2). These
histone marks have been shown to be linked to active transcription
(Rao et al. 2005; Smolle and Workman 2013), but they have not
previously been shown to influence the rate of elongation. We did
not observe a significant correlation between transcription elon-
gation rates and the densities of trimethylation of lysine 36 of H3
(H3K36me3) (Fig. 4C) or RNAPII (Fig. 4D). Since H3K36me3 and
RNAPII densities are known to correlate with levels of gene ex-
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Figure 4. Elongation rates are associated with specific histone modifications. Genes expressed in K562 cells were ranked according to elongation rate
and placed into four equal-sized groups (from fastest to slowest: red, green, blue, black). ChIP-seq data for K562 cells were obtained from ENCODE, and
median binned values for each group were plotted as indicated for H3K79me2 (A), H4K20me1 (B), H3K36me3 (C), and RNA polymerase Il (D). In Aand B,
genes with faster elongation rates have a higher density of histone modification both near the transcription start site (TSS) and within the gene bodies.
In Cand D, neither histone modification nor RNA polymerase Il occupancy correlated to transcription elongating rates.

pression, our data suggest that high elongation rates are not merely
reflecting high expression levels, although a weak positive corre-
lation was observed between transcript output measured with
Bru-seq and transcript elongation rate (Kendall’s T = 0.23) (Sup-
plemental Fig. 3). We found no significant relationship between
the density of other common histone marks or transcription fac-
tors and the transcription elongation rate (Supplemental Fig. 2).

Discussion

Transcription elongation has recently drawn attention due to its
potential role in the timing of gene expression and the regulation
of alternative splicing (Mason and Struhl 2005; Darzacq et al. 2007;
Singh and Padgett 2009; Wada et al. 2009; Danko et al. 2013). Here
we describe a novel technique, BruDRB-seq, to measure RNAPII
elongation rates genome-wide. BruDRB-seq is based on DRB-in-
duced arrest of RNAPII at promoter sites (Singh and Padgett 2009),
followed by synchronized release after drug removal. In five differ-
ent human cell lines, median elongation rate estimations ranged

from 1.25 to 1.75 kb/min. These transcription elongation rates,
which were estimated from over 2000 genes in each cell line, are
somewhat lower than previously estimated in human cells (Singh
and Padgett 2009; Danko et al. 2013). It is possible that the genes
analyzed by Danko and coworkers, which had been induced by
estradiol or TNF, showed a higher elongation rate due to being in an
“induced state” where higher transcription and RNAPII densities
promoted enhanced elongation rates. Our results also differ from
a previously published study that implicated a role of the CSB pro-
tein in transcription elongation (Selby and Sancar 1997). In our
study, CS-B fibroblasts did not show a distinctly different elongation
rate than the other cell types, suggesting that the CSB protein is not
generally required for promoting rapid transcription elongation in
cells, though it may be an important regulator of elongation for
select genes.

Our BruDRB-seq data indicate that there is a broad range of
transcription elongation rates in different genes in human cells
(Fig. 3). However, the elongation rates for individual genes were
reasonably conserved across the different cell lines. We speculated
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that this conservation may be driven by specific physical features,
such as DNA sequence, gene length, or genomic position. Among
the genetic features linked to elongation rate was exon density,
which correlates with slow elongation. This supports the idea that
RNAPII slows down at splice site junctions, which would promote
exon definition and alternative splicing (Shukla and Oberdoerffer
2012). Although it has been shown that non-B DNA sequences can
have a negative impact on transcription in vitro (Belotserkovskii
et al. 2013), we did not find a correlation between elongation rate
and potential non-B DNA sequences, though some of these se-
quences may not exhibit non-B DNA conformations in vivo. Fur-
thermore, our results suggest that if a gene is located near another
transcribing gene, its transcription elongation rate is decreased. It
has been proposed that transcription of a downstream gene could
lead to unwinding of DNA through the induction of negative
supercoiling (Ljungman and Hanawalt 1992, 1995) which may
affect the elongation of a proximal gene. Conversely, if neighbor-
ing genes are simultaneously transcribed in a head-to-head fash-
ion, DNA topological barriers could emerge. Indeed, inhibition of
DNA topoisomerase I, which relaxes torsional tension induced
during the transcription process, has been shown to severely in-
hibit transcription elongation (Ljungman and Hanawalt 1996;
Veloso et al. 2013). Interestingly, suppression of the rate of elon-
gation by nearby transcription was independent of the orientation
of transcription. It is possible that the slower elongation rate in
gene neighborhoods is due to competition for limiting pools of
ribonucleotides rather than restraints caused by transcription-in-
duced DNA supercoiling.

