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MOTIVATION Our work aims to meet the increasing demand for high-resolution single-cell phenotyping in
3D stem cell cultures. During the parallelization of 3D cell cultures, we faced the problem of acquiring high-
resolution or high-time-resolved image data for phenotyping. However, single-cell resolution is required to
characterize the heterogeneous cell populations as, for example, encountered within stem cell differentia-
tion experiments. To address this challenge, we employed label-free imaging technology to stain nuclei in
situ from 3D bright-field image sets, which reduces image acquisition time and enables the inference of cell
types and velocity. The presented approach thus enables dynamic large-scale screening of 3D stem cell
cultures based on bright-field imaging.
SUMMARY
Massive, parallelized 3D stem cell cultures for engineering in vitro human cell types require imaging methods
with high time and spatial resolution to fully exploit technological advances in cell culture technologies. Here,
we introduce a large-scale integratedmicrofluidic chip platform for automated 3D stem cell differentiation. To
fully enable dynamic high-content imaging on the chip platform, we developed a label-free deep learning
method called Bright2Nuc to predict in silico nuclear staining in 3D from confocal microscopy bright-field im-
ages. Bright2Nuc was trained and applied to hundreds of 3D human induced pluripotent stem cell cultures
differentiating toward definitive endoderm on amicrofluidic platform. Combined with existing image analysis
tools, Bright2Nuc segmented individual nuclei from bright-field images, quantified their morphological
properties, predicted stem cell differentiation state, and tracked the cells over time. Our methods are avail-
able in an open-source pipeline, enabling researchers to upscale image acquisition and phenotyping of 3D
cell culture.
INTRODUCTION

New cell culture technologies for pluripotent stem cells are cen-

tral to enabling in vitro disease models, regenerative therapies,

and reducing animal studies for drug screens.1 3D culture tech-

niques have become commonly used in differentiation trials of

stem cells toward defined cell types, such as beta cells,2 hepa-

tocytes,3 and intestinal epithelial cells.4 Although 3D cultures can

mimic the architecture of the tissue niche, promoting cell-to-cell

and cell-to-matrix interactions, the chemical microenvironment

requires additional technological tools. Microfluidic chip tech-
Cell
This is an open access article under the CC BY-N
nologies can fill this gap by automating fluid programs to test

complex differentiation protocols in parallelized stem cell cul-

tures.5 Further, microfluidics offers miniaturized solutions for

unifying the shape and size of 3D stem cell cultures but also

for positioning the cell cultures to simplify high-content data

acquisition. With the progression of cell culture technologies,

analytical methods to phenotype 3D cell cultures under higher-

throughput conditions have become difficult because cells in

3D adopt high-density compact configurations, and cell mor-

phologies are more heterogeneous and less recognizable than

in 2D cultures. Thus, tracking and phenotyping massively
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parallelized 3D cultures at the single-cell level presents the chal-

lenge of developing not only image acquisition methods that

allow resolution of the 3D cell cultures in high time and spatial

resolution but also powerful computational methods to handle

the increasing amount of data being generated.6

Owing to the widely accessible equipment, confocal fluores-

cence is the gold standard for obtaining single-cell resolutions

in optical microscopy. Real-time imaging of cell types, functions,

or cell states is hampered by the need for fluorescent reporter

cell lines, which often require lengthy processes to engineer

and validate.7 Furthermore, fluorescent reporters may affect

biochemical phenomena or cell types of interest and induce

cytotoxic stress under prolonged imaging times. Label-free mi-

croscopy, based on deep learning image processing and anal-

ysis, has emerged as an alternative to fluorescent reporters.

For example, in silico staining can be used to predict fluorescent

markers from the bright-field images of various tissue types.8–11

Once trained, deep-learning models are fast and consistent in

their predictions. For high-content imaging in screening studies,

label-free microscopy can dramatically reduce the image acqui-

sition time by inferring multiple fluorescent in silico stains from

single images without being limited by spectral cross-talk.

Most of the previous approaches have focused on high-resolu-

tion imaging of 2D cell cultures or tissue sections with high

numerical apertures. Higher-throughput imaging results in a

trade-off between acquisition time, resolution, and phototox-

icity. In particular, a higher resolution is only achieved with liquid

immersion objectives, which are cumbersome for high-content

data acquisition. Further, though not unprecedented,12 applica-

tions of in silico staining to live 3D cell cultures are rare. Finally, no

previous approach has addressed the problem of phenotyping

stem cells in a 3D environment from bright-field images.

