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Abstract
Prion diseases are transmissible neurodegenerative diseases that arise due to conforma-

tional change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc).

Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways

that includes immunological and apoptotic pathways. As a result, this culminates in the dys-

function and death of neuronal cells. Earlier works on transcriptomic studies have revealed

some affected pathways, but it is not clear which is (are) the prime network pathway(s) that

change during the disease progression and how these pathways are involved in crosstalks

with each other from the time of incubation to clinical death. We perform network analysis

on large-scale transcriptomic data of differentially expressed genes obtained from whole

brain in six different mouse strain-prion strain combination models to determine the path-

ways involved in prion diseases, and to understand the role of crosstalks in disease propa-

gation. We employ a notion of differential network centrality measures on protein interaction

networks to identify the potential biological pathways involved. We also propose a crosstalk

ranking method based on dynamic protein interaction networks to identify the core network

elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially

expressed genes) potentially related to the prion disease progression. Functional associa-

tion of the identified genes implicates a strong involvement of immunological pathways. We

extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose

an ODE model for the bow-tie network. Predictions related to diseased condition suggests

the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network.

In this work, we show using transcriptomic data that the neuronal dysfunction in prion dis-

ease is strongly related to the immunological pathways. We conclude that these immuno-

logical pathways occupy influential positions in the PFNs (protein functional networks) that

are related to prion disease. Importantly, this functional network involvement is prevalent in

all the five different mouse strain-prion strain combinations that we studied. We also con-

clude that the dysregulation of the core elements of the bow-tie structure, which belongs to

PI3K-Akt signaling pathway, leads to dysregulation of the downstream components corre-

sponding to other biological pathways.
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Introduction
Prion proteins are potential disease causing agents in a group of fatal neurodegenerative dis-
eases which affects diverse group of species, including humans. Prions replicate by conversion
of cellular prion protein (PrPC) to disease specific PrPSc isoforms. Accumulation of misfolded
PrPSc proteins, rich in β-sheet structure, has been hypothesized to trigger a series of events
which leads to neuronal dysfunction and death [1]. Many other neurodegenerative diseases
such as Alzheimer’s or Parkinson’s diseases, are also due to the result of protein misfolding,
and they are characterized by abnormal protein deposition and plaque formation [1, 2]. The
pathological mechanisms related to prion disease may be relevant to other such neurological
illness [3]. The similarities among these wide range of neurodegenerative diseases suggest that
a thorough understanding of the molecular mechanisms related to prion diseases may prove to
be of therapeutic importance to several other diseases.

Different strains of infectious prions, presumably arising from distinct structural forms of
misfolded prion proteins, has different effects on disease progression (e.g. duration of incuba-
tion time, affected sites in the brain, etc.) [4]. This variation in the prion strains and their inter-
actions with different host genotypes leads to variation in the pathogenesis of prion disease [4].
This poses a problem of identifying the core processes involved in the disease progression. To
overcome this problem and to identify the shared biological modules that are affected by differ-
ent prion-strain and host-genotype combinations, Hwang et al. [5] performed transcriptomic
studies involving eight distinct mouse strain-prion strain models. They used five mouse strain-
prion strain combinations and identified 333 differentially expressed core genes that showed
high correlation in their patterns of differential expression throughout the disease progression.
The core genes were further used to obtain dynamic protein interaction networks correspond-
ing to different time-stamps in the disease progression. This mapping of differentially
expressed genes to protein networks capture the temporal node dynamics of the network and
also help in identification of the network modules being dysregulated as disease progresses.

Majority of the current methods [6] are dependent upon the static representation of protein
interaction networks for analysis. This fails to capture the dynamic changes occurring within
the cell. To investigate the changes with the prion disease progression, and also because differ-
ent domain data can provide complementary biological insights [7], we integrate protein func-
tional network data [8] with temporal gene expression data to computationally construct
dynamic, time-specific protein networks [9]. Unlike Hwang’s work [5], in which network
topology was not taken into consideration for the identification of the shared core genes, our
work focus on utilizing the structure of time-stamped protein networks to identify the shared
genes and the related biological pathways being involved in prion disease progression.

In this work, we address the question of core network-central pathways being involved in
prion diseases, irrespective of the prion strain and host genotypes. We also look into the possi-
bility of how these pathways may be involved in crosstalk during disease progression. We inte-
grate time-specific differentially expressed genes corresponding to six mouse-prion models
with static protein functional networks. These integrated networks show both node and edge
dynamics in contrast to showing only node dynamics present in Hwang’s work. We use net-
work theoretic concepts on these time-stamped networks to identify 148 shared DEGs com-
mon to five disease reproducing mouse-prion combinations. Relatively less number of shared
DEGs in this work as compared to Hwang’s work is attributed to the procedural constraints
applied to identify these genes. We consider only those DEGs as important whose correspond-
ing proteins show considerable change in their topological properties in the disease related pro-
tein networks as compared to that in the protein networks related to a control mouse-prion
model (mouse-prion combination which cannot develop the prion disease). Many signaling
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pathways and biological modules, including immunological pathway have been previously
reported to be dysregulated during prion disease progression [10][11]. However, it is not clear
which are the prime biological modules and pathways involved, and how these pathways inter-
act and affect other pathways during prion disease pathogenesis. The shared 148 DEGs repre-
sent the genes whose related proteins are present at network-influential positions in the disease
related protein networks, and hence the biological modules and pathways enriched in this set
of DEGs should be considered important. Understanding the crosstalk between these pathways
during disease progression can help in better understanding of the disease, and can also help in
designing better therapeutic interventions [12]. We also identify a bow-tie structure being
potentially affected during the disease condition. We propose an ODE model for this identified
network structure which can be used as an abstract model to understand behavioral changes in
the network components with different perturbations.

Materials and Methods
Fig 1 outlines the basic methodology employed in this work. We start with microarray experi-
ments to study differential expression of genes under a specific diseased condition from which
we identify relevant biological networks. We then mathematically model the network to predict
the behavior of the system under different conditions and validate the behavior with another
set of microarray data obtained under similar conditions.

