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Abstract
Background: Microarray expression profiling has been widely used to identify differentially
expressed genes in complex cellular systems. However, while such methods can be used to directly
infer intracellular regulation within homogeneous cell populations, interpretation of in vivo gene
expression data derived from complex organs composed of multiple cell types is more problematic.
Specifically, observed changes in gene expression may be due either to changes in gene regulation
within a given cell type or to changes in the relative abundance of expressing cell types.
Consequently, bona fide changes in intrinsic gene regulation may be either mimicked or masked by
changes in the relative proportion of different cell types. To date, few analytical approaches have
addressed this problem.

Results: We have chosen to apply a computational method for deconvoluting gene expression
profiles derived from intact tissues by using reference expression data for purified populations of
the constituent cell types of the mammary gland. These data were used to estimate changes in the
relative proportions of different cell types during murine mammary gland development and Ras-
induced mammary tumorigenesis. These computational estimates of changing compartment sizes
were then used to enrich lists of differentially expressed genes for transcripts that change as a
function of intrinsic intracellular regulation rather than shifts in the relative abundance of expressing
cell types. Using this approach, we have demonstrated that adjusting mammary gene expression
profiles for changes in three principal compartments – epithelium, white adipose tissue, and brown
adipose tissue – is sufficient both to reduce false-positive changes in gene expression due solely to
changes in compartment sizes and to reduce false-negative changes by unmasking genuine
alterations in gene expression that were otherwise obscured by changes in compartment sizes.

Conclusion: By adjusting gene expression values for changes in the sizes of cell type-specific
compartments, this computational deconvolution method has the potential to increase both the
sensitivity and specificity of differential gene expression experiments performed on complex
tissues. Given the necessity for understanding complex biological processes such as development
and carcinogenesis within the context of intact tissues, this approach offers substantial utility and
should be broadly applicable to identifying gene expression changes in tissues composed of multiple
cell types.
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Background
High-throughput transcriptional profiling using DNA
microarrays has enabled routine measurements of
genome-wide regulatory changes in a variety of contexts.
This technique has been applied to the analysis of gene
expression within relatively homogeneous cellular popu-
lations as well tissues or tumors consisting of disparate
cell types. Within metazoans, cells depend upon environ-
mental signals for growth, differentiation, and survival.
However, the interpretation of gene expression profiles
obtained in metazoan organisms is complicated by their
characteristically complex cellular environments. This
results from the fact that microarray expression measure-
ments from heterogeneous tissues with distinct cellular
compartments reflect weighted averages of expression lev-
els within different cellular populations. Therefore,
observed changes in gene expression may result from bona
fide changes in regulation within a given cellular compart-
ment, or from changes in the abundance of an expressing
compartment within the tissue as a whole. As a conse-
quence, changes in compartment size may be mistaken
for the intracellular regulation of gene expression; con-
versely, genuine regulation within a given cell type may
not be detected due to changes in the abundance of cellu-
lar compartments that mask its contribution to the tissue
as a whole.

To date, several approaches have been used to identify
changes in gene expression that occur in different cellular
compartments within tissues or tumors comprised of
multiple cell types. Laser capture micro-dissection (LCM)
[1-3] has been used to physically separate defined cell
populations prior to gene expression analysis. A drawback
of this approach, however, has been the difficulty in
obtaining sufficient quantities of purified material to per-
form robust, reproducible genome-wide profiling. Other
techniques for physical separation may also be used [4,5],
however, it is often difficult to ensure that the separation
process itself does not introduce substantial alterations in
gene expression.

Recently, Lu et al. described a computational approach for
estimating proportions of cells at specified points in the
cell cycle within asynchronous cultures of yeast [6]. Appli-
cation of this method to complex tissues in higher organ-
isms, however, requires the identification of cell type-
specific genes whose expression levels are not substan-
tially affected by biological state or experimental pertur-
bation.

The mammary gland contains two major cellular com-
partments – epithelial and stromal – that are themselves
composed of multiple cell types. These include luminal,
myoepithelial, and alveolar epithelial cells, endothelial
cells, fibroblasts, white adipocytes, brown adipocytes, and

other stromal cell types including multiple hematopoietic
cell lineages. During mammary gland development as
well as tumorigenesis, the proportions of these compart-
ments change dramatically relative to each other. For
example, the epithelial compartments proliferate rapidly
and expand during both puberty (ductal elongation) and
pregnancy (lobuloalveolar development). Conversely,
large scale apoptosis of alveolar epithelial cells and
remodeling of the extracellular matrix occurs following
pup weaning, thereby returning the gland to a state super-
ficially resembling that of the adult nulliparous animal
[7]. In an analogous manner, during the process of tum-
origenesis, oncogene activation expands the size of the
epithelial compartment while inducing marked changes
in other cellular compartments, such as the adipose and
fibroblastic stroma and cells of the innate and adaptive
immune system.

In this article, we describe and apply a novel extension of
a computational deconvolution strategy observed pat-
terns of differentially regulated gene expression. We fur-
ther demonstrate the utility of this approach by using it to
deconvolute expression changes that occur over the course
of mammary gland development as well as in response to
oncogenic Ras activation within the mammary gland. Pre-
dicted gene expression changes computed in this manner
were confirmed experimentally and revealed statistically
significant regulation of underlying functional pathways
that were not detected by conventional gene expression
analysis methods.

Results
Identification of discriminant gene lists
We hypothesized that changes in the proportions of dif-
ferent cell types within a complex organ could be quanti-
tatively assessed using panels of transcripts that were
specifically expressed within each of the composite cellu-
lar compartments. In order to identify such transcripts, we
selected highly enriched reference samples containing
largely homogeneous cell populations and compared
gene expression levels in these samples to those in sam-
ples representing other cell types. Mammary epithelial
cells (MEC), brown adipose tissue (BAT), white adipose
tissue (WAT), T cells (CD4+ and CD8+), B cells, plasma
cells, macrophages, and fibroblasts were selected for this-
modeling approach either because they represent abun-
dant cell populations within the mammary gland or
because they are known to play a role in mammary gland
development and tumorigenesis.

Microarray expression data were used to generate cell
type-specific gene lists through pairwise comparisons of
expression between all samples as described in Methods.
Only genes that showed significant enrichment within a
given cell type compared to all other cell types were
Page 2 of 26
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:328 http://www.biomedcentral.com/1471-2105/7/328
retained for further analysis. These lists were further
refined using stepwise discriminant analysis to identify
the optimal cell type-specific transcripts for classification
purposes. The resulting gene lists for each cell or tissue
type are shown in Table 1. Examination of the genes iden-
tified by this discriminant analysis revealed many that had
previously been reported to be expressed in a cell type-
specific manner. These included genes whose expression
is specific for mammary epithelial cells (Krt2-8, Krt1-18,
Krt1-19), fibroblasts (Fgf7), WAT (Retn), BAT (Ucp1, Dci),
plasma cells (immunoglobulin genes), macrophages
(Emr1), B cells (CD19, CD22, CD72, Blk), and CD8+ T-
cells (CD8a, CD8b). These findings support the validity of
this approach to identify cell type-specific genes.

Expression deconvolution during mammary gland 
development
Deconvoluting expression patterns in a complex tissue
using cell type-specific gene lists is dependent on the
extent to which the genes selected are expressed at a con-
stant level on a per-cell basis over a range of biological
conditions. Moreover, it is also necessary to retain a large
enough gene list such that the overall estimate will be
robust in the face of biological and technical sources of
variation in gene expression measurements [8]. We rea-
soned that the expression profiles for highly regulated cell
type-specific genes would deviate substantially from the
average expression profile exhibited by genes within that
particular cell type-specific gene list.

To exclude highly regulated, cell type-specific genes from
consideration, mean and variance-normalized expression
profiles across mammary gland development were com-
pared for each cell type-specific gene list. Average or
canonical gene expression profiles were calculated for
each set of cell type-specific genes. Genes with a Pearson
correlation coefficient less than 0.5 when compared to the
average group expression profile were excluded from fur-
ther analysis. For example, BAT-specific genes typically
displayed high levels of expression in the mammary
glands of male mice and female mice prior to puberty (2
wk G0P0). Expression levels progressively decreased
thereafter, reaching a stable nadir during mid-late preg-
nancy, lactation, and early involution (Figure 1a). This
pattern parallels the change in abundance of this cellular
compartment during mammary gland development [7].
In contrast, expression of the BAT-specific gene, Cidea, was
markedly upregulated in the mammary gland during late
pregnancy and lactation compared to other BAT-specific
genes and was therefore excluded as a marker for BAT in
subsequent analysis (Figure 1a). An analogous approach
was taken for each list of cell type-specific genes.