Herein, we present a microfluidic platform for complex fluid

programming in amultiplexed high-throughput manner to enable

the differentiation of human induced pluripotent stem cells

(hiPSCs) in 3D while simultaneously facilitating live imaging.

We focused on acquiring imaging data on 3D cell cultures with

a relatively low-resolution and low-numerical-aperture air-im-

mersion 203 objective through confocal microscopy to increase

data acquisition throughput. We introduced a deep learning-

based method, named Bright2Nuc, to predict nuclear fluores-

cence within on-chip 3D cell cultures from low-magnification

bright-field images. In silico staining images were used to infer

the differentiation state of human stem cells and cell dynamics

within on-chip cultivated 3D cell cultures undergoing endo-

dermal differentiation. For reproducibility and applicability, the

Bright2Nuc deep learning method and associated data were

published using open-source software.

RESULTS

Imaging of 3D human stem cell cultures on chip
We developed a microfluidic large-scale integration chip plat-

form13 to automate the formation, culture, and differentiation of

128 3D cell cultures under 32 independent chemical conditions

(Figure 1A). Cells were seeded as a single-cell suspension in

each chamber (Video S1), and after 4 h, 3D cell cultures were

formed by self-aggregation (Figure 1B). A chamber height of
2 Cell Reports Methods 3, 100523, July 24, 2023
50 mm constrained the 3D cell cultures between the glass sub-

strate and PDMS channel top, ensuring imaging from top to bot-

tom (Figure 1C). Together with the position stability of the cell

culture compartments, the chip enabled high-content time-

resolved imaging of reproducibly homogeneous (Figure S1A)

live 3D cell cultures with temporal control of chemical conditions.

We applied our platform to definitive endoderm (DE) differen-

tiation, a critical first step for differentiating liver, gut, pancreas,

lungs, trachea, and thyroid cell types. hiPSC-derived 3D cultures

could be differentiated on chip toward DE by activating the trans-

forming growth factor b (TGF-b)/nodal and WNT signaling path-

ways with activin A and CHIR-99021, respectively. Over 3 days,

the two chemical components were controlled in time and con-

centration using fluid programming. Upon fixation of subsets of

3D cell cultures with NHS-ester every 24 h, a differentiation tra-

jectory was established. All cell cultures were immunostained on

the chip at the end of differentiation for the pluripotency marker

octamer-binding transcription factor 4 (OCT4) and the two DE-

specific transcription factors (TFs) forkhead box A2 (FOXA2)

and SRY-box 17 (SOX17). Bright-field and immunofluorescence

(IF) imageswere recorded by standard confocal microscopywith

an xy resolution of 0.25 mm/pixel (px) and a z resolution of 1 mm/

plane. Quantitative fluorescence signals of the TFs were ex-

tracted per nucleus for all 3D cell cultures by segmenting the

3D DAPI signal using a retrained StarDist model.14,15 All IF im-

ages were corrected for the signal decrease in the z direction

caused by increasing light scattering and for the signal decrease

in the xy direction caused by gradually decreasing penetration of

labeled antibodies.

Within the first 24 h after the start of DE differentiation, 3D cell

cultures lost an average of 42.6% ± 17.1% (mean ± SD, aver-

aged over Nr = 4 biological replicates with a total of N = 426 cul-

tures) of their surface area in the xy plane due to cell disaggrega-

tion (Figures S1B and S1D). After this initial cell loss, most of the

cell cultures recovered and grew until the end of differentiation

(Figure S1C). The individual growth behavior of 3D cell cultures

varied depending on the initial cell loss, but TF expression during

differentiationwas comparable for all cell cultures, where hiPSCs

lost the expression of the pluripotency marker OCT4 within the

first 48 h and gained the expression of the DE-specific markers,

FOXA2 and SOX17 (Figure 1D). Furthermore, on-chip differenti-

ation resulted in a nearly homogeneous cell population with a

yield as high as 96% ± 3% FOXA2/SOX17 double-expressing

cells after 72 h (Figure 1E; mean ± SD, N = 14,936 nuclei in N =

20 cultures). However, experimental yields varied with an

average of 90% ± 6% (mean ± SD, Nr = 4) of double-expressing

cells at the end of differentiation, as previously observed in the

standard cell well plate and chip culture formats.16

Label-free prediction of nuclei in 3D cell cultures
The full high-content imaging of hiSPC-derived 3D cell cultures