Datasets
We obtain the gene expression data from the prion disease database (PDDB) [13]. This data-
base contains all the information corresponding to the experiments performed by Hwang et al.
[5]. PDDB also provides P-values for the differential expression of genes at different time-
points corresponding to different mouse-prion models. In particular, we use 13,822 genes with
their corresponding time-specific P-values in six different mouse-prion models. We obtain
functional protein interaction networks corresponding to these time-specific DEGs using
STRING database [8]. The STRING database maps a gene to a unique protein. We also use
KEGG database [14] to retrieve information about the genes that belong to different biological
pathways. Table 1 lists the details of six different mouse-prion models used in this work which
represents a subset of the mouse-prion combinations used by Hwang et al. [5]. The microarray
experiments performed by Hwang et al. [5] involved eight different mouse-prion combina-
tions. Out of those eight, five combinations involved mouse having normal PrP expression,
one with no PrP expression, and two with mutated (increased/decreased) levels of PrP expres-
sions. Since the scope of this study is to highlight functionally relevant genes for prion disease,
irrespective of the mouse genotype and prion strain, we include only those mouse-prion com-
binations for our study which involves mouse having normal PrP expression. It has been
shown that the mouse with no PrP genotype cannot develop prion disease [15]. Hence, we use
the mouse-prion model with mouse having no PrP genotype (FVB-0/0-RML), as the control
combination to filter out DEGs not relevant for prion disease.

Protein functional networks (PFNs)
For every mouse strain-prion strain combination at a particular time-stamp, we identify DEGs
by taking the genes having P-values less than the predefined threshold (< 0.05). We then map
these time-specific DEGs to static protein functional interaction network using STRING data-
base (version 9.1) to obtain time-specific protein networks that corresponds to a particular
mouse-prion model. The edges in the functional protein networks obtained from the STRING
database are weighted with a score from 100 to 1000 on the basis of their confidence, with 100
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Fig 1. Basic workflow of this study. (A)We use microarray experiments to study differential gene expressions under specific disease conditions. (B.1)The
DEGs are mapped to PPI networks using STRING database to get time-stamped PPI networks for every mouse-prion models. (B.2)Protein networks are
used to identify potential disease related genes. (B.3)The identified shared DEGs are then used to identify genes potentially participating in crosstalk. These
potential crosstalk genes are then mapped to KEGG database to identify a consensus bow-tie network. (C)Mathematical modeling of the identified bow-tie
network using ordinary differential equations. (D) Prediction of the activities of the network components during disease condition. (E)Validation of predicted
differential gene expression by comparing it with the microarray results. *The microarray experiments were performed in Hwang et al. [5].

doi:10.1371/journal.pone.0144389.g001
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being least and 1000 being the highest confidence. The STRING database defines certain edge
thresholds for retrieving networks of different confidence, that is, 150 for low confidence, 400
for medium confidence, 700 for high confidence, and 900 for highest confidence. To minimize
false negative and false positive interactions in the retrieved protein functional association net-
works, we use a minimum edge confidence level of 700 to construct the networks. The net-
works we obtain mostly consists of a single large component and several small disconnected
components. We use the largest connected component of the respective networks for further
analysis. We provide the details about the number of nodes and interactions of the extracted
networks (Tables C-H in S1 File).

Global properties of time-stamped protein functional networks
We analyze the global properties of the time-specific protein functional networks using Cytos-
cape software [16]. In particular, we extract the information related to the following global
properties, that is, average clustering coefficient, average shortest path length, centralization,
density, and network heterogeneity.

Network-influential disease genes
Local topological properties like degree, closeness centrality, and betweenness centrality can
identify important nodes in biological networks [17, 18]. Comparing these local properties of
the nodes in protein networks, corresponding to different biological conditions can help to
identify proteins showing condition-specific network activity [19]. We compare time-specific
protein networks corresponding to disease reproducing mouse-prion models with the protein
networks of the control model. We use two approaches to identify network influential proteins
pertaining to diseased condition. First, we identify the common proteins in the protein net-
works of diseased and the control state, and distinguish these proteins on the basis of their
topological properties. Second, we identify unique proteins in the protein networks corre-
sponding to the diseased condition.

We apply the notion of differential network centrality measures on the protein networks.
We identify the common proteins showing high topological activity in the protein network of
diseased combination as compared to the protein networks of the control combination. We
compare local topological properties (degree, closeness centrality, betweenness centrality) of
the common proteins in both the diseased and control protein networks. The aim is to identify
proteins showing high network activity in disease related protein networks by measuring the

Table 1. Mouse strain-prion strain combinations0.

Mouse strain Prnp genotype1 Prion strain End point2 Harvest interval

C57BL/6J (BL6) a/a RML 23 2

C57BL/6J (BL6) a/a 301V 41 4

C57BL/6I-1 (B6.I) b/b RML 48 4

C57BL/6I-1 (B6.I) b/b 301V 18 2

FVB/Ncr (FVB) a/a RML 22 2

FVB.129-prnp (FVB) 0/0 RML 51 4

0The table lists different mouse-prion combinations used in this study.
1Host genotype for PrPC protein.
2Represents the clinical death of mouse.

doi:10.1371/journal.pone.0144389.t001
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centrality difference of the common proteins between control and disease related protein net-
works. We visualize the distribution of the centrality difference by plotting histograms of the
calculated centrality difference against the number of genes. The plots show that the distribu-
tion is normal, with their mean close to zero (Figure C in S1 File). We choose to categorize the
genes lying beyond the right standard deviation of the distribution as highly disease specific.
Besides the common proteins, we also identify unique proteins showing high network central-
ity. We consider a unique protein as highly disease specific if it shows high degree centrality
(having degree more than 10) in the disease related protein networks.

Fig 2 outlines the procedure which we use to identify network influential proteins related to
prion disease. we map time-specific DEGs (TSDs) to protein networks using STRING database.
For a particular disease developing mouse-prion model, we compare its TSDs with all the
DEGs (differentially expressed at any time-point) of the control combination (Fig 2B). We
obtain time-specific differential common DEGs (TDCDs) by comparing topological properties
of the corresponding proteins. These common DEGs corresponds to the common proteins
present in the protein network of TSDs and all the protein networks of the control combina-
tion. We also identify unique DEGs among the TSDs to obtain time-specific unique DEGs
(TUDs) (we only put a gene in TUDs set if its corresponding protein has a degree>10 in the
protein network under consideration). We then combine both TUDs and TDCDs to get time-

Fig 2. Outline of the work flow employed to identify network-central disease DEGs. Each DEG (differentially expressed gene) is mapped to unique
protein using STRING database. (A) We obtain time-specific protein functional networks (Ni) by mapping the timestamped DEGs (Di) to functional PPI
networks from STRING database. We then combine network central DEGs (Si) for each time-specific networks to obtain network central DEGs
corresponding to a particular mouse strain-prion strain combination (CNDi). Finally, we combine all the CNDs to identify 148 DEGs which are common to
atleast 4 mouse strain-prion strain combinations. (B) We compare each time-specific protein network (Ni) corresponding to any of the 5 disease developing
mouse-prion models with the network DEGs of the control combination. We identify two sets of DEGs. First set consists of the DEGs (TUDs) which are
unique at a particular time-stamp and also present as hubs in the given DEGs network. Second set consists of the DEGs (TDCDs) which are common to both
the diseased and control combinations but has relatively high centrality measures in diseased network compared to any of the time-specific networks
corresponding to the control combination. Finally, we combine these two sets to give time specific network central DEGs (TNDs/Si) for each of the disease
related protein networks.

doi:10.1371/journal.pone.0144389.g002
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specific network influential DEGs (TNDs). For a particular mouse-prion model, we combine
the corresponding TNDs to obtain combination specific network influential DEGs (CNDs)
(Fig 2A). Finally, we combine all the five CNDs to identify 148 DEGs present in at least four of
the CNDs sets. Algorithm 1 provides the pseudocode for obtaining TDCDs.