To determine whether this method permits the accurate
calculation of the relative contribution of different cellu-

lar compartments within the mammary gland, we next
used these cell type-specific gene lists to estimate compart-
ment sizes across thirteen stages of mammary gland devel-
opment. We have previously shown that changes in the
relative proportions of mammary epithelial cells, WAT,
and BAT across mammary gland development substan-
tially affect gene expression profiles observed in the mam-
mary gland [7]. Because these represent the most
abundant compartments within the mammary gland,
marked changes in their relative sizes during mammary
development would be predicted to result in numerous
changes in gene expression when expression levels are
measuredwithin the tissue as a whole.

Expression levels for cell type-specific genes representing
MEC, BAT, and WAT were averaged across the three refer-
ence samples for each cell type. The resulting values for
each gene were taken as its basal expression within its cog-
nate tissue compartment. Mean and variance-normaliza-
tion was first performed across all genes in that sample,
and proportions of each cell type were estimated by
obtaining solutions to linear equations of the form Ax = y,
where A is an m × n matrix of expression values (m genes
× n reference groups), y is a vector of m values in the test
sample, and x is the vector of n values reflecting the esti-
mated relative proportions of each cell type within the
mixture. Solutions were estimated using simulated
annealing [6]. A related approach, albeit using different
methods for identifying genes to be used in the estimate,
has been described by Lu et al. who termed the process of
estimating cellular proportions "expression deconvolu-
tion" [6].

Expression deconvolution was first applied to the initial
expression data sets derived from the MEC, WAT, and BAT
purified cell populations. As expected, this algorithm cor-
rectly estimated the composition of each of the nine sam-
ples as consisting entirely of its appropriate corresponding
cell type (Figure 1b). Next, expression deconvolution was
performed on data sets representing triplicate measure-
ments of 13 time points spanning mammary gland devel-
opment (Figure 1b). This analysis yielded estimates of the
proportions of MEC, WAT, and BAT present in the mam-
mary gland during each stage of development. These esti-
mates closely paralleled changes in compartment sizes
that were observed by histological analysis, thereby con-
firming the validity of this approach (Figure 2a and 2b).
For example, in male and 2-week-old female mice, only a
rudimentary epithelial tree is present in the mammary fat
pad (Figure 2a and 2b). Consistent with this, expression
deconvolution analysis estimated that the mammary
gland at these stages is composed primarily of brown and
white adipose tissue, with only a small amount (<5%) of
epithelium (Figure 1b). Also consistent with previous
descriptions, the estimated proportion of BAT declines
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Tissue/Cell Affy ID Gene Symbol Description

MEC 94270_at Krt1-18 keratin complex 1, acidic, gene 18

101009_at Krt2-8 keratin complex 2, basic, gene 8

101574_f_at Serpina1a serine (or cysteine) proteinase inhibitor, clade A, member 1a

99649_at Gclc glutamate-cysteine ligase, catalytic subunit

101025_f_at Sprr2a small proline-rich protein 2A

160099_at Lgals4 lectin, galactose binding, soluble 4

100329_at Serpina1d serine (or cysteine) proteinase inhibitor, clade A, member 1d

96596_at Ndrg1 N-myc downstream regulated gene 1

92550_at Krt1-19 keratin complex 1, acidic, gene 19

96735_at Stard10 START domain containing 10

BAT 99507_at Ucp1 uncoupling protein 1, mitochondrial

161519_f_at Mus musculus cDNA, 3' end/clone = 1700127J22/clone_end

95695_at Slc25a20 solute carrier family 25, member 20

102431_at Mapt microtubule-associated protein tau

98527_at Dci dodecenoyl-Coenzyme A delta isomerase

100967_at Slc27a2 solute carrier family 27 (fatty acid transporter), member 2

99994_at Cidea cell death-inducing DFFA-like effector A

96879_at Ogdh oxoglutarate dehydrogenase (lipoamide)

102668_at Ppara peroxisome proliferator activated receptor alpha

98984_f_at Gpd2 glycerol phosphate dehydrogenase 2, mitochondrial

WAT 102366_at Retn resistin

99112_at Slc25a10 solute carrier family 25, member 10

94309_g_at Fbln1 fibulin 1

100464_at 3110043O21Rik RIKEN cDNA 3110043O21 gene

102707_f_at Serpina3c serine (or cysteine) proteinase inhibitor, clade A, member

160989_r_at B430320C24Rik RIKEN cDNA B430320C24 gene

99637_at Col15a1 procollagen, type XV

96742_at Dpt dermatopontin
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97835_at Rarres2 retinoic acid receptor responder (tazarotene induced) 2

96132_at AB023957 cDNA sequence AB023957

3T3 Cells 101975_at Dlk1 delta-like 1 homolog (Drosophila)

104286_at Slc38a4 solute carrier family 38, member 4

104544_at 4930517K11Rik RIKEN cDNA 4930517K11 gene

94338_g_at Gas2 growth arrest specific 2

99051_at S100a4 S100 calcium binding protein A4

103327_at Prrx2 paired related homeobox 2

93574_at Serpinf1 serine (or cysteine) proteinase inhibitor, clade F, member 1

93681_at Fzd2 frizzled homolog 2 (Drosophila)

97943_at Capn6 calpain 6

160939_at Twist2 twist homolog 2 (Drosophila)

160095_at Lox lysyl oxidase

99435_at Fgf7 fibroblast growth factor 7

98501_at Il1rl1 interleukin 1 receptor-like 1

B Cells 99945_at Cd19 CD19 antigen

98035_g_at H2-DMb1 histocompatibility 2, class II, locus Mb1

101878_at Cd72 CD72 antigen

104429_at Tap2 transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)

103040_at Cd83 CD83 antigen

92741_g_at Igh-6 immunoglobulin heavy chain 6 (heavy chain of IgM)

102939_s_at Cd22 CD22 antigen

92436_at Stk23 serine/threonine kinase 23

92359_at Blk B lymphoid kinase

Plasma cells 101656_f_at Igk-V1 immunoglobulin kappa chain variable 1 (V1)

101870_at Igh-4 immunoglobulin heavy chain 4 (serum IgG1)

92470_f_at Igh-VJ558 immunoglobulin heavy chain (J558 family)

102823_at AU044919 M. musculus rearranged immunoglobulin gamma 2b heavy chain

102154_f_at Igk-V8 immunoglobulin kappa chain variable 8 (V8)

97008_f_at AI324046 expressed sequence AI324046

100377_f_at Igh-V immunoglobulin heavy chain variable region

96963_s_at immunoglobulin light chain variable region

Table 1: Identification of cell type-specific genes. Genes are ranked from highest to lowest signal/noise ratio. The expression profiles of genes in b
Correlation Coefficient > 0.5) with the average profile of the tissue-specific genes across mammary development stages. (Continued)
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97720_at Igh-VS107 immunoglobulin heavy chain (S107 family)

100299_f_at LOC381783 Similar to immunoglobulin kappa chain

CD4+ Cells 100509_at Rnf19 ring finger protein (C3HC4 type) 19

93511_at Itm2a integral membrane protein 2A

102661_at Egr2 early growth response 2

101884_at Xlr4 X-linked lymphocyte-regulated 4

CD8+ Cells 162410_s_at Cd8b CD8 antigen, beta chain

98406_at Ccl5 chemokine (C-C motif) ligand 5

92398_at BC026744 cDNA sequence BC026744

99327_at Prss19 protease, serine, 19 (neuropsin)

102975_at Cd8a CD8 antigen, alpha chain

97995_at Tcf7 transcription factor 7, T-cell specific

92214_at Ctsw cathepsin W

92406_at Cd7 CD7 antigen

103629_g_at Lef1 lymphoid enhancer binding factor 1

102904_at H2-Ea histocompatibility 2, class II antigen E alpha

Macrophage 103977_at F10 coagulation factor X

101468_at Pfc properdin factor, complement

92978_s_at Serpinb2 serine (or cysteine) proteinase inhibitor, clade B, member 2

95637_at Flnb filamin, beta

93445_at Cd5l CD5 antigen-like

100397_at Tyrobp TYRO protein tyrosine kinase binding protein

104541_at Prtn3 proteinase 3

103507_at Emr1 EGF-like module containing, mucin-like, hormone recepto

95597_at Ptgs1 prostaglandin-endoperoxide synthase 1

93097_at Arg1 arginase 1, liver

104354_at Csf1r colony stimulating factor 1 receptor

96020_at C1qb complement component 1, q subcomponent, beta polypep

Table 1: Identification of cell type-specific genes. Genes are ranked from highest to lowest signal/noise ratio. The expression profiles of gen
Correlation Coefficient > 0.5) with the average profile of the tissue-specific genes across mammary development stages. (Continued)
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Expression profiles of BAT-specific genes and estimated changes in cell compartment sizes during mammary gland developmentFigure 1
Expression profiles of BAT-specific genes and estimated changes in cell compartment sizes during mammary 
gland development. (a) Normalized expression profile of Cidea across mammary gland development stages showing marked 
deviation during late pregnancy and lactation from the average profile of 10 BAT-specific genes listed in Table 1. Mean expres-
sion (±SEM) is shown at each development stage, including nulliparity (Nullip), pregnancy (Preg), lactation (Lact), and involution 
(Inv). (b) Calculated proportions of brown adipose tissue (BAT), white adipose tissue (WAT), and mammary epithelial cell 
(MEC) compartments in pure reference samples and mammary tissues at the indicated mammary developmental time points 
(mean ± SEM).
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Mammary gland morphology during the developmentFigure 2
Mammary gland morphology during the development. (a) Analysis of carmine-stained whole mounts (magnification 6×) 
and (b) hemotoxylin and eosin (H&E)-stained sections (magnification 100×) showing the relative changes in size of the epithelial 
and adipose compartments of the number 4 mammary gland at the indicated time points during mammary gland development.
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during puberty to reach a nadir in adult nulliparous mice
(Figure 1b and [7]). Conversely, during this same period,
ductal elongation and branching occur with extension of
mammary epithelial ducts into the surrounding fat pad
(Figure 2a and 2b). This process results in a substantial
increase in the proportion of epithelial cells in the mam-
mary gland between 2 wk and 10 wk of age, at which time
ductal morphogenesis is largely complete. This increase in
the epithelial content of the gland is accurately reflected in
cell compartment estimates using expression deconvolu-
tion (Figure 1b).