with standard confocal microscopy with four fluorescence chan-

nels is laborious and time consuming, requiring approximately

48 h for IF staining and 48 h of imaging. To cope with the chip

throughput and characterize live-cell cultures, we sought to pre-

dict the nuclear fluorescence of cells within whole 3D cell cul-

tures along the DE differentiation trajectory from low-magnifica-

tion bright-field images. For this purpose, we developed



Figure 1. Microfluidic large-scale integration chip platform chip enables the multiplexed differentiation and imaging of 3D human induced

pluripotent stem cell cultures

(A) Scheme of microfluidic large-scale integration chip layout. The black and gray lines denote the flow and control microchannels of the double-layered PDMS

chip, respectively. The inset on the right shows a magnified view of one cell culture chamber (red). The bottom inset shows the cross-section through a filled cell

culture area.

(B) On-chip 3D cell culture formation process: (1) seeding of single-cell solution, (2) separation of cell culture areas upon actuation of pneumatic membrane

valves, followed by cell rinsing, and (3) self-aggregation of cells in the confined cell culture volume after 4 and 24 h. Scale bar: 500 mm.

(C) Orthogonal views of an on-chip 3D cell culture stained with DAPI. Images were taken with a 0.25 mm/px xy resolution and 1 mm/px z resolution. Scale bar:

50 mm.

(D) Immunofluorescence confocal images of 3D cell cultures fixed along the differentiation trajectory from the pluripotency (OCT4-positive) to the definitive

endoderm (FOXA2 and SOX17 double-positive) cell stage. Scale bar: 100 mm.

(E) Quantitative image analysis of cell typemarker expression along the differentiation trajectory within all cells of 3D cell cultures from a single chip run. Each data

point represents themean fluorescence intensity of individual nuclei segmented in 3D; the indicated percentages represent the fraction of FOXA2/SOX17 double-

positive nuclei (nuclei considered: n0h = 5,501, n24h = 8,700, n48h = 22,587, n72h = 14,936) frommultiple 3D cell cultures (N0h = 12, N24h = 25, N48h = 24, N72h = 30).
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Bright2Nuc, a U-Net-based deep neural network (Figures 2A and

2B). Bright2Nuc incorporates the 3D information of bright-field

images by taking three consecutive bright-field Z slices (Z = k,

Z = k � 1, and Z = k + 1 positions) to compute the nucleus pre-

diction of any given Z position (Z = k) (Figure 2B). The model was

trained on 255 paired bright-field stacks and fluorescence

nucleus images of 162 fixed and 93 live 3D cell cultures by

minimizing the mean-squared pixel error between the paired

predicted and true IF nucleus images (see experimental proced-

ures). While images from fixed 3D cell cultures were acquired

along the DE trajectory as described previously (Figure 1C), im-

ages from live 3D cell cultures were obtained in the pluripotent
state using a SOX2-T2A-tdTomato fluorescence reporter hiPSC

line (Video S2). To evaluate the performance of our Bright2Nuc

model, we benchmarked the correlation between the pixel

values of the ground-truth IF image and the in silico

Bright2Nuc prediction at the 3D cell culture level (Figure 2F).

We tested the model on an independent test set containing 85

cell cultures (N = 54 fixed and N = 31 live) from the same exper-

iments used for training (in domain). We additionally evaluated

Bright2Nuc’s robustness on 123 cell cultures in a replicate

experiment. The image data were excluded from the model

training (out domain). Bright2Nuc results showed high correla-

tions for in-domain (r = 0.79 ± 0.07, mean ± SD for N = 54)
Cell Reports Methods 3, 100523, July 24, 2023 3



Figure 2. Neural network accurately predicts nuclear staining in 3D cell cultures from bright-field images

(A) We trained Bright2Nuc, a U-Net-based neural network, on paired bright-field and immunofluorescence (IF) nucleus images.

(B) We used it to predict nucleus images from bright-field images. The model considers three consecutive Z slices of the 3D bright-field image to output each Z

slice of the nucleus prediction.

(C) Representative bright-field image of an on-chip 3D cell culture (left), corresponding ground-truth DAPI IF nucleus image (middle), and the predicted nucleus

image (right). Yellow rectangles highlight the position of a specific region for comparison. Scale bar: 100 mm.