Our findings that the rates of transcription elongation of
nearby genes or genes interacting via DNA looping did not cor-
relate with each other suggest that elongation rates are primarily
governed by gene-specific features and epigenetic modifications.
We found that H3K79me2 and H4K20mel were enriched in
genes with higher elongation rates (Fig. 4), while the density of
H3K36me3 marks, which have been implicated in transcription
elongation (Guenther et al. 2007), did not correlate with elon-
gation rate in our study. Furthermore, we did not observe a strong
association between high elongation rates and a high density of
RNAPII (Fig. 4) or high levels of transcription in those genes
(Supplemental Fig. 3). Thus, our data suggest that high elonga-
tion rates are not simply the result of high gene expression but
rather are governed by specific gene features and epigenetic
modifications.

The histone mark H3K79me?2 is regulated by the methylase
DOTIL (Min et al. 2003), an epigenetic regulator implicated in
somatic cell reprogramming (Onder et al. 2012). It was found that
key genes involved in the induction of a mesenchymal cell state
lost dimethylation of H3K79 without a change in their expression
levels during this transition. It is possible that reducing the density
of H3K79me?2 marks results in a reduced elongation rate of these
genes and that this is allowing these cells to transition into a new
cell state. DOT1L has also been found to be associated with mixed
lineage leukemia (MLL) fusion proteins, resulting in aberrant
methylation patterns of H3K79 and dysregulation of MLL targeted
genes (Okada et al. 2005). Clinical trials are currently underway
using DOT1L-targeting drugs in MLL (Anglin and Song 2013).
Methylation of H4K20 is regulated by the PR-SET7 methyltransfer-
ase in a cell cycle-dependent manner (Nishioka et al. 2002), and
these modifications have been shown to play a role in DNA damage
responses by attracting TP53BP1 (Beck et al. 2012). Interestingly,
both the H3K79me2 and H4K20me1 histone marks have been im-
plicated in the regulation of replication origin firing (Tardat et al.

2010; Fu et al. 2013). Perhaps by regulating transcription elongation
rates of long genes by H3K79 and H4K20 methylation, cells can
fine-tune the firing of replication origins.

The size of a gene is a major determinant for how long it will
take for transcription to be completed and for the gene to be
expressed, and differences in gene lengths contribute to temporal
expression patterns (Swinburne and Silver 2008). Our study shows
that transcription elongation rates are associated with the histone
marks H3K79me2 and H4K20mel, providing a potential mecha-
nism by which cells can fine-tune the temporal gene expression
and alternative splicing patterns despite fixed gene lengths. Future
studies are needed to define the mechanisms by which cells regu-
late elongation rates through epigenetic modification and char-
acterize pathological states whereby transcription elongation rates
are dysregulated.

Methods

Cell culturing

HF1, hTERT immortalized foreskin-derived human fibroblasts,
previously called NF (Paulsen et al. 2013a,b; Veloso et al. 2013),
CS-B primary human skin fibroblasts (Coriell, GM00739) and TM,
hTERT immortalized human skin fibroblasts (a gift from Dr. Tom
Misteli, NCI) were grown in MEM supplemented with 10% FBS,
L-glutamine, vitamin mix, and antibiotics. K562 human leuke-
mia cells were grown in IMDM supplemented with 10% FBS and
penicillin/streptomycin. MCF-7 human breast cancer cells were
grown in high-glucose RPMI supplemented with 10% FBS.