Similar to the expansion of the epithelial compartment
during puberty, further increases in epithelial content
occur during pregnancy due to the expansion of the alve-
olar epithelial compartment (Figure 2a and 2b) and these
changes are also accurately captured by expression decon-
volution (Figure 1b). Most of the observed increase in epi-
thelial content occurs by d12 of pregnancy, consistent
with the decline in epithelial proliferation rates after this
stage of lobuloalveolar development (Figure 1b and [9]).
As reflected both by morphology and expression deconvo-
lution estimates, the proportion of epithelial cells peaks
during late pregnancy and lactation (Figure 1b, 2a, and
2b). Finally, following the weaning of pups, programmed
cell death and remodeling of the maternal gland during
postlactational involution result in a decrease in the size
of the epithelial compartment and a corresponding
increase in the relative size of the WAT compartment (Fig-
ure 1b, 2a, and 2b). Thus, in aggregate, the calculated pro-
portional composition of the mammary gland with
respect to the contribution of each of these three cellular
compartments across mammary development is consist-
ent with previously described changes as well as direct vis-
ualization of these compartments in staged samples.

Effects of compartment size adjustment on the 
identification of regulated genes
A principal benefit of the ability to accurately estimate
changes in compartment sizes is the possibility of distin-
guishing bona fide changes in gene expression within a
compartment from apparent gene expression changes due
solely to changes in compartment size. That is, since the
overall expression level in the mammary gland for a gene
whose expression is not regulated is equivalent to the sum
of its expression levels within each cellular compartment,
it should be possible to quantitatively predict the changes
in that gene's apparent expression level that would result
solely from specified changes in the abundance of cellular
compartments within the gland.

To test the validity of this approach, we calculated expres-
sion levels for α- and γ-tubulin across mammary develop-
ment based on their expression within each compartment
within the gland. We then compared these predicted

expression levels to those observed across development.
Briefly, the average expression levels observed for the
tubulin genes within the reference MEC, WAT, and BAT
samples were used in conjunction with the estimated pro-
portions of the three compartments at each of the devel-
opment stages to generate a predicted expression values
for the tubulin genes (Figure 3a). The resulting calculated
expression levels were largely congruent with the observed
values with correlation coefficients greater than 0.6.

To ascertain whether this expression deconvolution
method could identify intrinsic gene expression changes,
mammary glands harvested from late pregnant (day 18)
mice were compared to those from 10-week-old nullipa-
rous females. These two developmental stages have
marked differences in physiology as well as in the abun-
dance of epithelial and adipocyte compartments [10] and
thereby provide an appropriate test for the adequacy of
this approach. First, the predicted expression level for each
gene was calculated based on its expression level in the
MEC, WAT, and BAT compartments, coupled with
changes in the sizes of the three compartments between
these two stages of mammary gland development. This
predicted gene expression level was then subtracted from
the observed expression level, and the resulting values for
these two developmental points were compared using the
Statistical Analysis for Microarrays (SAM) algorithm [11]
with a false discovery rate threshold (FDR) of <3%. Addi-
tional File 2 lists the results of SAM comparisons both
before and after taking into account changes in compart-
ment sizes and Table 2 summarizes the number of
probesets whose regulation calls were altered. Table 3 lists
selected genes that were considered to be differentially
expressed either before or after adjusting for changes in
cell compartment sizes.

The effects of taking compartment size changes into
account was substantial as 20.2%, 35.2%, and 15.5% of
up-, down-, and non-changing calls, respectively, were
altered as a consequence of adjusting for changes in cell
compartment sizes (Table 2) that occur during mammary
development. As shown in Table 2, 16% of genes called
upregulated prior to signal adjustment were called non-
changing and 4.2% were called downregulated, after tak-
ing into account changes in cell compartment sizes. Thus,
adjustment for cell compartment size alters change calls
for 20.2% of genes initially called upregulated. Similarly,
35.2% of genes initially called downregulated were pre-
dicted to be either up-regulated (3%) or non-changing
(32.2%) after taking into account changes in cell compart-
ment sizes. These findings strongly suggest that apparent
changes in expression for a substantial fraction of genes
identified as differentially regulated using standard ana-
lytical approaches may actually reflect changes in cell
Page 9 of 26
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Tubulin and cytokeratin 8 expression during mammary gland developmentFigure 3
Tubulin and cytokeratin 8 expression during mammary gland development. (a) Predicted (dashed lines) and 
observed (solid lines) normalized expression for α-tubulin and γ-tubulin during mammary gland development. A high correla-
tion was found between observed expression profiles and predicted profiles calculated based on changes in cell compartment 
sizes. (b) Immunofluorescence staining of cytokeratin 8 (Krt2-8) showing downregulated expression in the mammary epithe-
lium at d18 of pregnancy compared to 10 wk of nulliparous develoment.



BMC Bioinformatics 2006, 7:328 http://www.biomedcentral.com/1471-2105/7/328
compartment sizes that occur during mammary gland
development rather than intrinsic gene regulation.

For example, examination of genes in Table 3 revealed
that a number of adipocyte-specific genes, such as Pparg
and Fabp4 (aP2), appeared to be significantly downregu-
lated in the pregnant (d18) compared to the 10-week-old
nulliparous gland prior to adjustment for estimated
changes in cell compartment sizes. After adjusting for esti-
mated changes in cell compartment sizes, however, these
adipocyte-specific genes were no longer considered to
change significantly between these two developmental
time points. This suggests that the apparent down-regula-
tion of multiple WAT-specific genes that occur during
pregnancy is most likely a consequence of a decrease in
the size of the adipose compartment that occurs at this
stage (see Figure 1b, 2a, and 2b).

Figure 1b implies that the contribution of the adipocyte
compartment to total mammary gland mRNA at d18 of
pregnancy is less than half that of its contribution to the
10 wk nulliparous gland. As such, the apparent expression
of genes that are expressed predominantly within the WAT
compartment would be predicted to decrease from 10 wk
nulliparous development to d18 of pregnancy. Consistent
with this, the pre-adjustment level of leptin (Lep) expres-
sion appeared significantly downregulated from 10 wk
nulliparous gland to d18 of pregnancy, whereas post-
adjustment signals indicated that its expression level did
not differ significantly between these two developmental
stages. In fact, we have previously shown by in situ hybrid-

ization that Lep mRNA expression does not change sub-
stantially on a per-cell basis between puberty and early
pregnancy [7], providing experimental confirmation of
this computational result.

Conversely, a substantial fraction of genes (15.5%) that
were not considered to be differentially regulated prior to
adjustment for changes in cell compartment sizes were
found to be either up- (5.2%) or downregulated (10.3%)
following deconvolution (Table 2 and 3). This suggests
that changes in cell compartment sizes that occur during
mammary gland development mask bona fide changes in
expression for a substantial number of genes. For exam-
ple, lipoprotein lipase (Lpl), insulin-like growth factor 2
(Igf2), and prolactin-like protein E (Prlpe) were all identi-
fied as upregulated in late pregnancy compared with the
10 wk nulliparous gland only after taking into account the
changes in cell compartment sizes. This finding is consist-
ent with previous reports that the content and activity of
Lpl, which is expressed in mammary adipocytes, increases
within the fat pad during pregnancy [12] and early lacta-
tion [13]. Similarly, the adipocyte-secreted factors Igf2
and Prlpe were found to be upregulated only after adjust-
ing for the decreasing sizes of the adipocyte compartment
that occurs during pregnancy. This finding is consistent
with their previously described role in promoting mam-
mary gland proliferation and differentiation [14,15].