(D) Correlation between the fluorescence pixel values of the ground truth nucleus image given in (C) and the pixel values of the corresponding predicted nucleus

image (Pearson correlation r = 0.70). Each data point represents a single pixel value, and the line represents the y = x identity.

(E) The model’s prediction performance is independent of the imaging depth. The Pearson correlation between the predicted and ground-truth pixels was stable

along the z axis of the cell culture shown in (C).

(F) Average Pearson correlation between the ground-truth and predicted pixel values fromwhole 3D cell cultures imaged in either the fixed or live state. In domain

refers to the images coming from the in-domain test set, which are images extracted from the same experiments as the images used for Bright2Nuc model

training but excluded from the training itself. Out domain refers to images extracted from experiments completely independent of the model training. Average

(legend continued on next page)
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and out-domain (r = 0.76 ± 0.06, N = 123) images (Figure 2F.).

Furthermore, we assessed the robustness of the model by vary-

ing the illumination parameters on a subset of 31 cell cultures in

an out-domain experiment. The correlations did not change

when imaged with either a 555 or 633 nm laser wavelength

(r = 0.77 ± 0.06 for l = 555 nm, r = 0.76 ± 0.06 for l = 633 nm,

N = 31 fixed out-domain cultures; Figure S2A). Finally, an abla-

tion study was conducted to estimate the number of images

required to train a high-performance Bright2Nuc model. To this

end, we retrained Bright2Nucmodels on randomly selected sub-

samples of the training data (2%, 5%, 10%, 25%, and 50% of

the N = 255 3D cell cultures). The results showed that using

10% of the total training data (i.e., N = 25 3D cell cultures) was

sufficient to achieve similar performance as using the full dataset

(Figure S2B).

Segmentation of nuclei from bright-field imaging
To segment Bright2Nuc-predicted nucleus images, we retrained

StarDist14,15 with fluorescence images from the same training

dataset as for Bright2Nuc (see experimental procedures). First,

we compared the in silico segmentation results for the predicted

nucleus images with the in silico segmentation results for the

immunofluorescent nucleus images (Figure 2G). Secondly, we

compared the in silico segmentation results with manually anno-

tated images of a 3D cell culture from an in-domain fixed test set.

This 3D cell culture was excluded from the training sets of both

Bright2Nuc and StarDIst models. We found that the quality of

the in silico segmented ground truth was high with low variation

compared with the manually segmented results (96.8% of bijec-

tions between manual and in silico ground truths and only 5.9%

of under-predictions; Figures S2C–S2E), confirming the robust-

ness of the in silico segmentation approach. Further, to bench-

mark the segmentations on the predicted images, segmented

nuclei were classified into five categories: (1) bijections, that is,

predicted nuclei overlapping with a single nucleus in the ground

truth image; (2) over-segmentations, that is, two or more pre-

dicted nuclei overlapped with a single nucleus in the ground-

truth image; (3) under-segmentations, that is, single predicted

nuclei overlapped with two or more nuclei in the ground-truth im-

age; (4) over-predictions, where predicted nuclei overlapped

with no nuclei in the ground-truth image; and (5) under-predic-

tions, where nuclei in the ground truth existed with no overlap

in the prediction image (Figure 2H). For in-domain fixed cultures,

the Bright2Nuc and StarDist approach resulted in 79.5% ± 6.1%

of the predicted nuclei as bijections (mean ±SD, N = 54 cultures).

An additional 2.1% ± 2% and 1.6% ± 1.7% of the nuclei were

predicted correctly but were over- or under-segmented, respec-

tively. However, the approach also yielded 16.3% ± 6.4% of

over-predictions, whereas conversely, 16.1% ± 6.6% of all
Pearson correlations were r = 0.79 ± 0.07 for fixed in-domain cultures (mean ± SD

r = 0.62 ± 0.03 for live in-domain cultures (N = 31).

(G) 3D in silico segmentation using StarDist of the IF nucleus image in (C) (middl

segmentations show a high overlap (left, green; 80.6% overlapping area with the

(H) Top: categories used for comparing the predicted segmentation to the in sili

tations from fixed (in-domain) (N = 54), fixed (out-domain) (N = 123), and live (in-

(I) High accuracy for the prediction of nuclei counts in the 85 fixed and live 3D cell c

correlation r = 0.98; coefficient of determination r2 = 0.88). The diagonal line rep
ground-truth segmentations were under-predicted (Figure 2H).

