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Abstract: Postural control decreases with aging. Thus, an efficient and accurate method of detecting
postural control is needed. We enrolled 35 elderly adults (aged 82.06 ± 8.74 years) and 20 healthy
young adults (aged 21.60 ± 0.60 years) who performed standing tasks for 40 s, performed six times.
The coordinates of 15 joint nodes were captured using a Kinect device (30 Hz). We plotted joint
positions into a single 2D figure (named a joint–node plot, JNP) once per second for up to 40 s. A
total of 15 methods combining deep and machine learning for postural control classification were
investigated. The accuracy, sensitivity, specificity, positive predicted value (PPV), negative predicted
value (NPV), and kappa values of the selected methods were assessed. The highest PPV, NPV,
accuracy, sensitivity, specificity, and kappa values were higher than 0.9 in validation testing. The
presented method using JNPs demonstrated strong performance in detecting the postural control
ability of young and elderly adults.

Keywords: postural control; deep learning; machine learning; joint–node plot

1. Introduction

Postural control is a complex motor function derived from several integrated neural
components, including sensory and movement strategies, orientation in space, biomechani-
cal constraints, and cognitive processing [1]. It is also the ability to build up posture against
gravity and ensure that balance is maintained. Force plates are frequently used to measure
balance [2,3]. Force plate equipment and motion analysis machines allow therapists to ac-
curately describe the center of gravity (COG) location, center of body mass (COM) position,
center of pressure (COP) displacement, and kinematics of movement strategies for balance.
COG is the average location of the weight of an object. COM is the average position of all
the parts of the body, weighted according to mass. However, the movements of body parts
make assessing postural control by measuring average location, position, or displacement
(COG, COM, COP) challenging [4]. Measuring postural control is difficult because postural
changes may occur as a result of slight movements that are difficult to detect through simple
observation by human eyes [1]. Observational balance measures such as the Berg Balance
Scale are used to evaluate balance. However, they evaluate performance and not balance
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movement strategies. The assessment scales used by therapists tend to be subjective, and
their reliability and sensitivity can be limited [5]. Measurements of postural control should
identify how stably or quickly a subject performs or maintains an equilibrium position and
the appropriateness and efficiency of movement strategies used to achieve or maintain the
equilibrium position. Objective measures of postural control using computerized systems
can allow more sensitive, specific, and responsive assessments in clinical practice.

Microsoft Kinect is a popular human motion capture tool. Kinect cameras are useful,
as they provide joint center position data directly without additional processing of depth
or image data [6]. Recent evidence suggests that Kinect may enable low-cost balance
assessments and gait analyses [7–16]. The Kinect device has been reported to have validity
for the evaluation of spatiotemporal gait parameters [17]. Kinect’s kinematic information
is generally accurate enough for ergonomic assessments [18]. Postural control is the coordi-
nation of multiple joints to maintain postural stability, and the device can be used to collect
large amounts of joints data to explore the coordinated relationships among the joints of the
whole body during the maintenance of postural control [19]. Kinect’s kinematic parameters
follow joint trajectories and, thus, can be used as a tool for measuring spatiotemporal
aspects of postural control. Recent studies have demonstrated that 3D motion analysis of
data from the Kinect motion capture system can be used in clinical assessments of coor-
dination and balance and could potentially be used to monitor gross motor performance
and assess motor function [20–22]. However, most studies have explored the displacement
of COP, COM, or COG or the kinematics of body segments [7,11,13,23–26], whereas few
have endeavored to classify the quality of postural control or measure slight differences in
similar situations of postural control.