Several genes encoding transporter proteins (e.g., Abca1,
Abcd2, Abcc9) appeared to be down-regulated in preg-
nancy prior to adjusting for changes in compartment

Table 2: Alterations in change calls following adjustment for cell compartment size. Total probesets called upregulated (Up), 
downregulated (Down), or non-changing (NC) before ("Pre-adj") and after ("Post-adj") adjusting for estimated changes in cell 
compartment sizes. The percentages of probesets whose post-adjustment change calls were the same as or different than their pre-
adjustment change calls are shown.

Mammary glands Pre-adj calls Post-adj calls Percentage of changed calls (%)

d18 pregnant vs. 10 wk nulliparous Up: 802 Up: 640
Down: 34
NC: 128

79.8
4.2
16.0

Down: 1109 Up: 33
Down: 719
NC: 357

3.0
64.8
32.2

NC: 10577 Up: 547
Down: 1085
NC: 8945

5.2
10.3
84.5

d4 vs. d0 following Ras activation Up: 1545 Up: 1045
Down: 151
NC: 349

67.6
9.8
22.6

Down: 792 Up: 85
Down: 330
NC: 377

10.7
41.7
47.6

NC: 10151 Up: 970
Down: 947
NC: 8234

9.6
9.3
81.1
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sizes, but were predicted to be up-regulated following sig-
nal adjustment; these results are consistent with the prep-
aration of the mammary gland for large-scale transport
and secretion during lactation. Conversely, pro-apoptotic
genes such as Bad, Bax, Bid, and mdm2 were found to be

downregulated at d18 of pregnancy, consistent with the
low levels of apoptosis observed during late pregnancy
and lactation, only after adjusting for changes in compart-
ment sizes (Table 3). As such, the congruence of these
results with our current understanding of mammary gland

Table 3: Genes with altered change calls between d18 pregnant and 10 wk nulliparous glands after adjusting for compartment size 
changes.

Affy ID Symbol Gene name Pre-adj Post-adj

104587_at Lama4 laminin, alpha 4 Down Up
94354_at Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 Down Up
93376_at Bmp2k BMP2 inducible kinase Down Up
93459_s_at Fzd4 frizzled homolog 4 (Drosophila) Down Up
92913_at Abcd2 ATP-binding cassette, sub-family D (ALD), member 2 Down Up
98328_at Tshr thyroid stimulating hormone receptor Down Up
92836_at Eln elastin Down Up
97172_s_at Abcc9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 Down Up
98019_at Tgfb1i1 transforming growth factor beta 1 induced transcript 1 Down Up
100567_at Fabp4 fatty acid binding protein 4, adipocyte Down NC
101887_at Agt angiotensinogen Down NC
94906_at Adh1 alcohol dehydrogenase 1 (class I) Down NC
161900_f_at Adrb3 adrenergic receptor, beta 3 Down NC
94080_at Sdha succinate dehydrogenase complex, subunit A, flavoprotein (Fp) Down NC
98444_g_at Lep leptin Down NC
97426_at Emp1 epithelial membrane protein 1 Down NC
103549_at Nes nestin Down NC
92256_at Ctsb cathepsin B Down NC
97926_s_at Pparg peroxisome proliferator activated receptor gamma Down NC
97921_at Agrn agrin Up Down
100733_at Psma2 proteasome (prosome, macropain) subunit, alpha type 2 Up Down
95593_at Golph2 golgi phosphoprotein 2 Up Down
95286_at Clu clusterin Up Down
93789_s_at Sin3b transcriptional regulator, SIN3B (yeast) Up Down
99086_g_at Usp3 ubiquitin specific protease 3 Up Down
101137_at Rps3 ribosomal protein S3 Up Down
97937_at Klf5 Kruppel-like factor 5 Up Down
160129_at Eef1d eukaryotic translation elongation factor 1 delta Up Down
92544_f_at Psma3 proteasome (prosome, macropain) subunit, alpha type 3 Up NC
101446_at Tpd52l1 tumor protein D52-like 1 Up NC
94196_at Ikbkg inhibitor of kappaB kinase gamma Up NC
94404_at Vps45 vacuolar protein sorting 45 (yeast) Up NC
103964_at Esrra estrogen related receptor, alpha Up NC
98937_at Tbrg1 transforming growth factor beta regulated gene 1 Up NC
102918_at Muc1 mucin 1, transmembrane Up NC
94270_at Krt1-18 keratin complex 1, acidic, gene 18 NC Down
92550_at Krt1-19 keratin complex 1, acidic, gene 19 NC Down
101009_at Krt2-8 keratin complex 2, basic, gene 8 NC Down
98110_at Mdm2 transformed mouse 3T3 cell double minute 2 NC Down
93536_at Bax Bcl2-associated X protein NC Down
98433_at Bid BH3 interacting domain death agonist NC Down
99670_at Bad Bcl-associated death promoter NC Down
98868_at Bcl2 B-cell leukemia/lymphoma 2 NC Down
95611_at Lpl lipoprotein lipase NC Up
98623_g_at Igf2 insulin-like growth factor 2 NC Up
101874_s_at Prlpe prolactin-like protein E NC Up
104152_at Stk40 serine/threonine kinase 40 NC Up
97948_at Rb1 retinoblastoma 1 NC Up
99994_at Cidea cell death-inducing DNA fragmentation factor, alpha subunit-like effector A NC Up
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physiology suggests that this deconvolution approach
may be useful for identifying intrinsically regulated genes
within heterogeneous tissues.

Notably, the expression of several epithelial genes, includ-
ing Krt2-8, Krt1-18, and Krt1-19, did not appear to change
between 10 wk nulliparous and d18 pregnant mice prior
to adjusting for changes in compartment sizes, but were
predicted to be significantly downregulated after taking
the compartment size changes account. These results were
surprising not only because developmental regulation of
these epithelial markers within the mammary gland has
not previously been reported, but also because two of
these cytokeratin genes (Krt2-8 and Krt1-18) were them-
selves members of the epithelial-specific set of transcripts
used to adjust gene expression for compartment size.
Closer examination of these data revealed that a modest
increase in apparent Krt2-8 and Krt1-18 expression levels
in late pregnancy is offset by more substantial upregula-
tion of other epithelium-specific genes, such as Ndrg1. To
determine whether this prediction was accurate, Krt2-8
protein expression was assessed by immunofluorescence
(Figure 3b). This analysis suggested that Krt2-8 expression
does indeed decrease on a per-cell basis within the murine
mammary epithelium during late pregnancy. This, in
turn, indicates that adjusted expression values can accu-
rately identify differentially regulated genes whose unad-
justed expression values within the mammary gland as a
whole do not appear to change.

Effect of compartment size adjustment on GO analysis
To identify coherent changes in functional gene expres-
sion patterns between late-pregnant (d18) and 10 wk nul-
liparous mice, statistically significant associations
between Gene Ontology (GO) categories and lists of up-
and down-regulated genes were identified using EASE
before and after adjusting for estimated changes in cell
compartment sizes [16]. Table 4 lists a subset of the signif-
icant associated terms in the Biological Process category
and Additional File 3 lists the significant GO terms. This
analysis revealed that GO terms relating to protein locali-
zation and protein transportation were significantly asso-
ciated with up-regulated gene lists irrespective of
adjustment for changes in cell compartment sizes. In con-
trast, while pre-adjustment gene lists suggested the down-
regulation of multiple metabolic pathways (fatty acid
metabolism, lipid metabolism, and carboxylic acid
metabolism), these associations were absent in the post-
adjustment gene list. This indicates that the initial associ-
ations observed were most likely a result of the dimin-
ished size of the WAT compartment during late pregnancy
rather than bona fide regulation within an expressing com-
partment.

Deconvolution of oncogenic Ras activation
Having demonstrated the ability of expression deconvolu-
tion toidentify gene expression changes in the setting of
marked changes inthe proportions of different cellular
compartments, we wished to use this approach to exam-
ine gene expression changes that occur in the mammary
gland as a consequence of oncogene Ras activation. Our
laboratory has previously described the mammary-spe-
cific, doxycycline-inducible expression of oncogenes
using bitransgenic mouse models [17-20]. For the present
experiments, an activated Ras transgene was placed under
the control of a tetracycline-dependent minimal pro-
moter, and Ras was induced in the mammary gland for
specified periods of time by administering animals 2 mg/
ml doxycycline in their drinking water. Mammary tissues
were harvested from nine mice each at day 0 (d0), day 1
(d1), day 2 (d2), day 4 (d4), day 8 (d8), and day 14 (d14)
of doxycycline treatment and oncogene induction. RNA
prepared from these samples was used to generate three
independent pooled samples, each consisting of RNA
from three animals, and microarray transcriptional profil-
ing was performed on Affymetrix MG-U74Av2 arrays.