Nuclei segmentation from bright-field predictions was also

achieved in in-domain live cell cultures at the cost of a slightly

decreased accuracy of 70.1% ± 3.4% of bijections (N = 31) (Fig-

ure 2H). Furthermore, the approach yielded similar results

for out-domain fixed images with a percentage of 77.3% ±

3.7% of bijections (N = 123). Notably, this approach yielded a

higher percentage of over- and under-predictions; however,

we adjusted the detection threshold of the StarDist segmenta-

tion model to optimize the nuclei count accuracy. In fact, under-

and over-predictions compensate for each other and result in

high accuracy for predicting the number of nuclei in 3D cell cul-

tures from both in and out domains, fixed or live, when compared

with the in silico ground-truth count (Figure 2I; r = 0.98; r2 = 0.88).
Label-free prediction of differentiation state
Next, we investigated whether morphological and other features

derived from bright-field images were predictive of hiPSC differ-

entiation. In previous studies, the morphology of stem cell nuclei

was shown to be indicative of their differentiation state.17–20

Therefore, we first mapped the expression of the three TFs to

a single normalized value: the differentiation label (DL). The DL

was defined as the ratio between the average of the normalized

expressions of eFOXA2 and eSOX17 of the differentiation markers

FOXA2 and SOX17 and the sum of the normalized expression

of eOCT4 of the pluripotency marker OCT4 and the differentiation

markers:

DL =
1

1+
2eOCT4

eFOXA2+eSOX17

DL progressed from values close to zero for pluripotent cells at

t = 0 h with high OCT4 expression to a value of �1 for DE cells

after 72 h with high FOXA2 and SOX17 expression (Figure S3).

To predict the DL for each nucleus, we designed an explainable

feature-based approach. For each of the 26,213 segmented

nuclei along the DE differentiation trajectory, 120 features were

extracted: 64morphological features from the 3D segmentations

after Bright2Nuc and StarDist applications, and 56 bright-field

texture features were extracted from a fixed-sized bounding

box centered on the nucleus on the paired bright-field 3D im-

ages. A random forest algorithm with 1,000 estimators and a

depth of 10 was trained on the features for predicting DL (exper-

imental procedures). The ground-truth DL for model training was

calculated for each nucleus from the TF expression in the bound-

ing box of the associated IF image (Figure 3A).

The resulting random forest model predicted single-cell DL in

the bright-field images of 3D cell cultures fixed along the DE
, N = 54 cultures), r = 0.76 ± 0.07 for fixed out-domain cultures (N = 123), and

e, blue) and the predicted nucleus image (right, orange). The overlays of both

in silico segmentation).

co IF segmentation. Bottom: distribution of categories for predicted segmen-

domain) (N = 31) 3D cell cultures.

ultures in the in-domain test set and the 123 out-domain fixed cultures (Pearson

resents the y = x identity.

Cell Reports Methods 3, 100523, July 24, 2023 5



Figure 3. Bright-field and predicted morphological features predict

single-cell differentiation state

(A) We extracted 56 features from bright-field and 63 morphological features

from segmented Bright2Nuc 3D images in combination with the differentiation

label obtained from the IF expression to train the random forest model.

(B) Visually, the predicted label (3rd column, color coded from cyan to red)

matches the true IF expression (last column, merged IF images showing OCT4

in cyan and SOX17 in red). Scale bar: 100 mm. The random forest model

predicted a differentiation label for each cell in the on-chip 3D cell cultures.

(C) Comparison of the ground-truth with the predicted differentiation label is

shown on the right. Each data point represents a single nucleus (N = 26,213)

extracted from 49 3D cell cultures. (r2 = 0.48, mean absolute error = 0.19). The

mean absolute error observed on nuclei in 3D cell cultures fixed 24 h after the

start of definitive endoderm (DE) differentiation is much higher (mean absolute

error [MAE]24h = 0.38 ± 0.18, n = 4,376) than the one for other time points

(MAE0h = 0.15 ± 0.18, n = 3,028; MAE48h = 0.13 ± 0.11, n = 11,364; MAE72h =

0.17 ± 0.14, n = 7,445). This discrepancy can be explained by the inaccurate

value of the differentiation label obtained from the IF images. At 24 h, cells

displayed high OCT4 and low FOXA2/SOX17 expression, thus resulting in low

differentiation label values, even though the cells were already committed to

6 Cell Reports Methods 3, 100523, July 24, 2023
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differentiation trajectory. In a round-robin fashion, five random