Neural networks have advanced at a remarkable rate, and they have practical ap-
plications in various industries, including the medical and health care industry [27–30].
Deep learning has major applications in medical diagnosis, classification, and prediction,
including but not limited to health informatics [31] and biomedicine analysis [32]. Other
uses of deep learning in the medical field are in medical image segmentation, registration,
and detection of various anatomical regions of interest, such as in magnetic resonance
imaging [33], ultrasound [34], and radiography [35]. The clinical use of images from digital
cameras or depth sensors combined with deep and machine learning has promise for
postural control assessment, body motion assessment, and fall detection. In one study,
skeleton joints data from Kinect were used to determine human balance states, and a fall
prediction algorithm based on recurrent neural networks and unbalanced posture features
was proposed [36]. One fall detection method based on 3D skeleton data obtained from
Kinect employed long short-term memory networks [37]. One study investigated the extent
to which such deep learning–based systems provide satisfactory accuracy in exergame-
relevant measures; a deep learning–based system was reported to perform as well as the
gold standard system in the detection of temporal variations [38]. In one study, a long
short-term memory recurrent neural network was used in a supervised machine learning
architecture and a novel deep learning–refined kinematic model with good kinematic accu-
racy for upper limb functional assessment was developed [39]. Therefore, Kinect’s image
information combined with machine and deep learning can be used to develop an effective
limb functional assessment system for medical diagnosis or therapeutic evaluation.

Convolutional neural networks (CNNs) are the most widely represented class in
deep learning and medical image analysis [27,28]. Deep learning methods are useful for
extracting various image features, whereas machine learning approaches are efficient, rapid,
and quantitative and can be used to build classification methods for numerous predictors.
Hence, a combination of deep and machine learning methods was employed in this study.

Objective measurements of postural control made with a computerized system using
Kinect combined with machine and deep learning can enable sensitive postural control
assessment in clinical practice. Such a system might effectively classify the quality of
postural control or identify minute differences between cases of similar postural control.
This study is the first to combine joint node motion information with machine learning to
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extract joint node trajectory features and to use deep learning to classify postural control
stability according to joint node trajectory patterns. This work had a twofold aim: to extract
joint node trajectory plot features in order to explore the relative motion and to classify the
stability of postural control according to joint node trajectory patterns.

The remainder of the paper is organized as follows. The research methodology is de-
scribed in Section 2. The experimental results are presented in Section 3. The proposed fea-
tures for assessing postural control performance and the joint–node plot (JNP) are discussed
in Section 4. Section 5 presents the conclusion and proposes future research directions.

2. Materials and Methods
2.1. Experimental Design in Young and Elderly Adults

The experimental group was composed of elderly people who had a medical history
and disabilities in daily life. They resided in a nursing home. In general, they might or could
be regarded as a poor postural control group. In addition, the young adults had no medical
history or any tremor problems. Therefore, the young group might or could be regarded as
the control group. The study was conducted at a nursing home and on a college campus.
Participants were recruited by a clinic nurse and study staff. To be included, participants
had to meet the following criteria: be adults (>20 years old) to rule out developmental
problems; have no restriction on physical activity; have no lower-limb discomfort and be
able to maintain a double-leg stance with both eyes open for at least 40 s; and be willing
to provide consent to participate in the study. The selected participants underwent the
Mini-Mental State Examination (MMSE), Barthel Index (BI), and Berg Balance Scale (BBS)
examinations in both young and elderly groups (Table 1). The young participants got full
marks in the MMSE, BI, BBS examinations, and without any medical history. The elderly
participants must be 65 years of age or older, able to cooperate balance test, communicate
with each other, and read words well. Exclusion criteria were severe somatic illness or
neurological or musculoskeletal impairment including cognitive impairment, chest pain,
angina pectoris, joint pain during recent exercise, congestive heart failure, and advised by
doctors not to exercise. In all, 35 elderly adults (aged 82.06 ± 8.74 years) and 20 healthy
young adults (aged 21.60 ± 0.60 years) participated. Postural control was measured
according to the records of 15 joint coordinates. All participants were required to statically
stand for 40 s while measurements were captured by a Kinect device. The recording
procedure was performed daily for 6 days. The participants were instructed to stand and
look straight at a visual reference and stand still with their shoulders relaxed, arms at the
side of the trunk, feet slightly spread apart, and knee and hip joints in the upright position
for 40 s. The participants were defined as young (control group) or elderly (experimental
group) adults. The target class was the elderly group (experimental group) due to the
lack of postural control. The experimental setup is depicted in Figure 1. All experimental
procedures were approved by the Institutional Review Board of E-DA Hospital [with
approval number EMRP-107-103 (2019/01/28)].