As was performed for mammary development, tissue-spe-
cific gene lists from epithelial cells, WAT, and BAT were
first used to estimate changes in the relative proportions
of these three compartments following Ras induction
(Figure 4a). Expression deconvolution predicted that Ras
induction resulted in the dramatic expansion of the epi-
thelial compartment with a corresponding loss of BAT
and WAT (Figure 4a). Aanalysis of mammary whole
mounts and hematoxylin and eosin (H&E)-stained sec-
tions confirmed that after 4 days of Ras induction, the
mammary epithelial compartment occupied more than
70% of the mammary gland (Figure 4b). As was the case
for normal mammary gland development, calculated esti-
mates of changes in cell compartment sizes derived from
gene expression analysis (Figure 4a) closely paralleled
morphological changes observed in the mammary gland
induced following Rasactivation (Figure 4b).

We next adjusted gene expression levels to account for the
calculated baseline expression that would be attributable
to the estimated proportions of the three major cellular
compartments (MEC, WAT, and BAT). Gene expression
data were then re-analyzed to identify genes that were dif-
ferentially regulated following 4 days of Ras activation.
Additional File 4 lists gene expression change calls before
and after the adjusting for estimated changes in cell com-
partment sizes. Table 2 summarizes the number of
probesets with altered change calls, and Table 5 lists
selected genes that were considered to be differentially
expressed either before or after adjusting for changes in
cell compartment sizes.
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As observed for analyses of mammary development,
adjustment for changes in cell compartment sizes identi-
fied genes whose apparent expression changes actually
reflected changes in the sizes of their expressing cell com-
partment, as well as genes whose changes in expression
between these two points had been masked by changes in
cell compartment sizes. These effects were substantial as
32.4%, 58.3%, and 18.9% of up-, down-, and non-chang-
ing calls, respectively, were altered as a consequence of
adjusting for changes in cell compartment sizes (Table 2).

As was observed for the analysis of pregnancy-induced
changes in gene expression in the mammary gland, the
expression of adipocyte-specific genes such as Dci, Ucp3,
Cepba, Lep, Pparg, Fsp27, and Fabp4 that appeared to be
down-regulated prior to adjustment for cellular compart-
ment sizes, were no longer considered to be changed after
adjustment. This suggests that the apparent down-regula-
tion of these genes was due not to Ras-induced repression
of gene expression, but to the reduction in size of the adi-
pocyte compartment that occurs as a consequence of the
epithelial expansion triggered by Ras activation. Similarly,
although Krt2-8 and Krt1-18 appeared upregulated in
response to Ras activation prior to adjustment, these
genes were not considered to be differentially expressed

after deconvolution. This suggests that the increase in
cytokeratin expression observed following 4 days of Ras
activation principally reflects expansion of the epithelial
compartment rather than intrinsic regulation of these
genes within the epithelial compartment. Consistent with
the deconvolution analysis, significant changes in per-cell
expression of cytokeratin 8 protein levels were not
observed following immunofluorescence analysis per-
formed at these two time points (Figure 5a). Similar to
cytokeratins, the pro-apoptotic genes Bax, Bid, and Usp3
no longer showed significant up-regulation after adjusting
for expansion of the epithelial compartment. Consistent
with this result, TUNEL staining revealed low levels of
apoptosis that did not increase following Ras activation
(Figure 5b).

As was the case for our analysis of mammary gland devel-
opment, multiple genes were identified that were pre-
dicted to be differentially expressed only after adjusting
for changes in cell compartment sizes. Genes that were
predicted to be up-regulated following expression decon-
volution included Rras and Ctsb, whereas Mr1 was pre-
dicted to be down-regulated following adjustment. These
predictions are consistent with previously published
reports on the effect of Ras activation [21,22], providing

Table 4: Biological Processes regulated in mammary glands of pregnant vs. nulliparous mice. Biological Process terms significantly 
associated with lists of genes that were detected as differentially expressed, either before ("Pre-adj") or after ("Post-adj") adjusting for 
estimated changes in cell compartment sizes in the mammary gland of d18 pregnant vs. 10 wk nulliparous mice.

GO term Pre-adj Post-adj

(a) Upregulated genes
biosynthesis X
cellular biosynthesis X
establishment of localization X
establishment of protein localization X X
intracellular protein transport X X
intracellular transport X
localization X
macromolecule biosynthesis X
protein biosynthesis X
protein localization X X
protein transport X X
translation X
transport X

(b) Downregulated genes
carboxylic acid metabolism X
cell adhesion X
cellular lipid metabolism X
defense response X
fatty acid metabolism X
generation of precursor metabolites and energy X
immune response X
lipid metabolism X
organic acid metabolism X
response to biotic stimulus X
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Changes in cell compartment sizes following Ras activation in the mammary glandFigure 4
Changes in cell compartment sizes following Ras activation in the mammary gland. (a) Calculated proportions of 
BAT, WAT, and MEC compartments in the mammary gland at the indicated days following oncogenic Ras activation in MTB/
TRAS mice (mean ± SEM). Ras activation expands the epithelial compartment and decreases the adipocyte compartment. (b) 
Carmine-stained whole mounts (magnification 10×) and H&E-stained sections (magnification 100×) of number 3 mammary 
glands in MTB/TRAS mice showing changes in the sizes of cell compartments following oncogenic Ras activation similar to 
those predicted by deconvolution analysis.
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additional evidence that this approach can reliably adjust
expression profiles for changes in compartment sizes.

Having adjusted Ras-induced changes in gene expression
levels for changes in cell compartment sizes, we next ana-
lyzed lists of differentially regulated genes for statistical
association with Gene Ontology annotation. Analysis of

pre-adjusted gene lists revealed significant associations
between down-regulated genes and multiple energy-
related pathways, including glycolysis, lipid metabolism,
carbohydrate metabolism, fatty acid metabolism, and
electron transport (Additional File 5 and Table 6). This
result was surprising given the known ability of Ras to
stimulate glycolysis [23] as well as the presumably large

Table 5: Genes with altered change calls following four days of Ras activation after adjusting for compartment size changes.

Affy ID Symbol Gene name Pre-adj Post-adj

161497_f_at Itga7 integrin alpha 7 Down Up
99536_at Cib2 calcium and integrin binding family member 2 Down Up
103577_at Pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 Down Up
101015_s_at Ifnar2 interferon (alpha and beta) receptor 2 Down Up
98452_at Flt1 FMS-like tyrosine kinase 1 Down Up
93645_at Rgs7 regulator of G protein signaling 7 Down Up
99148_at Fh1 fumarate hydratase 1 Down Up
103556_at Angptl2 angiopoietin-like 2 Down Up
98418_at Dvl1 dishevelled, dsh homolog 1 (Drosophila) Down NC
98447_at Cebpa CCAAT/enhancer binding protein (C/EBP), alpha Down NC
93392_at Ucp3 uncoupling protein 3, mitochondrial Down NC
102016_at Fsp27 fat specific gene 27 Down NC
100567_at Fabp4 fatty acid binding protein 4, adipocyte Down NC
98527_at Dci dodecenoyl-Coenzyme A delta isomerase Down NC
98444_g_at Lep leptin Down NC
97926_s_at Pparg peroxisome proliferator activated receptor gamma Down NC
101017_at Cdk4 cyclin-dependent kinase 4 Up Down
93536_at Bax Bcl2-associated X protein Up Down
100498_g_at Stx3 syntaxin 3 Up Down
102736_at Ccl2 chemokine (C-C motif) ligand 2 Up Down
98433_at Bid BH3 interacting domain death agonist Up Down
102976_at Brca1 breast cancer 1 Up NC
102911_at Brca2 breast cancer 2 Up NC
101009_at Krt2-8 keratin complex 2, basic, gene 8 Up NC
95412_at Pdcd6 programmed cell death 6 Up NC
104275_g_at Trp53 transformation related protein 53 Up NC
94448_at Bcl10 B-cell leukemia/lymphoma 10 Up NC
94270_at Krt1-18 keratin complex 1, acidic, gene 18 Up NC
99085_at Usp3 ubiquitin specific protease 3 Up NC
103238_at Wnt4 wingless-related MMTV integration site 4 NC Down
93515_at Cdh16 cadherin 16 NC Down
160430_at Catnb catenin beta NC Down
97766_at Ros1 Ros1 proto-oncogene NC Down
102852_at Cdh2 cadherin 2 NC Down
92550_at Krt1-19 keratin complex 1, acidic, gene 19 NC Down
99670_at Bad Bcl-associated death promoter NC Down
92907_at Ocln occludin NC Down
101433_at Mr1 major histocompatibility complex, class I-related NC Down
92752_r_at Wnt10b wingless related MMTV integration site 10b NC Down
94394_at Rras Harvey rat sarcoma oncogene, subgroup R NC Up
92256_at Ctsb cathepsin B NC Up
95663_at Mmp2 matrix metalloproteinase 2 NC Up
100320_at Kpna4 karyopherin (importin) alpha 4 NC Up
97765_g_at Ros1 Ros1 proto-oncogene NC Up
162023_f_at Thbd thrombomodulin NC Up
104146_at Rasip1 Ras interacting protein 1 NC Up
98813_at Rel reticuloendotheliosis oncogene NC Up
99558_at Ccnc cyclin C NC Up
99467_at Rasa1 RAS p21 protein activator 1 NC Up
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energy requirement for macromolecular synthesis neces-
sary to sustain oncogene-induced epithelial proliferation.
However, after adjusting for the decreased proportion of
adipocytes in the mammary gland, these metabolic path-
ways were no longer significantly associated with down-
regulated genes (Table 6). This suggests that the observed
pre-adjustment association was principally a consequence
of the reduction in size of the WAT compartment induced
by Ras activation.