Algorithm 1: Selection of genes in TDCDs (Time-specific differential common
DEGs) according to network centrality difference

1: initialization
2: Ni: Network at time-stamp i corresponding to a particular mouse-prion
model.
3: Ci: Common DEGs between DEGs of Ni and all the DEGs of control combination.
4: M: Set of all time-stamped networks of the control combination.
5: Diff: Empty set for storing the centrality difference.
6: Nodes(): Function returning the set of nodes of the input network.
7: NiMap(): Maps the DEGs at time stamp i to their centrality values corre-
sponding to the network at time stamp i.
8: Si: Empty set for storing DEGs selected as network-central for the time
stamp i.
9: Procedure CENTRALITY DIFFERENCE CALCULATION

10: for each DEG g in Ci do
11: temp NiMap(g) . It can be betwenness, degree, or closeness
centrality
12: value 0
13: for each network Nj in M do
14: if g 2 Nodes(Nj) then
15: value MAX(value, NjMap(g))
16: end if
17: end for
18: Diff Diff [ (temp - value) . Storing the centrality
differences
19: end for
20: Std standard deviation(Diff) . Calculating standard
deviation of the data in Diff set
21: Mea mean(Diff) . Calculating mean of the data in Diff set
22: end procedure
23: Procedure SELECTION OF GENES

24: for each DEG g in Ci do
25: temp NiMap(g)
26: value 0
27: for each network Nj in M do
28: if g 2 Nodes(Nj) then
29: value MAX(value, NjMap(g))
30: end if
31: end for
32: temp temp - value
33: if temp > (Std+Mea) then
34: Si Si[ g . Storing genes in TDCDs for the network at time-stamp i
35: end if
36: end for
37: end procedure

We use degree, betweenness centrality, and closeness centrality as three different network
centrality measures. Below, we define each of the three measures that we use and provide bio-
logical justification for their use.
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Degree of a node is defined as the number of adjacent edges of that node in the network.
The higher the degree of a node, the more central the node is in the corresponding network.
Since our protein networks have “power-law” degree distributions (Figure B in S1 File), with
many low-degree nodes and few high-degree nodes, and since removal of the high-degree
nodes would impact the network structure (by disconnecting it), degree of a protein can be
related to the protein’s essentiality as well as its involvement in disease [6, 20].

Closeness centrality of a node i in the network G is defined as Cc
i ¼

N � 1P
j2Gdi;j

, where di,j is the

shortest path between the nodes i and j, and N is the total number of nodes in graph G. It mea-
sures the “closeness” of a node to all other nodes in the network. According to the definition of
the closeness centrality, the nodes with small shortest path distances to all other nodes have
high network centrality. In a protein interaction network, closeness centrality of a protein indi-
cates the “likelihood” of the protein to reach or be reachable from all other proteins [21]. And
it is widely assumed that proteins that are closer to each other are more likely to perform simi-
lar functions [22].

Betweenness centrality of a node i in the network is defined as Cb
i ¼

X
s6¼i 6¼t

sstðiÞ
sst

� �
, where s and t

are nodes from the network different from i, σst denotes the number of shortest path from s to t,
and σst(i) denotes the number of shortest path from s to t passing through i. It measures the
involvement of a node in the shortest paths in the network. Intuitively, nodes that occur in many
shortest paths have high centrality according to betweenness centrality. In a protein network,
betweenness centrality of a protein indicates the “likelihood” of the protein to participate in path-
ways connecting all other proteins [23]. Removal of a protein that is on critical pathways between
many other proteins could cause loss of communication between the proteins. Also, targeting
such a node with a drug could cause the drug effects to spread fast to all the nodes [24].

Pathways involved in the identified genes
We use the tool DAVID [25] to identify the enriched KEGG pathways for the identified 148
genes. DAVID tool employs a modified version of Fischer’s test to score the identified KEGG
pathways in the set of input genes. We use P-value threshold of 0.05 for the modified Fischer’s
test. Since affymetrix mouse array 430 2.0 chips were used for generating transcriptomic data
in the works of Hwang et al. [5] and also since we use the same transcriptomic data for our net-
work analysis, we use affymetrix mouse 430 2.0 genome as background for the purpose of
KEGG pathway enrichment.

Crosstalk candidate genes identification
We use the identified enriched pathways for further analysis to identify candidate genes poten-
tially involved in crosstalk. We propose a procedure which exploits dynamic protein networks
to identify crosstalk candidate genes. First, we identify all the genes belonging to the pathways
under study (taking the genes involved in the identified pathways from the KEGG database
and combining all the genes together to get a set of genes involved in at least one of the path-
ways). We intersect this set of genes with every time-stamped protein networks (corresponding
to one of the disease reproducing mouse-prion models) to obtain dynamic protein networks
related to the pathways under study. We then use extracted time-stamped protein networks to
identify genes possibly involved in crosstalk.

To determine if a gene is involved in a crosstalk, we propose a method similar to the one
used in Yang et al. [26] with a modification in the computation of crosstalk scores (CTSs). For
every protein in a particular time-stamped protein network (the timed-stamped networks
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extracted as per the method explained in the previous paragraph), we calculate its relative
crosstalk scores. Finally, we sum up the relative crosstalk scores of a particular protein corre-
sponding to different time-stamps, and obtain its cross talk score. We calculate the relative
score corresponding to every gene i at time-stamp t using the following expression.