Table 1. Demographic characteristics of the samples (N = 35 + 20 = 55).

Index
Elderly (n = 35) Young (n = 20)

Mean SD Mean SD

Age 80.17 8.56 20.00 1.97
MMSE 24.91 3.40 30.00 0.00

BI 86.57 4.16 100.00 0.00
BBS 47.09 6.47 56.00 0.00

The study flowchart includes the participants coordinates of joint nodes measured by
Kinect, creation of joint node images with the coordinates, features extracted from images,
and training of the classification models. The models were validated with a testing set, and
the final results were recorded (Figure 2).
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2.2. Measurement of Joint Coordinates

The Kinect device was made by Microsoft (Microsoft Inc., Redmond, WA, USA). It
recorded joint node locations and was connected to a personal computer–based signal
processing system. A data point of a joint node signal includes X, Y, and Z coordinates.
Only X and Y coordinates were considered in this study because when standing still,
vertical movement is negligible. The signals of the joint nodes were recorded at a frequency
of 30 Hz.

2.3. Creating the JNP

The 15 joints were recorded by Kinect for 40 s (Figure 3a). However, the 1200 coordi-
nates (X, Y) of the joints were recorded over 40 s. Hence, the JNP was created to observe
postural control and examine stability over a period of 40 s (Figure 3b,c). The JNPs clearly
visualized good or poor postural control and provided positioning information for the
deep and machine learning approaches.
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Figure 3. (a) The Kinect device recorded the positions of 15 joints; joint–node plots of (b) an elderly adults and (c) a young
adult over a period of 40 s.

2.4. Deep and Machine Learning Methods

Combinations of deep and machine learning methods were used to classify and predict
postural control in young and elderly adults. The 90 model combinations involved five
CNNs, three classifiers, three epochs (10, 15, and 20), and two random splitting ratios for
the training set (60% and 70%) (i.e., 5 × 3 × 3 × 2 combinations).

2.4.1. Deep Learning Methods

The pre-trained CNNs applied to extract features of the JNPs were Vgg16, Vgg19,
AlexNet, ResNet50, and DenseNet201. Deep CNN network technology has five primary
layers: a convolutional layer, a pooling layer, a rectified linear unit layer, fully connected
layers, and a softmax layer. The layers are listed in Table 2. The fully connected CNN layers
extracted and stored the features of the input image. The used CNNs were described by
Hsu et al. [40] (Table 2). The CNN has been confirmed to be efficient and useful for image
feature extraction in the fields of biomedicine and biology [41–43]. Again, in the current
study, the size of the epoch was set as 10, 15, or 20, and the training set percentage was 60%
or 70% of data, randomly selected from the groups.
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Table 2. Pre-trained models used in this study [40].

Pre-Trained Model Input Image Size Design Layers Parametric Size (MB) Layer of Features

AlexNet 227 × 227 25 227 17th
DenseNet201 224 × 224 709 77 706th

ResNet50 224 × 224 177 96 175th
VGG16 224 × 224 41 27 33rd
VGG19 224 × 224 47 535 39th

2.4.2. Machine Learning Methods

Logistic regression (LR) is often applied to analyze associations between two or more
predictors or variables. Regression analysis is commonly adopted to describe relations
between predictors or variables to build a linear functional model, whereas regression
modeling is usually used to predict an outcome with a new predictor. LR is a binary
regression model. The LR method is used in the field of machine learning and is applied
for the development of classification models because of its capacity to provide tree-like or
hierarchical structures. Many fields have adopted LR for prediction and classification.

A support vector machine (SVM) is a supervised learning method with the ability to
powerfully generate a Hyper Plan for classifying categorical data. The SVM is generally
utilized in high-dimensional or nonlinear categorization. Many useful kernels are available
to improve classification performance and reduce false rates.

Naive Bayes (NB) classifiers are based on the Bayesian theorem with a naïve indepen-
dence hypothesis between the adopted predictors or features. NB classifiers provide higher
accuracy under bundle with kernel density estimation [44]. They also offer high flexibility
for linear or nonlinear relations among variables (features/predictors) in classification
problems. The computing cost takes linear time by compared those of expensive iterative
approximations of classifiers.