Bru-seq and BruDRB-seq

The labeling of nascent RNA with bromouridine (Bru) was carried
out as previously described (Paulsen et al. 2013a,b). The BruDRB-
seq protocol differs from the Bru-seq protocol in that the drug 5,6-
dichlorobenzimidazole 1-B-D-ribofuranoside (Sigma) is added to
the media to a final concentration of 100 uM, and cells are in-
cubated for 1 h at 37°C. After the incubation with DRB, the cells
were washed with PBS twice, and nascent RNA was labeled in
conditioned media containing 2 mM bromouridine (Aldrich) for
10 min at 37°C. The cells were then directly lysed in TRIzol reagent
(Invitrogen). K562 cells were grown in suspension, so these cells
were quickly spun down before being lysed in TRIzol. Total RNA
was isolated, and the Bru-labeled RNA was isolated from the total
RNA by incubation with anti-BrdU antibodies (BD Biosciences)
conjugated to magnetic Dynabeads (Invitrogen) under gentle ro-
tation for 1 h at room temperature. Finally, cDNA libraries were
made from the Bru-labeled RNA using the Illumina TruSeq library
kit and sequenced using Illumina HiSeq sequencers at the Uni-
versity of Michigan DNA Sequencing Core. The sequencing and
read mapping were carried out as previously described (Paulsen
et al. 2013a,b).

Gene selection for elongation rate analysis

The Ensembl gene annotation (release 69) (Flicek et al. 2013) was
used in this analysis, and the annotation data were downloaded
using the biomaRt package in the R environment (Durinck et al.
2005). All transcripts from genes with biotype matching “protein
coding,” “pseudogene,” “processed transcript,” or “lincRNA” were
initially selected to be used in the analysis. Transcripts were se-
lected based on their length, and the transcript’s minimum ac-
ceptable length was 40 kb in the three-state HMM analysis (see
section “Hidden Markov model for elongation rate analysis”) and
150 kb in the four-state HMM analysis.

902 Genome Research
www.genome.org



Rates of transcription elongation genome-wide

A potential source of error for the HMM analysis is the pres-
ence of additional TSSs either upstream of or downstream from
a given TSS. To address this issue, we first selected genes where the
value 3’ from the TSS was at least 10 times higher than the value 5’
of the TSS. Second, we rejected genes that initiated transcription
from an additional TSS within the analysis range (e.g., 40 kb in the
three-state HMM analysis). Third, to exclude genes with active
unannotated TSSs in the analysis region, genes were rejected if the
TSS-proximal signal was not more than 10 times the distal signal.
Lastly, only genes with Bru-seq expression above 0.5 RPKM were
used in the analysis.

Data processing and normalization for elongation rate analysis

The genomic distance analyzed for each transcript extended from
10 kb upstream of the TSS to the minimum acceptable transcript
length in that analysis (40 kb in the three-state HMM analysis or
150 kb for the four-state HHM analysis). This distance was divided
into 250-bp bins, and the reads along these bins were used to de-
termine the RPKM value of each bin. To minimize the effect of any
potential background contamination of unlabeled mature RNA on
the elongation rate determinations, the expression signal of bins
that overlapped exons was replaced by an interpolation based on
the signal of the adjacent bins that did not overlap exons. In order
to limit the effect of the transcript’s expression value in the elon-
gation rate analysis, the data were quantile-normalized using the R
package preprocessCore (Bolstad et al. 2003). Since most of the
expression signal accumulated in the advancing and receding
waves, there was a large number of bins that presented very low
expression values, and the distribution of binned expression
values in the analysis region was similar to a Gamma distribution.
In order to improve the presentation of data to downstream anal-
yses, a Z-score Gamma-equivalent normalization was carried out
using the R package limma (Smyth et al. 2005).

Hidden Markov model for elongation rate analysis

A hidden Markov model was used to determine the elongation rate
of each transcript. This analysis was carried out in two different
ways. In the first analysis, the position of three states was predicted
in genes that were 40 kb or longer. State 1 represented the low-
signal region upstream of the TSS; State 2 represented the ad-
vancing wave with high transcription signal; State 3 represented
the low-signal region downstream from the advancing elongation
wave (Fig. 1B). In the second analysis, a fourth state was added
representing the receding wave (Fig. 2D). This second analysis was
applied to genes that were at least 150 kb long. Each gene analysis
region was split into 250-bp bins, and bin RPKM values were cal-
culated from the BruDRB-seq samples. The expression values were
normalized (see section “Data processing and normalization for
elongation rate analysis”) and used as the observed layer in the
model. The model was trained on regions that were observed to
behave as the desired states in the aggregate view of the data (Fig.
1B). The relative bin positions used to calculate the output prob-
abilities were: (state 1) from 10 kb to 0.5 kb upstream of the TSS;
(state 2) from 0.5 kb to 20 kb downstream from the TSS; (state 3)
from 40 kb to 60 kb (four-state analysis) or 30 kb to 40 kb down-
stream (three-state analysis) from the TSS; (state 4) from 120 kb to
150 kb downstream from the TSS. The normalized expression
values observed in each bin within the described ranges were
pooled and used to determine the emission probabilities for each
state. The model was set up so that transitions could only occur
from state 1 to state 2, state 2 to state 3, and state 3 to state 4 (when
analyzing long genes). The transition probabilities between these
states were set to 0.00001.