Rt
i ¼

P
e2EðiÞMe

jEðiÞj � ðnðn� 1ÞÞ

Here, Rt
i is the relative crosstalk score of protein i corresponding to the network at time-

stamp t,Me is the crosstalk score corresponding to the edge e which contains node i, E(i) is the
set edges adjacent on node i, and n is the number of pathways under study. Both the nodes of
an edge e can belong to more than one pathway, hence the edge can contribute for more than
once in the relative crosstalk score of the genes associated with the corresponding nodes of the
edge e. If n is the number of pathways under study, then highest score contributed by any edge
to an adjacent node can be n(n − 1) (a node/protein can belong to all n pathways in consider-
ation). Hence, the denominator for expression for calculating relative crosstalk scoring method
comprises of |E(i)| � n(n − 1), which normalizes the score. Algorithm 2 provides the pseudo-
code for calculating crosstalk scores of every protein in the network.

Algorithm 2: Outline of the procedure used to identify the proteins possibly
involved in the crosstalk.

1: initialization
2: P: Set of time-stamped protein networks corresponding to a particular
mouse-prion model.
3: Path(g): Returns the set of pathways to which the gene g belongs.
4: Scorep[g]: Stores the crosstalk score of gene g corresponding to a partic-
ular time-stamped protein network p. Initialized to zero for every gene.
5: Normp[g]: Stores the normalization factor of gene g. Initialized to zero
for every gene.
6: R[g]: Relative crosstalk score of gene g.
7: CTS[g]: Stores the crosstalk scores of the gene g. Initialized to 0 for
every gene.
8: Paths: Set of all pathways used in the procedure to identify the possible
crosstalk genes.
9: procedure CENTRALITY DIFFERENCE CALCULATION

10: for each time-stamped network p in P do
11: for every edge e in p do . Loop for every edge in time-stamped network p
12: g1 node 1 of edge e
13: g2 node 2 of edge e
14: for every pathway t in Paths do
15: for every pathway k in Paths do
16: If t != k then
17: Normp[g1] Normp[g1] + 1 . Storing the normalization value
18: Normp[g2] Normp[g2] + 1
19: end if
20: if t != k AND t2 Path(g1) AND k2 Path(g2) then
21: Scorep[g1] Scorep[g1] + 1
22: Scorep[g2] Scorep[g2] + 1
23: end if
24: end for
25: end for
26: end for
27: for every gene g in p do
28: R[g] Scorep[g]/(Normp[g]) . Relative crosstalk score calculation
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29: CTS[g] R[g] + CTS[g] . Storing crosstalk score
30: end for
31: end for
32: end procedure

As an example for the calculation of the relative crosstalk scores at every time-stamp, con-
sider a protein A in a hypothetical pathway A which is only connected to other proteins of the
same pathway (Fig 3A). In this case, the relative crosstalk score of protein A will be 0. But if
this protein A connects with a protein B of another hypothetical pathway B then the relative
crosstalk scores of both the proteins A and protein B will have a non-zero value (Fig 3B). In
general, if a protein has more functional associations with proteins of several other pathways in
comparison to its own pathway, then it is considered a potential crosstalk candidate.

In this work, we perform the identification procedure for crosstalk candidate genes on two
different mouse-prion models: B6.I-301V mouse-prion model, which has a short life span (18
weeks), and B6.I-RML model, which has a longer life span (48 weeks). We map some of the
high crosstalk scoring genes to the protein signaling networks using KEGG database.

Results and Discussion

Global properties of networks
We expect that the effects of differential gene expressions in different mouse-prion models will
reflect on the temporal protein functional networks. While the local topological properties
(node centralities) show considerable change, we find negligible change in the global properties
of the temporal networks corresponding to any of the mouse-prion models. We provide details
of the global properties of the networks (Tables I-N in S1 File). Global properties including
average clustering coefficients, and average degree of the time-specific protein networks do not
change significantly with the disease progression. We also do not find significant change in the

Fig 3. Relative crosstalk score. For a particular gene i, the relative crosstalk score is calculated as the ratio of inter-pathway edge’s scores and the
normalizing factor (E(i) � n(n-1)). where, n is the number of pathways considered in the study, and E(i) is the number of adjacent edges of node i. In this
example n is equal to 2. Hence, n(n-1) = 2. (A) Gene A and gene B are connected to the genes of their respective pathways. This results in relative crosstalk
score for both gene A and gene B to be zero. (B) Gene A is connected to gene B present in different pathways. In this case, there is only one edge between
pathway A and pathway B. The crosstalk score (M) corresponding to this edge, for both the genes is 1. Normalizing factor both the genes is E(i) � n(n-1) = 3 �
2 = 6. Hence the relative crosstalk score is 1/6 for both the gene A and gene B.

doi:10.1371/journal.pone.0144389.g003
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global properties of the disease related networks in comparison to the control networks (time
specific protein functional networks related to FVB-RML-0/0 combination) (Figure A in S1
File). The degree distribution of most of the temporal networks follow power law with degree
exponent close to 1.5 (Figure B in S1 File). Networks like these whose degree distribution is
inversely proportional to the degree raised to some constant [27] (mathematically, p(k)/ k−γ,
where k is the degree of the node in the network and γ is the degree exponent) are called as
scale-free networks. This scale-free property suggests that these networks are robust to random
node failures [28].

Network-influential shared DEGs via local topological properties
We identify 148 DEGs which shows high network activity in the protein functional networks
of disease reproducing mouse-prion models. We find that many of these identified DEGs are
involved in immunological response. As an infectious agent, PrPSc induces immune responses
by activating innate immunity through glial cells (microglia and astrocytes) in the brain [29].
Microglia are among the earliest responders to any form of neurodegeneration [30]. Abnormal
activation of microglia as a result of accumulation of aggregated molecules of PrPSc may lead to
neuronal death [31]. Gómez-Nicola et al. [32] reports expansion of the resident microglial pop-
ulation during the pathological course of prion disease, which may contribute to disease pro-
gression. The activation of microglia results in the upregulation of proteins including
complement factors, proteins of major histocompatibility complex, proinflammatory cytokines
and interleukins [31]. Excessive and chronic activation of these factors produces oxidative
stress, which can lead to neurotoxicity and subsequently to neurodegeneration. Activation of
microglia also leads to activation of astrocytes [33, 34]. Role of astrocyte activation during
prion neuroinflammation has been reported in Schultz et al. [35], in which astrocytes appear to
be regulated by the interleukin-1 (IL-1) inducing astrocyte activation through CXCR3 ligand.
The presence of genes related to the microglial and astrocytic activation (eg; Cd68, Emr1) in
the shared 148 DEGs suggest that microglia not only proliferate in prion disease [36] but are
also present as network-influential nodes in the disease related protein networks. Presence of
glial markers such as Gfap and P2ry receptors in addition to Csf1, in the 148 shared DEGs indi-
cates increment in the activities of astrocytes and leukocytes [37]. Other immune response
related modules, that is, chemokines and cytokines also show high activity during prion disease
progression. Detectable changes in the expression of CXC ligands even in the asymptotic stages
of the disease suggest that the chemokines might play a pivotal role in promoting neurodegen-
eration in prion diseases [38].