To classify the postural control of the young and elderly groups, these algorithms
were applied to the extracted features as deep and machine learning methods with JNP.

2.5. Evaluating Model Performance

The coordinates of 15 joints continually measured for 40 s were plotted in one figure
for each candidate. Each participant had six figures as a result of the replicated runs. Hence,
a total of 120 and 150 JNPs were created for the young and elderly groups, respectively.
The size of a JNP was 875 × 656 pixels with 24 bits per pixel. The testing sets were 48 and
60 JNPs (40%) or 36 and 45 JNPs (30%), randomly selected from the young and elderly
groups, respectively. The original data were partitioned into training and testing sets
randomly without overlapping samples in the sets.

The testing sets were used to evaluate model performance. The validated performance
of the presented methods is typically used to popular index. A confusion matrix is often
used to assess model suitability, including its accuracy, sensitivity, specificity, negative
predictive value (NPV), positive predictive value (PPV), and kappa value. The indices
(i.e., six evaluated values) were sorted in ascending order according to the kappa value.
Then, a radar plot was developed to display the indexes for the models. A radar plot was
developed to display those indexes for the presented models.

3. Results
3.1. Model Performance: 60% of Data for Training and 40% of Data for Testing

A total of 45 models were obtained according to five deep learning methods, with
three batch sizes and three machine learning algorithms, and a 60% random splitting ratio
of the original data. Another 45 models were obtained with a 70% random splitting ratio of
the data. Figures 4 and 5 present the validation results of testing sets with 40% and 30%
random splitting ratios, respectively, of the original data.
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Figure 4. Performance of 45 models using 60% of the data as the training set. Model details are listed in Appendix A.

The size of the epoch used in CNN models is crucial for making inferences regarding
classification performance. Therefore, epoch size was considered during evaluation of the
models. Figure 4 depicts the performance of 45 models (combinations) with 40% of the
data used as the testing set. Table 3 details the performance of five CNNs. The model
combining VGG16 and SVM under epoch 15 (M29) had the best performance out of all
the models. The accuracy, sensitivity, specificity, PPV, NPV, and kappa value were 0.98,
0.99, 0.95, 0.98, 0.98, and 0.95, respectively. These results suggest that VGG16 extracted
useful JNP features and the SVM feasibly classified the features. The SVM demonstrated
high dimensional classification capacity and efficiency when combined with AlexNet,
DenseNet201, ResNet50, VGG16, and VGG19, with an accuracy of 0.95 or higher generated
by these combinations.
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3.2. Model Performance: 70% of the Data Used for Training and 30% of the Data Used for Testing

Figure 5 portrays the performance of 45 models (combinations) when 70% and 30% of
the data was used for training and testing, respectively. Table 4 presents the performance
of five CNNs. The combination of VGG19 and SVM under epoch 20 (M90) had the best
performance. The accuracy, sensitivity, specificity, PPV, NPV, and kappa value were 0.99,
0.99, 0.97, 0.99, 0.98, and 0.97, respectively. The second-highest performance was achieved
by M89, which was a combination of VGG16 and SVM under epoch 20. Both VGG16 and
VGG19 extracted useful JNP features, and the SVM feasibly classified them. The SVM
demonstrated good classification ability and efficiency when combined with AlexNet,
DenseNet201, ResNet50, VGG16, and VGG19, with accuracies of 0.95 or higher.

Table 4. Models trained with 70% of the data achieved accuracy and kappa values of no less than 0.95 and 0.88, respectively.