The emission and transition probabilities were used to fit the
multistate HMM to the data for the complete analysis region for
each transcript using the R package msm (Jackson 2011). The most
likely state of each bin was estimated using the Viterbi algorithm.
Transcripts where the advancing wave (state 2) began more than
2 kb upstream of or downstream from the annotated TSS were re-
moved. Transcripts where the trough (state 3) began at the anno-
tated TSS and transcripts where a state 3 or state 4 (in the long-gene
analysis) was not recognized were removed from the analysis. The
calculated elongation for each transcript in the three-state analysis
is given in Supplemental Table 1.

Clustering of genes according to elongation rate

In order to compare between cell lines, the measured elongation
rates were quantile-normalized. A dissimilarity matrix was then
calculated from the quantile-normalized elongation rates using
a Fuclidean distance. This metric was used for the clustering, which
was carried out using the k-medoids algorithm (also known as
partitioning around medoids, or PAM). The dissimilarity matrix
calculation and clustering were performed using the R package
cluster (Maechler et al. 2013).

Enrichment of gene sets according to elongation rate

Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005)
was used to determine if there were gene sets enriched among the
genes with higher or lower elongation rates. The gene set collec-
tions used were positional, curated (BioCarta and KEGG), gene
ontology (biological processes, cellular components, and molecu-
lar functions), and oncogenic signatures (downloaded from the
Molecular Signatures Database [MSigDB], version 4; http://www.
broadinstitute.org/gsea/msigdb/index.jsp). GSEA was run on a list
of genes ranked according to elongation rate, and gene sets with at
least 15 represented genes were selected for analysis. A false dis-
covery rate adjusted P-values threshold of 0.25 was applied to de-
termine enrichment of a gene set.

Correlation between elongation rate and gene features

To determine if the elongation rates were correlated with different
physical properties of the genes such as DNA sequence, several
different features were tested in a permutation test. Seven fea-
tures were analyzed. (1) Transcript length (in base pairs) using the
Ensembl annotation (Flicek et al. 2013). (2) Distance to nearby
expressed genes (in base pairs). Genes with an expression level
greater than 0.1 RPKM were considered expressed. Distances were
measured to the closest upstream and downstream gene in either
the sense or antisense orientation, resulting in a total of four dif-
ferent values. (3) Density of exons. The Ensembl’s project exon
annotation was used (Flicek et al. 2013). All annotated exons were
used, and exons that overlapped were merged into a single exon.
(4) GC content. (5) Repetitive DNA (combined length of each
class in base pairs). The RepeatMasker annotation (http://www.
repeatmasker.org/) was downloaded from the UCSC Genome
Browser (http://genome.ucsc.edu/). The repetitive DNA annota-
tion was simplified to reflect only the major classes (i.e., DNA,
LINE, low complexity, LTR, other, RC/Helitron, RNA, rRNA, sat-
ellite, scRNA, simple repeat, SINE, snRNA, stpRNA, tRNA, un-
known). Only nonoverlapping repetitive regions were used in the
analysis. (6) Non-B DNA (combined length of each class in base
pairs). The Non-B DB v2.0 annotation was used in this analysis
(Cer et al. 2013). The classes of non-B DNA used were: A phased
repeat, direct repeat, G-quadruplex motif, inverted repeat, mirror
repeat, short tandem repeat, and Z DNA motif. (7) Density of
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methylated CpG sites. The DNA Methylation by Reduced Repre-
sentation Bisulfite-seq from the ENCODE/HudsonAlpha data set
was used (http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=
wgEncodeHaibMethylRrbs). The tracks used (and their respective
GEO accession ID) were as follows: K562 HudsonAlpha replicates
1 (GSM683856) and 2 (GSM68378), and MCF-7 Stanford replicates
1 (GSM720350) and 2 (GSM720353). A CpG site was only used in
the analysis if it was represented in a minimum of 10 reads and if
at least 90% of those reads indicated that that site was, in fact,
methylated.