Finally, adjusting for changes in cell compartment sizes
revealed several significant associations between up-regu-
lated genes and GO categories that were not evident prior
to adjustment. These included genes associated with the
inflammatory response and integrin-mediated pathways
(Table 6). Ras-mediated activation of these pathways has
previously been described [24].

Comprehensive compartment dynamics in the mammary 
gland
The above findings demonstrate th‘at adjusting mammary
gene expression profiles for changes in the size of three

principal cellular compartments (MEC, WAT, and BAT) is
sufficient both to eliminate false-positive changes in gene
expression due to changes in cell compartment sizes and
to reveal intrinsic changes in gene expression that are
masked by changes of compartment sizes. Consequently,
we wished to extend this method for estimating compart-
ment size to include additional cell types for which
expression profiling data were available from purified cell
populations. These included macrophages, fibroblasts, B-
cells, T-cells, and plasma cells. Estimates of relative
changes in the size of each cell type compartment were
derived as before for mammary gland development and
inducible Ras activation (Figure 6).

As shown in Figure 6a, the calculated proportions of
hematopoietic cells, including B cells, plasma cells, CD4+
and CD8+ T cells, and macrophages, were found to
increase during lactation or early postlactational involu-
tion. These findings are consistent with previous reports
and with the putative roles of these cell types in antibody
secretion into milk and the detection and clearance of
apoptotic alveolar debris during postlactational involu-

Cytokeratin 8 expression and apoptosis in the mammary gland following Ras activationFigure 5
Cytokeratin 8 expression and apoptosis in the mammary gland following Ras activation. (a) Immunofluorescence 
staining for cytokeratin 8 (Krt2-8) in the mammary gland at d0 and d4 following oncogenic Ras activation revealed no significant 
changes in its expression within epithelial cells. (b) TUNEL analysis showing that Ras activation does not increase apoptosis 
rates in the mammary glands following four days of Ras activation.
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tion [24,25]. Additional increases in macrophage and
CD8+ T cell abundance were predicted at the onset of
puberty, and fibroblast abundance was estimated to
decrease during pregnancy and subsequently increase dur-
ing involution.

Estimated changes in macrophage and fibroblast cell pop-
ulations in the mammary gland following Ras activation
are shown in Figure 6b. The calculated increase in macro-
phages following Ras activation suggested macrophage
infiltration into the mammary gland. The accuracy of this
prediction was supported both by enzyme-linked immu-
nosorbent assay (ELISA) of IL-1β, a known potent media-
tor of immune and inflammatory responses [26], and
macrophage infiltration assays at d4 following Ras induc-
tion (manuscript in preparation).

Notably, while the mammary epithelial compartment
constitutes the majority of the mammary gland after 2

days of Ras activation (Figure 4a and 4b), a progressive
increase in the estimated proportion of fibroblasts was
noted at d4, d8, and d14 (Figure 6b). We considered the
possibility that the apparent increase in fibroblast-associ-
ated genes might reflect an epithelial-mesenchymal tran-
sition (EMT) resulting from Ras activation. To explore this
possibility, we examined this data set for the expression of
Snail, a potent activator of EMT [27,28]. Consistent with
our prediction, both microarray gene expression data as
well as Northern hybridization analysis showed dramatic
up-regulation of Snail in response to Ras activation (Fig-
ure 7).

Discussion
While microarray expression profiling can be used to
directly infer intracellular gene regulation within homo-
geneous cell populations, the complex mixture of cell
types within tissues of higher organisms substantially
hampers the interpretation of results from such experi-

Table 6: Biological Processes regulated by Ras activation. Biological Process terms significantly associated with lists of genes that were 
detected as differentially expressed, both before ("Pre-adj") and after ("Post-adj") adjusting for estimated changes in cell 
compartment sizes in the mammary glands at d4 vs. d0 following Ras activation.

GO Term Pre-adj Post-adj

(a) Upregulated genes
cell surface receptor linked signal transduction X
cell-matrix adhesion X
DNA metabolism X
inflammatory response X
integrin-mediated signaling pathway X
M phase of mitotic cell cycle X
mRNA processing X
protein amino acid phosphorylation X
regulation of organismal physiological process X
response to wounding X
RNA processing X
signal transduction X

(b) Downregulated genes
antigen presentation, endogenous antigen X
ATP synthesis coupled electron transport X
carbohydrate metabolism X
cellular lipid metabolism X
cofactor metabolism X
electron transport X
fatty acid metabolism X
fatty acid oxidation X
glycolysis X
lipid metabolism X
nucleoside triphosphate metabolism X
organic acid metabolism X
oxidative phosphorylation X
proton transport X
purine nucleoside triphosphate metabolism X
ribonucleoside triphosphate metabolism X
sterol biosynthesis X
tricarboxylic acid cycle X
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Estimated changes in the relative abundance of stromal cell typesFigure 6
Estimated changes in the relative abundance of stromal cell types. Calculated relative abundance (mean ± SEM) of 
stromal cell types (a) during mammary gland development or (b) following oncogenic Ras activation. Expression levels shown 
are the average of normalized expression levels of the tissue-specific genes for each tissue/cell type listed in Table 1.
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ments. Specifically, changes in gene expression observed
within complex tissues may be due either to changes in
gene regulation within a given cell type or to changes in
the relative abundance of expressing cell types. Given the
necessity of understanding complex biological processes
such as development and carcinogenesis within the con-
text of intact tissues, this problem is of substantial impor-
tance.

Previous attempts to address this problem have focused
on purification or enrichment of defined cell types by
physical methods, such as laser-capture microdissection
or magnetic bead separation [1,2]. While these
approaches have been successful, they are labor-intensive
and become prohibitive when attempting to analyze large
sample collections. As an alternative, we have chosen to
apply a computational method for deconvoluting expres-
sion profiles derived from intact tissues by using reference
data derived from purified populations of the constituent
cell types. An analogous approach has previously been
used by Lu et al. for analyzing cell populations during the

yeast cell cycle [6]. However, the more challenging goal of
deconvoluting gene expression within a complex meta-
zoan tissue has not previously been reported.

As Lu et al. noted in their studies in yeast, a critical element
of the deconvolution approach is the choice of purified
cell populations that will adequately represent the reper-
toire of cell types present within the mixed population [6].
In the case of the mammary gland, identification and
accurate representation of the multiple cellular compart-
ments present is nontrivial. To attempt to model the
major cell types in the murine mammary gland, we chose
populations representing mammary epithelial cells, white
adipocytes, brown adipocytes, fibroblasts, plasma cells, B
cells, T cells (CD4+ and CD8+), and macrophages.
Despite the relatively large number of cell types modeled,
it is worth noting that even this represents an over-simpli-
fication since these cell types may be further subdivided
based on lineage (luminal vs. alveolar vs. myoepithelial
cells) or differentiation status (preadipocytes vs. mature
adipocytes). Moreover, additional cellular compartments,
such as those responsible for the mammary vasculature,
were not included in the model. It is notable, therefore,
that we were able to achieve robust results simply by
restricting the deconvolution model to three major cellu-
lar components (MEC, WAT, and BAT). This suggests that
fluctuations in the sizes of these three compartments
account for a significant amount of the variation in gene
expression observed during mammary gland develop-
ment and carcinogenesis.

After identifying the relevant constituent cell types within
a tissue, it is then necessary to identify robust sets of refer-
ence genes whose expression is specific to a given cell type
and relatively unaffected by different physiological and
experimental conditions. Cell type-specific genes have
previously been identified using a variety of methods,
including signal-to-noise calculations [29], linear discri-
minant analysis [30], and feature relevance approaches
[31]. Additionally, a number of epithelial cell type-spe-
cific genes within the mammary gland have previously
been identified using affinity-purified populations from
normal and neoplastic mammary tissues [4]. Many of
these mammary epithelial markers, including Krt2-8,
Krt1-18, Krt1-19, and Stard10, were also identified in the
current analysis. We now extend previous work by using
these cell type-specific genes to provide quantitative esti-
mates of compartment size and to adjust expression val-
ues by taking into account changes in compartment sizes.
In the analysis presented here, we have combined a signal-
to-noise approach (through T statistic rankings) with lin-
ear discriminant analysis in order to identify genes that
are preferentially expressed within individual cell types.
Although cell type classification cannot be considered
equivalent to the problem of estimating the proportional

Upregulation of Snail by Ras activationFigure 7
Upregulation of Snail by Ras activation. (a) Normalized 
microarray expression profiling (mean ± SEM) or (b) North-
ern hybridization analysis of Snail expression as a function of 
oncogenic Ras activation.
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contributions of those cell types to a mixed population,
we reasoned that the most discriminating genes for classi-
fication were also likely to provide a set of genes from
which successful estimates of cell compartment size could
be derived.