Model Epoch CNN Learner Accuracy Sensitivity Specificity PPV NPV Kappa

M73 15 ResNet50 SVM 0.95 0.97 0.91 0.96 0.93 0.89
M57 10 DenseNet201 SVM 0.96 0.98 0.91 0.96 0.95 0.90
M88 20 ResNet50 SVM 0.96 0.97 0.94 0.97 0.94 0.91
M58 10 ResNet50 SVM 0.97 0.97 0.97 0.99 0.92 0.92
M87 20 DenseNet201 SVM 0.97 0.97 0.95 0.98 0.94 0.92
M60 10 VGG19 SVM 0.97 0.97 0.97 0.99 0.94 0.93
M56 10 AlexNet SVM 0.98 0.99 0.94 0.97 0.98 0.94
M71 15 AlexNet SVM 0.98 0.99 0.95 0.98 0.97 0.94
M75 15 VGG19 SVM 0.98 0.99 0.95 0.98 0.97 0.94
M59 10 VGG16 SVM 0.98 0.99 0.97 0.99 0.97 0.96
M74 15 VGG16 SVM 0.98 1.00 0.94 0.97 1.00 0.96
M86 20 AlexNet SVM 0.98 0.98 0.98 0.99 0.95 0.96
M89 20 VGG16 SVM 0.98 0.98 0.98 0.99 0.95 0.96
M90 20 VGG19 SVM 0.99 0.99 0.97 0.99 0.98 0.97

The combination of VGG19 and SVM with 70% of the data used for training in epoch
20 (M90) could be used to classify postural control in young and elderly groups through
the JNP.

4. Discussion
4.1. The Informative JNP

Using joint motion trajectories instead of COP or COM displacement for analysis
enables the evaluation of posture control ability as well as the posture control strategies
used to achieve balance [45,46]. In the current study, the JNPs of the elderly group indicated
that they tended to use an extreme joint coordination mode, an inter-joint coordination
strategy characterized by total joint dependence, to maintain balance when standing
still [19].

The JNP provided information on postural control, but also on tremors. No screening
test or tool is available for the early detection of Parkinson’s disease. The JNP map can help
in evaluating coordinated interactions among joints and discovering involuntary tremors
of each segment when an individual is standing still [47]. The stability of the torso and
proximal joints in the elderly adult group was similar to that in the young adult group,
but the forearm and knee joints exhibited slight tremors (Figure 6a), which may have been
psychogenic or physiological tremors. Figure 6b displays the postural stability of joints
in various parts of the body, which was better than most of elderly people in the study
but the forearm and hand joints exhibited obviously psychogenic or physiological tremors.
The postural stability of the joints of various parts of the body in Figure 6d is similar to
that in Figure 6c and may indicate a postural tremor. In some cases, the left forearm shook
more, but the whole body shook horizontally (Figure 6c). Figure 6c displayed a typical
pattern of postural stability of the joints in the elderly adult group and possibly indicating
a postural tremor and or psychogenic tremor. When a postural tremor occurs, further
testing is required to confirm its cause, which may be, for example, primary cerebellar
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disease, brain injury, dystonia, alcohol, or drugs. In Figure 6e, symmetrical shaking of the
wrists and lower limbs occurs on both sides; this is suspected to be an essential tremor or
Parkinsonian tremor. In Figure 6f, whole-body shaking, including shaking of the feet, is
intense and asymmetrical and leads to instability when the individual is standing; in such
cases, a Parkinsonian tremor is suspected. When a postural tremor occurs in a case, further
testing is required to confirm the cause of the jitter, which may be caused by other diseases,
such as primary cerebellar disease, dystonia, Parkinson’s disease, drugs, etc. Hence, the
JNP may be used to visualize shaking and relations between tremors and diseases.
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Figure 6. Abnormal patterns of postural control in several participants. (a) The forearm and knee joints exhibited slight
tremors. (b) The forearm and hand joints exhibited obviously tremors. (c) The whole body shook horizontally and the left
forearm shook more. (d) The whole body shook horizontally. (e) Symmetrical shaking of the wrists and lower limbs occurs
on both sides. (f) Individual stands with whole-body asymmetrical shaking.