Our results include genes belonging to many of the biological modules related to immuno-
logical response including chemokines (eg; Cxcl12, Cxcl16, Cx3cl1), cytokines (eg; Ccl9, Csf2ra,
Csf1r), neuroinflammation markers (Gfap, Clec7a, Lgals3), inflammatory cell types (Cd44,
Cd68, Ly86) and genes that can be related to microglial activation (Tyrobp, Lgals3, Osmr) and
astrocyte activation (Gfap, Osmr). This suggests that these biological modules are highly repre-
sented by the genes in the identified set 148 shared DEGs. Indeed, the pathway enrichment of
these 148 shared DEGs highlights participation of pathways such as Leukocyte transendothelial
migration, Cytokine-cytokine receptor interaction, Chemokine signaling pathway, and others,
mainly related to immunological response (Fig 4). Table 2 shows some of the biological path-
ways represented by the shared 148 genes. Since, we identify these 148 genes by selecting net-
work influential nodes of the corresponding protein networks, it suggests that the genes related
to immunological response are present at network-influential positions in the protein networks
related to prion disease progression. The presence of genes related to microglial and astrocytic
activation along with the other genes related to immunological response, supports the
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hypothesis that neurotoxicity and neurodegeneration in prion disease results via excessive and
chronic activation of microglia and other factors including complement factors, proteins of the
major histocompatibility complex, pro-inflammatory cytokines and interleukins. We provide
the list of 148 genes (Table A in S1 File). We also provide the details about mapping of the
identified genes to biological pathways (Table B in S1 File). To visualize the interactions among
the proteins corresponding to the 148 disease related shared genes, we integrate these 148 core
genes with the protein functional networks. We then map the differential gene expression of
B6.I-RML mouse-prion model to visualize the node dynamics with the disease progression
(Figure D in S1 File). We observe that most of the genes in the disease network are highly upre-
gulated towards the late stages of the disease.

Further, we compare our 148 shared DEGs with 333 shared DEGs identified in the work by
Hwang et al. [5]. We find that there are many genes which belong to both the sets. The study
performed by Hwang et al. tracked global gene expression in the brains of several mouse-prion
models throughout the disease progression, and identified 333 shared common DEGs showing
similar differential expression patterns over the life spans of five different mouse-prion models.
In this work, we use the same five mouse-prion models to identify the shared DEGs involved in
the prion disease progression. In contrast to the gene co-expression concept used in Hwang’s
work, we use network theoretic approach to identify 148 shared DEGs. These 148 DEGs repre-
sent the genes which are potentially involved in the prion disease progression and show high
network activity in the disease related protein functional networks. The central involvement of
these genes in the disease related protein networks increases their potential disease involve-
ment with respect to the ease of communication between them and the other network proteins.

Fig 4. Network-central DEGs shows pathways involved in immunological response.Results of the KEGG pathway enrichment done on all 148 central
DEGs identified. Red bars shows the pathways used for crosstalk analysis. The bottom of the bars show the KEGG pathway terms (P-values are reported on
the top of the bars).

doi:10.1371/journal.pone.0144389.g004
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Table 2. Some of the important biological pathways represented by the genes in shared 148 DEGs.

Biological pathway Gene symbol Description Previous studies

Antigen processing and presentation H2-D1 histocompatibility 2 D region [39][40][5]

H2-K1 histocompatibility 2 K1 K region [39][5]

H2-AB1 histocompatibility 2 class II antigen A beta 1 [5]

H2-AA histocompatibility 2 class II antigen A alpha [5]

Hspa4 heat shock protein 4 present work

B2m beta-2 microglobulin [41][40][42][5]

Cd74 CD74 antigen present work

Natural killer cell mediated cytotoxicity Fas Fas (TNF receptor superfamily member 6) present work

Fcgr3 Fc receptor IgG low anity III [39][5]

Tyrobp TYRO protein tyrosine kinase binding protein [43][39][5]

Lcp2 lymphocyte cytosolic protein 2 present work

Pik3r1 phosphatidylinositol 3-kinase regulatory subunit polypeptide present work

Plcg2 phospholipase C gamma 2 present work

Ptpn6 protein tyrosine phosphatase non-receptor type 6 [5]

Vav1 vav 1 oncogene present work

Icam1 intercellular adhesion molecule 1 [39]

Leukocyte transendothelial migration Actn1 actinin alpha 1 present work

Ctnnd1 catenin (cadherin associated protein) delta 1 present work

Gnai2 guanine nucleotide binding protein alpha inhibiting 2 present work

Msn moesin [43][39][5]

Ncf2 neutrophil cytosolic factor 2 present work

Ncf4 neutrophil cytosolic factor 4 present work

Complement and coagulation cascades A2m alpha-2-macroglobulin [43][39][5]

C1qa complement component 1 q subcomponent alpha polypeptide [44][39][40][43][5]

C1qb complement component 1 q subcomponent beta polypeptide [44][39][40][43][5]

C1qc complement component 1 q subcomponent C chain [44][39][5]

C3 complement component 3 [43][5]

C3ar1 complement component 3a receptor 1 [44][39][43][5]

Serping1 serine (or cysteine) peptidase inhibitor clade G member 1 [40][5]

Chemokine signaling pathway Adcy7 adenylate cyclase 7 [5]

Cxcl10 chemokine (C-X-C motif) ligand 10 [39][5]

Cxcl12 chemokine (C-X-C motif) ligand 12 [39]

Cxcl16 chemokine (C-X-C motif) ligand 16 [39]

Cx3cl1 chemokine (C-X3-C motif) ligand 1 present work

Stat1 signal transducer and activator of transcription 1 [5]

Stat3 signal transducer and activator of transcription 3 [44][40][5]

Cytokine-cytokine receptor interaction Ccl9 chemokine (C-C motif) ligand 9 [44][5]

Csf1 colony stimulating factor 1 (macrophage) [5]

Csf1r colony stimulating factor 1 receptor [40][42][43][5]

Csf2ra colony stimulating factor 2 receptor alpha low-affinity present work

Kitl kit ligand present work

Tgfb1 transforming growth factor beta 1 [41][5]

Osmr oncostatin M receptor [44][43][5]

(Continued)
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We find that out of 148 DEGs, 63 DEGs overlaps with the DEGs identified in the Hwang’s
work. The overlapping 63 DEGs should be given more importance because of the fact that in
addition to their behavior of high correlation in differential expression, they also show high
network activity in the prion disease related protein functional networks. Identification of 85
DEGs which were not highlighted in the Hwang’s study reflects the fact that these genes,
although did not show correlation in their differential expression patterns, are present at net-
work-influential positions in protein networks. These genes should be considered important
from point of view of the protein networks related to the disease.