To attempt to identify genes that would provide useful
markers for cell type abundance by identifying those with
consistent expression under a variety of biological condi-
tions, we analyzed the behavior of candidate genes in data
sets spanning mammary gland development. Since mam-
mary development encompasses a diverse group of bio-
logical processes including branching morphogenesis,
alveolar differentiation, apoptosis, and extracellular
matrix remodeling [10], it provides a useful test set for fur-
ther gene selection. To identify outlier genes that were sig-
nificantly regulated during development, we eliminated
genes whose expression was not sufficiently correlated
with the normalized mean profile of discriminating genes
for specific cellular compartments. The fact that this over-
all approach selected a number of known marker genes
specific for each tissue, including Krt2-8 and Krt1-18 for
mammary epithelial cells, Ucp1 for BAT, Retn for BAT, and
CD8a and CD8b for CD8+ cells, suggests that it was suc-
cessful. Furthermore, the identification and elimination
of genes (such as Cidea) with expression patterns that
clearly differ from these known marker genes underscores
the importance of this step. Optimal extension of this
method to other organs and organisms will, in each case,
require the collection of data from reference populations
under a sufficiently diverse set of biological conditions.

The refined list of co-regulated marker genes and their ref-
erence expression values were then used to estimate the
proportional contribution of each cell type to the mixture
of mammary cell populations by using simulated anneal-
ing to estimate solutions to the corresponding linear
equations. When this technique was applied to solve
equations for the relative contributions of three major
mammary cell types across mammary gland develop-
ment, we achieved quantitative predictions of cellular
compartment size changes that were strongly correlated
with observed morphological changes. To further confirm
the utility of this computational approach, we applied this
method to a conditional transgenic mouse model in
which oncogenic Ras was inducibly activated in the mam-
mary epithelium. As before, estimated changes in com-
partment sizes derived from this model were consistent
with those observed by morphological analysis of mam-
mary whole mounts and stained sections.

Finally, we extended this expression deconvolution
approach to include additional cell types, particularly
those of the hematopoietic system. This approach pre-
dicted increases in several types of immune cells during

lactation and postlactational involution, consistent with
previous reports of their role in clearing apoptotic debris
and with their persistent presence in the mammary gland
following the cycle of pregnancy, lactation, and postlacta-
tional involution [24,25]. Interestingly, expression decon-
volution also predicted an increase in macrophages and
CD8+ cells at the onset of puberty. Although macrophages
have previously been shown to be required for ductal
elongation and to be recruited to puberty-specific struc-
tures termed terminal end buds [32], to our knowledge
there has been no similar role described for T cells. Taken
together, our results support the contention that the
method described can reliably estimate dynamic changes
in cellular compartments within a complex mammalian
organ.

Deconvolution-adjusted expression analysis
While the ability to estimate compartment dynamics is
useful in its own right, we were particularly interested in
attempting to adjust gene expression values derived from
whole-organ profiling in order to eliminate apparent
changes in expression due solely to compartment dynam-
ics. Furthermore, changes in expression due to changes in
compartment sizes can offset genuine alterations in gene
expression within particular cell types such that net
expression may appear unchanged. Thus, adjusting
expression values has the potential to reduce false-positive
and false-negatives gene expression changes and to
thereby increase both the sensitivity and specificity of dif-
ferential gene expression experiments.

To adjust the expression signal associated with any given
gene on the array, we utilized our estimates of compart-
ment size in conjunction with mean expression values for
that gene in each of the reference populations represent-
ing different cell types. This yielded a gene expression
value that would be expected if its expression in other
samples was solely determined by the composition of the
sample with respect to each compartment in the absence
of regulation within a compartment. The "predicted"
value based on compartment sizes was then subtracted
from the observed value and SAM was used to identify dif-
ferentially expressed genes. Assuming that the expression
value of a given gene in the reference samples provides a
reasonable estimate of basal expression of that gene in the
tissue, this comparison of "deconvolution-adjusted"
expression values should reduce the number of genes
identified as differentially expressed as a consequence of
changes in compartment sizes.

When this approach was applied to the analysis of gene
expression changes that occur during pregnancy and in
response to Ras activation, the post-adjusted change calls
of most genes were consistent with previous reports in the
literature. For example, Abcg1, Abcg2, Csna, Csnb, and
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HIF1a have been previously shown to be upregulated dur-
ing pregnancy [33], and Myc [34], Ccnd1, Cxcl1, Tgfb1, and
Itgb2 are known to be induced by Ras activation [24]. The
current approach retains the upregulated change calls of
these genes.

Using this approach, we were also able to identify genes
that appeared to be differentially expressed before- but
not after-adjusting for changes in cell compartment sizes.
These likely correspond to genes whose apparent expres-
sion levels change only as a consequence of compartment
dynamics. Conversely, we were also able to identify genes
whose expression appeared unchanged prior to adjust-
ment, but which were found to be differentially expressed
once changes in cell compartment sizes had been taken
into account. These may represent genes whose bona fide
regulation is masked by offsetting changes in compart-
ment sizes. Finally, statistical association of post-adjust-
ment gene expression lists with Gene Ontology (GO)
revealed some biological processes that were masked by
changes in compartment sizes. Several of the pathways
significantly associated with post-adjustment gene expres-
sion changes have either been reported in the literature or
confirmed experimentally by ourselves, such as the activa-
tion of inflammatory response and integrin-mediated
pathways induced by Ras activation.

Despite the successful application of this approach to the
adjustment of gene expression profiles, several caveats
must be considered. First, any given adjusted gene expres-
sion profile is critically dependent upon the behavior of
that particular gene in the relatively homogeneous and
purified cell populations used as the reference samples.
That is, adjustments are based on the assumption that
"basal" gene expression can be estimated by the average
gene expression value in the reference samples from the
same organism that are of a given cell type. Thus, if the
typical expression levels for a given gene in its relevant
compartment in vivo is substantially higher than that
measured in the purified population, a change due solely
to changes in the size of that compartment will be under-
compensated and expression of the gene may still appear
to change. Thus, while we expect that this method will
enrich for genes that are intrinsically regulated within
cells, a certain number of "false positive" changes will
undoubtedly remain.

Ultimately, the success of this enrichment will depend
upon the purified populations used to provide the basis
for subsequent estimates. In this regard, we anticipate that
our results would be improved by deriving reference
expression values from purified primary cell populations
derived directly from the mammary gland. Although
LCM-based analysis of large numbers of specimens may
be difficult, a number of groups have successfully utilized

this strategy to purify tumor populations [35,36]. LCM of
a small number of reference samples may be ideal for iso-
lating purified reference cell populations, and the result-
ing expression profiles can be used in conjunction with
our computational approach for higher-throughput anal-
ysis of a large number of samples. While such an LCM-
based method may provide improve estimates of com-
partment-based gene expression, however, the experimen-
tal validation of results obtained in the current study
suggests that even non-ideal reference samples can sub-
stantially improve the detection of intrinsically regulated
genes.

A second caveat that applies specifically to the initial esti-
mates of compartment size is that differentiation of a
given cell type may lead to what essentially constitutes a
new cell type. Adequate modeling of such a cell type
would be unlikely using the original reference popula-
tions. This problem may particularly complicate deconvo-
lution efforts when a cellular process causes one cell type
to express markers that are characteristic of another cell
type from the reference set. This phenomenon may
account for the substantial increase in the estimated abun-
dance of fibroblasts observed in the mammary gland fol-
lowing Ras activation. Rather than an increase in bona fide
fibroblasts, this may instead reflect the expression of mes-
enchymal markers in mammary epithelial cells due to an
epithelial-mesenchymal transition, as suggested by the
increase in Snail expression that we observed in response
to Ras activation. The converse problem – multiple cell
types (such as normal vs. neoplastic epithelial cells)
appearing as a single type (epithelial) – should also be
considered. However, our results suggest that this latter
case is more likely to be interpretable using sensitive
methods for detecting differential expression after correct-
ing for other, more biologically distinct, cell populations.