4.2. Combined Deep and Machine Learning

In this study, the VGG16, VGG19, AlexNet, ResNet50, and DenseNet201 were used to
extract image features for the development of SVM classification models. Although several
fully connected layers (FCLs) were present in the CNN, we did not survey and compare all
of them. Only the last FCL of the CNN was applied to extract features of images for the
SVM, LR, and NB classifiers. The SVM was regarded as an efficient classifier for detecting
and classifying postural control in young and elderly adults on the basis of their JNPs.
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M29 combined VGG16 and the SVM (training set, 70%; validation set, 30%), and M90
combined VGG19 and SVM to classify balance function (training set, 80%; validation set,
20%). The accuracy and kappa values of M29 and M90 were (98%, 95%) and (99%, 97%),
respectively. The validation results indicated that both M29 and M90 could classify balance
function in the elderly group with high agreement and consistency. Additionally, the deep
learning component of the VGG architecture provided useful features of images for the
SVM. Therefore, the SVM archived to classify the task of detected balance function between
the young and elderly adults.

Table 5 summarizes the results in Tables 3 and 4. All 27 methods selected achieved
kappa values of 0.88 or higher. AlexNet, VGG16, and VGG19 each appeared six times.
DenseNet201 and ResNet50 appeared four and five times, respectively. The minimum
accuracy generated by AlexNet, VGG16, and VGG19 was 0.97. VGG19 combined with the
SVM had the highest maximum accuracy among the five deep learning methods with the
SVM classifier.

Table 5. Summary of the results in Tables 3 and 4.

Deep Learning Counts Min. ACC Max. ACC

AlexNet 6 0.97 0.98
DenseNet201 4 0.95 0.97

ResNet50 5 0.95 0.97
VGG16 6 0.97 0.98
VGG19 6 0.97 0.99

Total 27
Note: Min. ACC and Max. ACC are the minimum and maximum accuracy.

4.3. Comparison with Reported Results

The proposed methods were compared with previously developed methods with
respect to the results listed in Table 5. SVMs, random forest models, and cohorts have been
applied to detect motor [48,49], balance, or gait function [50–60]. The highest accuracy
in classifying motor function was 97%, achieved by an SVM. The highest accuracy for
classifying gait or balance function was 96.7%, also achieved by an SVM. Thus, SVMs were
proven successful in classification tasks. However, the proposed methods achieved higher
accuracies in terms of reasonability and feasibility than did the other methods listed in
Table 6.

Table 6. Comparison of the proposed methods with methods developed in related studies.

Author Year Methods Task Sample Size Performance

Di Lazzaro G. et al. [48] 2020 SVM motor 65 ACC: 97% (SVM)

Yuhan Zhou et al. [50] 2020
SVM

gait 239
ACC: 89% (SVM)

RF ACC: 73% (RF)
ANN ACC: 90% (ANN)

Tian Bao et al. [53] 2019 SVM balance 16 ACC: 82% (SVM)
Jianwei Niu et al. [56] 2019 SVM gait 12 ACC: 96.7% (SVM)

Narintip Roongbenjawan et al. [59] 2020 Cohort Study balance 73
SEN: 92%
SPE: 81%

The Presented Methods 2021 DL + ML balance 55
ACC: 98% (VGG16 + SVM)
ACC: 99% (VGG19 + SVM)

Note: ACC is accuracy. SPE is specificity. RF is random forest. SVM is support vector machine. DL is deep learning. ML is machine learning.

To further test the reliability of the proposed methods in classifying postural control,
a future study might compare the results a gold standard detection method, such as
functional assessment or balance assessment.
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5. Conclusions

The JNP can reveal postural coordinates in a two-dimensional image. Moreover, it
provides visual information on postural swing and is suitable for the classification and
detection of postural control in young and elderly adults when used with the deep and
machine learning methods developed in this study. The best performance was achieved
through the combination of VGG19 and SVM with 70% of the data used for the training set
and an epoch of 20. The correlations between JNPs and clinical tremors can be investigated
in future research. Indeed, both the elderly and the young group should be screened or
some gold standard detection (e.g., psychologist, radiologist, or related medical assessor)
be applied to verify the reality of both groups. In this study, the lack of a serious screening
test or use of a gold standard detection method for each subject is noted as a limitation of
the research. Future work can incorporate more rigorous screening.
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Appendix A

The 90 investigated methods with combined CNNs and classifiers; the percentage of
data used for the training set and the epoch size are listed.