Crosstalk analysis of PFNs related to pathways
The pathways enriched in the DEGs identified in our study are mostly related to immunologi-
cal response. To further understand the dynamic interactions between different signaling path-
ways in the obtained protein functional networks (PFNs), we calculate the CTSs (crosstalk
scores) of every protein (see methods section). Proteins in this crosstalk analysis are grouped
into 10 major identified pathways, that is, Chemokine signaling pathway, Toll-like receptor sig-
naling pathway, Jak-STAT signaling pathway, Natural killer cell mediated cytotoxicity, T cell
receptor signaling pathway, B cell receptor signaling pathway, Leukocyte transendothelial
migration, Neurotrophin signaling pathway, Cytokine-cytokine receptor interaction, and
Complement and coagulation cascades. We perform the identification procedure for crosstalk
candidate genes on two different mouse-prion combinations: B6.I-301V mouse-prion model,
which has a short life span (18 weeks), and B6.I-RML model, which has a longer life span (48
weeks). Table 3 lists the top 10 genes having high crosstalk scores corresponding to the combi-
nation B6.I-RML. Table 4 lists the top 10 genes having high crosstalk scores corresponding to
the combination B6.I-301V. Also, the individual relative crosstalk scores of these genes are
shown at every time-stamp of the prion disease progression. We observe that many of the high

Table 2. (Continued)

Biological pathway Gene symbol Description Previous studies

Neuroactive ligand-receptor interaction Chrm1 cholinergic receptor muscarinic 1 CNS present work

Lpar1 lysophosphatidic acid receptor 1 present work

Lpar6 purinergic receptor P2Y G-protein coupled 5 present work

P2ry6 pyrimidinergic receptor P2Y G-protein coupled 6 [5]

S1pr2 sphingosine-1-phosphate receptor 2 present work

S1pr3 sphingosine-1-phosphate receptor 3 present work

Trhr thyrotropin releasing hormone receptor present work

Neurotrophin signaling pathway Rapgef1 Rap guanine nucleotide exchange factor (GEF) 1 present work

Arhgdib Rho GDP dissociation inhibitor (GDI) beta [5]

Gsk3b glycogen synthase kinase 3 beta present work

Akt2 Protein kinase Akt-2 present work

Trp53 transformation related protein 53 present work

Crk v-crk sarcoma virus CT10 oncogene homolog (avian) present work

Glycerophospholipid metabolism Dgka diacylglycerol kinase alpha present work

Chka choline kinase alpha present work

Pcyt1b phosphate cytidylyltransferase 1 choline beta isoform present work

Chpt1 RIKEN cDNA 7120451J01 gene choline phosphotransferase 1 present work

doi:10.1371/journal.pone.0144389.t002
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scoring crosstalk genes in both the combinations are common. This overlap implies that these
genes, even though have been expressed via presumably different pathologies, are ranked as
top scoring candidates in the crosstalk gene scoring criterion. These overlapping genes should
be therefore, considered important. We map some of the high scoring genes to the signaling
networks using KEGG database to obtain a bow-tie network (Fig 5A). The core elements in the
identified bow-tie structure are the highly ranked genes according to the CTS scoring criterion.

Bow-tie structures are evolved, optimized architectures reflecting universal organizational
principles of complex networks [45]. Several works have reported the existence of this universal
structure at various biological levels, including metabolism [45] and immune system [46]. A
nested bow-tie architecture of the molecular interactions in immune system is outlined in
Kitano et al. [46], proposing that this structure helps in capturing wide range of molecular sig-
natures and also helps in invoking appropriate counter measures. The robustness in biological
systems are inherent property and it is necessary for the evolution of the system in changing
environments [47]. The robustness of the bow-tie structure can be perceived by the fact that it

Table 3. Top 10 high crosstalk scoring genes (B6.I-RML).

Gene T1* T2 T3 T4 T5 T6 T7 T8 T9 T10 CTSs1

PIK3CA 0.00 0.00 0.15 0.00 0.00 0.15 0.00 0.13 0.12 0.15 0.70

IFNAR2 0.00 0.00 0.05 0.09 0.03 0.09 0.08 0.09 0.08 0.11 0.62

IKBKG 0.17 0.00 0.14 0.00 0.07 0.06 0.10 0.00 0.00 0.04 0.58

VAV3 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.11 0.13 0.14 0.57

NFKBIA 0.11 0.14 0.15 0.00 0.00 0.00 0.09 0.05 0.00 0.00 0.55

AKT2 0.00 0.21 0.22 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.54

GSK3B 0.14 0.12 0.00 0.11 0.00 0.12 0.00 0.00 0.00 0.00 0.50

PIK3CD 0.19 0.00 0.00 0.00 0.11 0.19 0.00 0.00 0.00 0.00 0.48

PTPN11 0.00 0.10 0.00 0.09 0.00 0.12 0.00 0.00 0.00 0.13 0.44

PTPN6 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.07 0.08 0.09 0.34

*Ti represents the time-stamp i.
1CTSs represents the crosstalk scores of the genes.

doi:10.1371/journal.pone.0144389.t003

Table 4. Top 10 high crosstalk scoring genes (B6.I-301V).

Gene T1 T2 T3 T4 T5 T6 T7 T8 T9 CTSs

MAP2K2 0.31 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.70

AKT3 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.15 0.24 0.62

NFKBIA 0.00 0.00 0.11 0.11 0.10 0.06 0.06 0.00 0.11 0.56

IFNAR2 0.09 0.00 0.06 0.06 0.09 0.07 0.07 0.09 0.00 0.53

NFATC1 0.06 0.07 0.00 0.07 0.12 0.00 0.06 0.06 0.07 0.51

PIK3CD 0.15 0.00 0.18 0.00 0.18 0.00 0.00 0.00 0.00 0.51

GSK3B 0.11 0.16 0.00 0.09 0.10 0.00 0.00 0.00 0.00 0.46

SOS1 0.00 0.17 0.00 0.00 0.20 0.08 0.00 0.00 0.00 0.45

NFATC2 0.00 0.08 0.00 0.00 0.00 0.07 0.05 0.07 0.08 0.35

PIK3R1 0.00 0.15 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.33

doi:10.1371/journal.pone.0144389.t004
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facilitates control by accommodating various input perturbations and fluctuations on both spa-
tial and temporal scales [45]. This heterogeneity in the inputs of the bow-tie structures allows
for the robust regulation of the biological systems. In this work, we identify a bow-tie core sig-
naling network which is prevalent in the prion disease progression. Since we perform crosstalk
analysis on two different mouse-prion models to discover the bow-tie network, it may suggest
that the prevalence of this structure in prion disease is a common phenomenon and is also
independent of prion strain.