Conclusion
Our extension of the expression deconvolution approach,
in conjunction with deconvolution-adjusted expression
analysis, demonstrates the ability to correct microarray
data obtained from a complex, heterogeneous mamma-
lian organ for changes in compartment sizes. Beyond
identifying changes in tissue compartments, this
approach permits the improved detection of differentially
expressed genes. Finally, these adjusted differential
expression estimates identify statistical associations with
functional annotation that suggest novel aspects of mam-
mary gland biology and carcinogenesis. Our findings indi-
cate that this model of expression deconvolution provides
a powerful tool for the study of complex cellular mixtures
in higher organisms.
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Methods
Cell culture and tissue harvest
The non-transformed murine mammary epithelial cell
(MEC) line, NMuMG [37], was cultured in Dulbecco's
modified Eagle's medium (DMEM) supplemented with
10% bovine calf serum, 1% penicillin/streptomycin, and
2 mM L-Glutamine.

FVB/N (Taconic) mice were housed under barrier condi-
tions with a 12 hr light/dark cycle and access to food and
water ad libitum. Brown adipose tissue (BAT) was
obtained from the interscapular fat pad of FVB mice.
White adipose tissue (WAT) was obtained from sacral fat
depots. Harvested tissues were snap frozen for RNA isola-
tion.

Tissues used for microarray analyses of murine mammary
gland development included independent, triplicate
pools of mammary tissue from 10-week-old adult males
as well as females at 12 time points of mammary gland
development representing puberty, pregnancy, lactation,
and postlactational involution [7]. All animal work
described in this paper was carried out under humane
conditions and has been approved by the University of
Pennsylvania Laboratory Animal Resources committee.

Doxycycline-inducible systems that permit conditional
gene expression in bitransgenic mice have been described
[17]. The bitransgenic mouse line, MTB/TRAS, carries two
transgenic constructs. The first, MMTV-rtTA (MTB),
expresses the reverse tetracycline transactivator (rtTA)
under the control of the murine mammary tumor virus
(MMTV) promoter. The second, TetO-v-Ha-Ras (TRAS),
expresses v-Ha-Ras under the control of the tetracycline-
dependent minimal promoter. When MTB/TRAS mice are
given 2 mg/ml doxcycline in drinking water, Ras is rapidly
and specifically induced in the mammary gland [17]. The
third, fourth, and fifth mammary glands were harvested
from MTB/TRAS mice at days 0, 1, 2, 4, 8, and 14 of dox-
cycline treatment. At each time point, independent tripli-
cate samples were prepared with each sample consisting
of tissue pooled from 3 mice.

Mammary whole mounts and immunostaining
Mammary glands were mounted on glass slides, fixed in
4% neutral buffered paraformaldehyde overnight, and
transferred to 70% ethanol. Whole mounts were stained
with carmine alum as described [9].

Mammary glands embedded in OCT were sectioned at 8
μm and fixed for 10 min in 4% neutral buffered parafor-
maldehyde. After rinsing 3 times in PBS (10 minutes/
rinse), sections were treated in 0.5% Triton X-100 for 20
min. Sections were then rinsed 3 times in PBS and incu-
bated in blocking buffer (PBS, 5% BSA, 0.3% Triton X-

100, and 10% normal goat serum) for 1.5 hr at room tem-
perature. Rat anti-mouse cytokeratin 8 (DSHB, the Uni-
versity of Iowa) was diluted in blocking buffer and
incubated on sections overnight at 4°C. Sections were
rinsed 3 times in PBS/0.3% Triton X-100 and stained with
1:1000 Alexa 567 conjugated goat anti-rat IgG (Molecular
Probes) at room temperature for 2 hr. Stained sections
were rinsed once in PBS/0.3% Triton X-100 and twice in
PBS. Nuclei were counterstained with 1 μg/ml Hoechst
33258 dye, mounted in Fluoromount-G (SouthernBio-
tech) and visualized using a Leica DMRXE microscope. All
images were captured using identical settings.

Microarray analysis
Total RNA from cell lines and tissues was isolated and
purified as described [38]. cDNA was generated and bioti-
nylated cRNA was hybridized to Affymetrix MG-U74Av2
oligonucleotide microarrays as described [7]. Data files
and published CEL files representing gene expression pro-
files for other cell types were listed in Additional File 1.
For murine development, previously generated RNA
pools [7] were re-analyzed on MG-U74Av2 arrays. All raw
data were analyzed using Affymetrix GeneChip5.0
(MAS5) with default normalization to a target signal of
150.

Identification of tissue-specific genes
To identify cell type-specific genes, the two-tailed Student
t-test was first used to compare all possible sample pairs
representing different tissue and cell types. Transcripts
were selected that were consistently expressed at levels
within a tissue at least 5.0-fold higher compared to any
other tissue or cell type analyzed at a significance of p <
0.0005. Transcripts were then excluded that were consid-
ered "Absent" by MAS5 or that had an MAS5 signal value
<500 in samples from the tissue within which they were
most highly expressed. Transcripts on the resulting list
were ranked based on signal-to-noise ratio using the Z-
score transformed data for each sample [29] where higher
values reflect consistently higher expression in the given
group compared to expression in all other cell types. For
genes measured by multiple probesets, the probeset with
the highest MAS5 signal was retained if probe sets were
adjacent in rank; in all other cases, the highest-ranking
probe set was used.

To eliminate poorly discriminating genes, the ranked gene
list for each tissue and cell type was further filtered using
the SAS procedure PROC STEPDISC with the backward
method and default significance level (Version 9.1 of SAS
System for Windows). The most discriminating genes
were thereby selected that minimized the ratio of within-
group (consistently high or low expression with a group
of tissue samples) sum of squares to total sum of squares
for the model. Genes for each tissue type that passed the
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backward stepwise discriminant analysis were considered
to represent the most specific genes for that tissue for sub-
sequent analysis. A crude estimate of the efficiency of this
step was obtained using the leave-one-out cross validation
method in SAS PROC DISCRIM with the POOL and
CROSSVALIDATE options and pooled covariance matrix
when calculating the squared distances.

Computational estimation of proportional contributions 
from cell types
Expression values for cell-type-specific genes were
obtained from each reference sample and averaged across
samples obtained from the same cell or tissue type. These
values were taken as estimates of basal expression for fur-
ther work. All subsequent calculations were performed
after first normalizing the expression in each sample (or
averaged sample group) across all probesets such that the
mean = 0 and the standard deviation = 1. Estimation of
the relative proportions of each cell type was then per-
formed by obtaining solutions to linear equations of the
form Ax = y, where A is an m × n matrix of expression val-
ues (m genes × n reference groups), y is a vector of m val-
ues in the test sample, and x is the vector of n values
reflecting the estimated relative proportions of each cell
type within the mixture. Solutions for x were estimated
using simulated annealing as described by Lu et al. [6]

Deconvolution-adjusted expression analysis

Given a sample for which an estimate of the relative pro-
portions of composite cellular compartments has been
obtained, gene expression was normalized by subtracting
the expected contribution for each component. That is,
the difference in expression that would have occurred in
the absence of changes in compartment size was esti-

mated using  where gadj is an

adjusted expression value, gorig is the observed expression

value in the test sample, and xk and ek refer to estimated

proportions and expression values in each of n reference
cellular compartments, respectively. To identify genes for
which observed expression changes were not due to
changes in the abundance of its expressing cell types, Sig-
nificance Analysis of Microarrays (SAM) [11] was used to
compare sets of gadj from replicate measurements under

various experimental conditions. Comparisons were per-
formed with a False Discovery Rate (FDR) cutoff of 3%. A
Java application that calculates adjusted gene expression
based on estimated proportions of an arbitrary number of
cellular components is available for public download
[39].

Association with Gene Ontology (GO) annotation
Statistical associations between GO annotation and lists
of differentially expressed genes were identified using
EASE [16]. Multiple testing correction was performed
using within-system bootstrapping, and a final cutoff of p
< 0.05 was used to identify statistically significant associ-
ations.
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Additional File 1
Sources of Affymetrix MG-U74Av2 raw data used in the identification of 
tissue-specific genes
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-328-S1.doc]

Additional File 2
Genes significantly regulated in mouse mammary gland at pregnancy 
compared to nulliparity. An Excel file containing all genes on Affymetrix 
MG-U74Av2 arrays that were analyzed by comparing mammary tissues 
of d18 pregnant and 10 wk nulliparous mice. The file lists the change calls 
of the genes before ("Pre-adj") and after ("Post-adj") taking the estimated 
changes of cell compartment sizes into account.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-328-S2.xls]

Additional File 3
GO terms significantly associated with genes activated by pregnancy. 
An Excel file containing the GO terms significantly associated with genes 
whose expression were considered to be significantly regulated, both before 
("Pre-adj") and after ("Post-adj") taking estimated changes in cell com-
partment sizes into account in the mammary glands of d18 pregnant and 
10 wk nulliparous mice.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-328-S3.xls]

Additional File 4
Genes regulated by oncogenic Ras activation. An Excel file containing 
genes on Affymetrix MG-U74Av2 arrays that were analyzed by comparing 
mammary tissues at d4 and d0 following Ras activation. The file lists the 
change calls of genes before ("Pre-adj") and after ("Post-adj") taking the 
estimated changes of cell compartment sizes into account.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-328-S4.xls]
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