To assess the correlations between high and low levels of
elongation and a particular DNA or chromatin feature, we divided
the feature metric (e.g., exon count) by the length of elongation
(providing a feature density). It was observed that certain features
presented a nonrandom distribution throughout the length of the
gene. For example, GC content tends to be higher near the TSS and
decreases as the distance to the TSS increases, until it levels off.
Therefore, if one assigned random elongation rates to genes and
measured their GC content, there would be a negative correlation.
Due to this limitation, a permutation test was performed by ran-
domly distributing the observed elongation rates among the genes.

In order to limit the effect of outliers, the 5% most extreme
elongation rate values (top and bottom 2.5%) were excluded from
the analysis. Also, features were only analyzed if they had been
measured in at least 20% of the transcripts. The feature metric was
measured for all genes under the new elongation area as deter-
mined by the randomly distributed elongation rates. A regression
coefficient between elongation rate and feature metric was calcu-
lated and stored. This process was repeated 2000 times. Finally, the
regression coefficient observed in the original data was compared
to the 2000 permutated regression coefficients. A one-tailed
P-value was determined by measuring the percentage of times that
a permutated regression coefficient was equal to or more extreme
than the observed regression coefficient. To account for the mul-
tiple testing, the P-values were FDR-corrected. A corrected regres-
sion coefficient was calculated by subtracting the observed re-
gression coefficient from the median value of the 2000 permutated
regression coefficients. Permutation analysis results can be found
in Supplemental Table 4.

Long-range promoter interaction and elongation rate

Chromatin interaction analysis by paired-end tag sequencing
(ChIA-PET) (Li et al. 2012) data was used to determine if the
elongation rates of genes in contact with the same transcription
machinery are correlated. A regression analysis between elongation
rates of genes believed to be physically in contact with each other as
assessed with ChIA-PET was carried out. The data were downloaded
from the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/
hgFileUi?db=hg19&g=wgEncodeGisChiaPet). The tracks used (and
their respective GEO accession ID) were: K562 POL2 replicates 1 and
2 (GSM970213), and MCEF-7 POL2 replicates 3 and 4 (GSM970209).
The segments that were considered to be connected by ChIA-PET
analysis were intersected with the annotation of genes for which
elongation rates were measured. Two genes were considered to be
physically connected if two connected segments overlapped the TSS
of the two genes.

Aggregate signal of ChlIP-seq data for the elongation rate
quartiles

To determine if transcription elongation rates were correlated to
the density of specific histone modifications or proteins, we
downloaded the ChIP-seq processed signal files (in the bigWig file
format) from the UCSC Genome Browser. Data were obtained from

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncode
BroadHistone and http://genome.ucsc.edu/cgi-bin/hgFileUi?db=
hg19&g=wgEncodeSydhTfbs data sets. The tracks used (and their
respective GEO accession ID) were: ChIP-seq input control
(GSM733780), H3K4mel (GSM733692), H3K4me3 (GSM733680),
H3K27ac (GSM733656), H3K9mel (GSM733777), H3K9me3
(GSM733776), H3K9ac (GSM733778), H3K27me3 (GSM733658),
H3K36me3 (GSM733714), H3K79me2 (GSM733653), H4K20me1l
(GSM733675), CTCF (GSM733719), Pol2 (GSM733643), CCNT2
(GSM935547), GTF21 (GSM935501), NELFE (GSM935392), and
MYC (GSM935516). These data were normalized according to
Ram et al. (2011).

A genomic region encompassing 5 kb upstream of to 20 kb
downstream from the TSS of all genes for which an elongation rate
was recorded was used in the analysis. This analysis region was split
into bins of 250 bp in length. For each bin, the average ChIP-seq
signal of a given data set was calculated and plotted according to
each quadrant of elongation rates.

Data access

All the primary sequencing data files from this study have been
submitted to the NCBI Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE55534.
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