The core components (PI3Ks and AKTs) of the bow-tie network belong to the PI3K-Akt
pathway. PI3K (phosphoinositide-3 kinase) has important functions in the immune system
regulation. Receptors such as Cd28 on T cells and Cd19 on B cells activates the PI3Ks [48]. The
products of PI3Ks, namely phosphatidylinositol3monophosphate (PIP3) and others govern
many cellular events including cell growth and survival [49]. The activation of PI3K also down-
regulates the immune activity related to both innate and adaptive immune system [50], imply-
ing the crucial role of PI3ks in controlling the pro-inflammatory activity. The PI3K-Akt
pathway regulates many other biological modules and pathways including Foxo signaling path-
way [51]. Many other pathways affected directly or indirectly by the PI3K-Akt pathway have
been reported to be dysregulated in prion disease. In Didonna et al. [52], the phosphorylation
levels of Src, Mek 1/2 and Erk 1/2 signaling molecules, both before and after prion infection
were assessed with the conclusion that prion replication leads to a hyperactivation of Erk1/2

Fig 5. Identified bow-tie network and its schematic diagram. (A)The bow-tie structure identified from the protein functional networks. The pointed arrows
represent the activation action by source onto the target gene and the flattened end arrows suggest inhibitory action. (B) Schematic representation of the
structure used for ODEmodeling. Kd1d2, Ke1e2, Ka1a2, Kb1m, Kd2m, Ke2m, K

�
e2m

, Kf1m and Kc1m represents the upstream (input to the core of the bow-tie structure)
rate constants of the signaling network. And Kmn, Ka2a3, Kna3, K

�
na3

, Knb2
, Knd3

, K�nd3 , Kne3, Knf2 and K�nf2 represents the downstream rate constants of the network
structure. Da1, Da2, Da3, Da4, Db1

, Db2
, Dc1, Dd1

, Dd2
, Dd3

, De1, De2, De3, Df1, Df2, Dm, and Dn represent the decay rate constant of the activated components A1,
A2, A3, A4, B1, B2, C1, D1, D2, D3, E1, E2, E3, F1, F2, M, and N respectively. The constants Ke2m, Knd3

, Kna3, Knf2 represents the activation kinetic constants for
basal production of the components M, D3, A3, and F2 respectively.

doi:10.1371/journal.pone.0144389.g005
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pathway. In Simon et al. [53], the possibility of dysregulation of PI3K/AKT/GSK-3 pathway
was explored. It was found that the prion strain altered PI3K-mediated signaling, evidenced by
the results that the AKTs inhibition and Gsk3b activation were the common features of both in
culture and in-vivo prion mediated neurotoxicity. We hypothesize that one of the conse-
quences of prion disease is dysregulation of PI3Ks. Since PI3Ks comprises the core of the iden-
tified bow-tie structure, its dysregulation may affect other efferent pathways which can hinder
in the proper regulation of important cellular functions including cell survival.

Modeling the identified network
The genes involved in the immunological pathways identified in this study are part of different
signaling cascades. These signaling pathways interact with each other via affecting other path-
way’s output or by sharing common components. We identify a bow-tie network structure
comprising of different signaling cascades having common components (PI3Ks and AKTs).
The input components of this structure includes Csf1r, Jak1, Gnai2, Fcgr2b, Ifitm1, and Tyrobp,
which belong to different signaling cascades. These independent cascades converge to a com-
mon crosstalk, that is, the core (PI3Ks and AKTs) of the bow-tie network. These core members
are responsible for the transmission of input signals to the output components, that is, Fos,
Bcl2l1, Ikbkg, Foxo3, and Gsk3b. In turn, these output components act as inputs to other regula-
tory functions including cell survival, apoptosis, oxidative stress resistance, and inhibition of
cell cycle (Fig 5A). Hence, dysregulation of the functions of the core members of the bow-tie
network may hinder in the proper functioning of these regulatory modules. Dysregulation of
PI3K-Akt pathway in prion disease condition reflects the need to understand both its qualita-
tive and quantitative behavior.

To understand the behavior of these interacting signaling cascades, we propose an ODE
model given by the following equations. It is derived using the assumption that the signaling
cascades are weakly activated [54, 55]. We use Matlab ode45 solver for model simulation.

d½A1�
dt
¼ ½A0� � Da1

� ½A1� ð1Þ

d½A2�
dt
¼ Ka1a2

� ½A1� � Da2
� ½A2� ð2Þ

d½A3�
dt
¼ Ka2a3

� ½A2� � K�na3 � ½N� � ½A3� þ Kna3
� ½N� � Da3

� ½A3� ð3Þ

d½A4�
dt
¼ Ka3a4

� ½A3� � Da4
� ½A4� ð4Þ

d½B1�
dt
¼ ½B0� � Db1

� ½B1� ð5Þ

d½B2�
dt
¼ Knb2

� ½N� � Db2
� ½B2� ð6Þ

d½C1�
dt
¼ ½C0� � Dc1

� ½C1� ð7Þ
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d½D1�
dt
¼ ½D0� � Dd1

� ½D1� ð8Þ

d½D2�
dt
¼ Kd1d2

� ½D1� � Dd2
� ½D2� ð9Þ

d½D3�
dt
¼ Knd3

� ½N� � K�nd3 � ½N� � ½D3� � Dd3
� ½D3� ð10Þ

d½E1�
dt
¼ ½E0� � De1

� ½E1� ð11Þ

d½E2�
dt
¼ Ke1e2

� ½E1� � De2
� ½E2� ð12Þ

d½E3�
dt
¼ Kne3

� ½N� � De3
� ½E3� ð13Þ

d½F1�
dt
¼ ½F0� � Df1

� ½F1� ð14Þ

d½F2�
dt
¼ Knf2

� ½N� � K�nf2 � ½N� � ½F2� � Df2
� ½F2� ð15Þ

d½N�
dt
¼ Kmn � ½M� � Dn � ½N� ð16Þ

d½M�
dt

¼ Kb1m
� ½B1� þ Kc1m

� ½C1� þ Kd2m
� ½D2�

�K�e2m � ½E2� � ½M� þ Ke2m
� ½E2� þ Kf1m

� ½F1� � Dm � ½M�
ð17Þ

The schematic diagram of the network is outlined in Fig 5B. The network comprises of six
different signaling cascades with two common components (M and N). Activation of compo-
nent M activates N and as a result, N leads to activation/deactivation of other downstream
components. Kd1d2, Ke1e2, Ka1a2, Kb1m, Kd2m, Ke2m, K