Epoch Ratio CNN Learner Model Epoch Ratio CNN Learner Model

10 0.6 AlexNet LR M1 15 0.7 AlexNet LR M46
10 0.6 DenseNet201 LR M2 15 0.7 DenseNet201 LR M47
10 0.6 ResNet50 LR M3 15 0.7 ResNet50 LR M48
10 0.6 VGG16 LR M4 15 0.7 VGG16 LR M49
10 0.6 VGG19 LR M5 15 0.7 VGG19 LR M50
10 0.6 AlexNet NB M6 15 0.7 AlexNet NB M51
10 0.6 DenseNet201 NB M7 15 0.7 DenseNet201 NB M52
10 0.6 ResNet50 NB M8 15 0.7 ResNet50 NB M53
10 0.6 VGG16 NB M9 15 0.7 VGG16 NB M54
10 0.6 VGG19 NB M10 15 0.7 VGG19 NB M55
10 0.6 AlexNet SVM M11 15 0.7 AlexNet SVM M56
10 0.6 DenseNet201 SVM M12 15 0.7 DenseNet201 SVM M57
10 0.6 ResNet50 SVM M13 15 0.7 ResNet50 SVM M58
10 0.6 VGG16 SVM M14 15 0.7 VGG16 SVM M59
10 0.6 VGG19 SVM M15 15 0.7 VGG19 SVM M60
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Epoch Ratio CNN Learner Model Epoch Ratio CNN Learner Model

10 0.7 AlexNet LR M16 20 0.6 AlexNet LR M61
10 0.7 DenseNet201 LR M17 20 0.6 DenseNet201 LR M62
10 0.7 ResNet50 LR M18 20 0.6 ResNet50 LR M63
10 0.7 VGG16 LR M19 20 0.6 VGG16 LR M64
10 0.7 VGG19 LR M20 20 0.6 VGG19 LR M65
10 0.7 AlexNet NB M21 20 0.6 AlexNet NB M66
10 0.7 DenseNet201 NB M22 20 0.6 DenseNet201 NB M67
10 0.7 ResNet50 NB M23 20 0.6 ResNet50 NB M68
10 0.7 VGG16 NB M24 20 0.6 VGG16 NB M69
10 0.7 VGG19 NB M25 20 0.6 VGG19 NB M70
10 0.7 AlexNet SVM M26 20 0.6 AlexNet SVM M71
10 0.7 DenseNet201 SVM M27 20 0.6 DenseNet201 SVM M72
10 0.7 ResNet50 SVM M28 20 0.6 ResNet50 SVM M73
10 0.7 VGG16 SVM M29 20 0.6 VGG16 SVM M74
10 0.7 VGG19 SVM M30 20 0.6 VGG19 SVM M75
15 0.6 AlexNet LR M31 20 0.7 AlexNet LR M76
15 0.6 DenseNet201 LR M32 20 0.7 DenseNet201 LR M77
15 0.6 ResNet50 LR M33 20 0.7 ResNet50 LR M78
15 0.6 VGG16 LR M34 20 0.7 VGG16 LR M79
15 0.6 VGG19 LR M35 20 0.7 VGG19 LR M80
15 0.6 AlexNet NB M36 20 0.7 AlexNet NB M81
15 0.6 DenseNet201 NB M37 20 0.7 DenseNet201 NB M82
15 0.6 ResNet50 NB M38 20 0.7 ResNet50 NB M83
15 0.6 VGG16 NB M39 20 0.7 VGG16 NB M84
15 0.6 VGG19 NB M40 20 0.7 VGG19 NB M85
15 0.6 AlexNet SVM M41 20 0.7 AlexNet SVM M86
15 0.6 DenseNet201 SVM M42 20 0.7 DenseNet201 SVM M87
15 0.6 ResNet50 SVM M43 20 0.7 ResNet50 SVM M88
15 0.6 VGG16 SVM M44 20 0.7 VGG16 SVM M89
15 0.6 VGG19 SVM M45 20 0.7 VGG19 SVM M90
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