�
e2m

, Kf1m and Kc1m represents the upstream

(input to the core of the bow-tie structure) rate constants of the signaling network. And Kmn,
Ka2a3, Kna3, K

�
na3
, Knb2, Knd3, K

�
nd3
, Kne3, Knf2 and K

�
nf2

represents the downstream rate constants of

the network structure. Da1, Da2, Da3, Da4, Db1, Db2, Dc1, Dd1, Dd2, Dd3, De1, De2, De3, Df1, Df2, Dm,
and Dn represent the decay rate constant of the activated components A1, A2, A3, A4, B1, B2,
C1, D1, D2, D3, E1, E2, E3, F1, F2, M, and N respectively. The constants Ke2m, Knd3, Kna3, Knf2 rep-
resents the activation kinetic constants for basal production of the components M, D3, A3, and
F2 respectively. The model provides an opportunity to study the behavior of these interacting
pathways which are potentially affected during prion disease progression.

In the identified bow-tie network, the input components, that is, Csf1r, Jak1, Gnai2, Fcgr2b,
Ifitm1, and Tyrobp corresponds to A1, B1, D1, E1, F1, and C1 respectively in the schematic dia-
gram (Fig 5). We apply constant input signals (Fig 6A), whose magnitude corresponds to the
amount of gene expressions (as shown by the microarray results corresponding to the works of
Hwang et al.) at later stages of the disease. For most of the genes corresponding to the input
network components, their differential expression pattern across all five disease reproducing
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Fig 6. Comparison of microarray results with the numerical simulations of the proposedmodel. (A) We use constant input signals to observe the
behavior of some of the network components of the identified bow-tie signaling network structure. The magnitude of these signals corresponds to the amount
of signals of network components Tyrobp, Gnai2, Ifitm1, Jak1, Fcgr2b, andCsf1r, as shown by their differential expressions in the works of Hwang et al. [5].
For most of the mouse-prion combination models, the differential expression pattern of these input gene components are approximately similar. (B) The
output signals show the behavior of some of the network components when we apply constant input signals corresponding to the diseased state. (C)
Differential expression pattern of the output network components corresponding to the mouse-prion model B6I-301V. This result is taken from the microarray
results of the work carried out in Hwang et al. Plots of differential expression of these genes corresponding to other mouse-prion models is given in Figure E
in S1 File. (D) Model predictions of the differential expression pattern of the same network components (Fos, Bcl2l1, Ikbkg, Foxo3, and Gsk3b).

doi:10.1371/journal.pone.0144389.g006
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mouse-prion models are similar. Fig 6B shows simulation results of various outputs signals in
response to the applied constant input signals (corresponding to the diseased condition). Fig
6C shows microarray results of the differential expression pattern of these output network
components corresponding to B6.I-301V mouse-prion combination. As evident form the gene
expression profiles, Fos is relatively up-regulated in comparison to other genes related to out-
put components of the modeled network. Other genes, including Bcl2l1, Gsk3b, Foxo3, and
Ikbkg does not show considerable differential gene expression during any stage of the disease
progression. Fig 6D shows the model predictions for differential expression of the output com-
ponents. We capture the differential expression via log-2-ratio of the outputs corresponding to
the diseased and the normal condition. The simulation results also indicate up-regulation of
Fos and relatively down-regulation of other components of the modeled network. Both Bcl2l1
and Ikbkg, which have been shown to take part in cell survival [56], show negligible differential
expression in both the simulation and microarray results. Likewise, Foxo3 and Gsk3b show no
change in the diseased condition, as evident from their differential expression results of both
microarray and numerical simulations. Also the core components of the identified bow-tie net-
work, that is, PI3Ks and AKTs show negligible differential expression in the diseased state
(Fig 6D). Here, we propose a phenomenological model which captures the effects of different
input combinations. We assign arbitrary values to the rate constants. The model can be
improved based on new experiments related to prion disease progression.

Conclusion
Prion disease, a neurodegenerative disorder, is caused by the structural change in the cellular
prion protein that leads to dysregulation of many biological pathways, and ultimately resulting
in neuronal death. Different strains of PrPSc interacts differently with different hosts depending
upon host’s genotype which leads to variation in the disease pathologies. Irrespective of these
variations, the clinical symptoms for the disease are same, indicating the involvement of com-
mon biological modules and pathways. Identification of these core biological modules and
pathways that are dysregulated in the prion disease will prove to be important in understanding
other neurodegenerative diseases that show similar behavior.

In this study we integrate both protein functional interaction networks and gene expression
profiles related to five different mouse-prion models to obtain dynamic protein interaction net-
works and perform network analysis to gain insights about the disease progression. We use
local topological properties of the nodes in the dynamic protein networks to identify 148 genes
related to the prion disease. The proteins corresponding to these 148 shared genes show high
network centrality behavior in the disease related protein networks in comparison to the pro-
tein networks related to control combination (prion-host genotype combination which cannot
develop prion disease) and should be considered important from the point of view of the dis-
ease related protein networks. Enrichment of immunological pathways in the shared genes
highlights that the pathways related to immunological response are not only activated in the
prion disease progression, but they also occupy network-influential positions in the disease
related protein networks at later stages of the disease progression.

We also propose a crosstalk gene ranking method which utilizes dynamic protein networks
to identify potential genes involved in possible crosstalks. We use the genes related to the iden-
tified immunological pathways to construct dynamic protein networks and identify several
high scoring genes as possible crosstalk candidates. We use KEGG database to map some of the
high crosstalk scoring genes on to the biological pathways and identify a bow-tie signaling net-
work structure potentially dysregulated in prion disease. The bow-tie architectures provide a
homeostatic environment by channeling the heterogeneous inputs through its core elements,
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which integrates the fluctuations in the input and provides a controlled output. The core of the
bow-tie structure identified in this work consists of genes related to PI3K-Akt signaling path-
way. Since PI3K-Akt signaling pathway regulates many crucial biological functions in the cell
[49], we propose that its dysregulation in the prion disease is one of the major consequences of
the disease. We also propose a mathematical model for the identified bow-tie signaling net-
work. Initial simulations of the proposed ODE model suggest downregulation of the genes
involved in crucial biological functions including apoptosis and cell survival. The model is
based on mass action kinetics which can be used as an abstract model to study the effects of dif-
ferent perturbation in the network. In future, we intend to further refine the model and validate
it against other experiments for better predictions.

Supporting Information
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