forest models were trained on different training and test sets,

ensuring that each cell culture was contained in the test set

exactly once, while the training and test sets were split on the

level of whole-cell cultures. Visually, the predicted DL correlated

with true IF staining, even in the case of non-homogeneously

expressing cell cultures (Figure 3B). For all 26,213 nuclei, the

predicted DL correlated with the true DL with a coefficient of

determination of r2 = 0.48 and a mean absolute error of 0.19 ±

0.17 (mean ± SD; Figure 3C). We observed strong deviations

for nuclei fixed 24 h after DE induction where the mean absolute

error was higher than that at other time points. Interestingly, the

predicted DL values at 24 h spanned the entire range, indicating

that the random forest predicted nuclei as being in a develop-

mental transition state rather than resembling pure DE or plurip-

otent cell states. The discrepancy between the predicted and

true DLs can be explained by an inaccurate ground truth at

24 h, where cells exhibited a high OCT4 and a low FOXA2/

SOX17 expression (Figures 1D and 1E), resulting in a low true

DL (0.09 ± 0.14, mean ± SD, n = 4,376) indicative of pluripotent

cells, which does not reflect the state of those cells after 24 h

of DE induction.

In fact, a single-cell transcriptomic time trajectory of DE differ-

entiation under comparable conditions21 showed that after 24 h,

the transcriptome of hiPSCs changed differently from PSCs

while still expressing OCT4 at the mRNA level (Figure S4).

Consequently, the simplified view of cell type differentiation

based on single-cell state fluorescence markers argues for

descriptive states, whereas the neural network learning

approach resolves a continuous cell type transition as is seen

with time-resolved single-cell transcriptomics. By evaluating

the feature importance of the random forest model, we found

that features calculated on the bright-field images contributed

66% to the prediction, with the highest weighted feature being

the SD of the pixel values of the bright-field image (Table S1).

Our approach highlights the rich and hidden information sources

of bright-field images and their potential to resolve the transcrip-

tional states of human stem cells.

Label-free tracking of single cells
Bright2Nuc can bridge the domain gap between fixed and living

tissues by tracking nuclei in live 3D cell cultures. To this end, we

first generated surrogate in silico ground-truth tracking data with

3D cell cultures formed from a mixture of wild-type hiPSCs and

the SOX2-T2A-tdTomato reporter line in a 1:2 ratio to generate

heterogeneous mixtures of labeled and non-labeled nuclei.

Bright-field and IF images were acquired every 7.5 min for 17 h,

resulting in 136 frames (Video S2). The trained Bright2Nuc was

then applied to every frame of the bright-field image sequence

to predict nuclei. Predicted and IF-stained nuclei, which we

take here assign as in silico ground truth, were tracked using

TrackMate.22 Expectedly, we detected roughly two-thirds of

the number of nuclei (Figure 4A, blue curve) in the IF images
the DE differentiation path. The random forest interestingly predicts a label

value of DL24h-pred = 0.46 ± 0.18, which spans the range between the values

for the 0 and 48 h time points (DL0h-pred = 0.21 ± 0.18; DL48h-pred = 0.64 ±

0.15).



Figure 4. Label-free single-cell tracking in live 3D cell cultures

(A) Tracked nuclei in the label-free predicted images (orange) and fluorescence

reporter images (blue) in one representative 3D cell culture. As per the ratio of

fluorescent cells to the wild type, the in silico ground truth contained fewer

tracks than the prediction. Incorporating temporal information by counting the

number of tracks results in a more stable nucleus count than that based on the

segmentations of each individually segmented label-free predicted image

(black).

(B) If we require the tracks to match for a higher number of frames, the per-

centage of tracks in the fluorescence reporter images with a matched track in

the predicted images decreases. The longer we require the tracks to be, the

fewer we can identify as matching.

(C) Representative 3D single-cell tracks in the predicted nucleus images (or-

ange) and in silico ground-truth SOX2-T2A-tdTomato fluorescence nucleus

reporter images (blue). The background gray-value images show the in silico

ground-truth nuclear signal at the tracking end. The frame interval is 7.5 min.

(D) In spherical coordinates averaged over five frames, we found a high cor-

relation in displacement (vector length, r = 0.74, r2 = 0.64) and directionality

(polar angle, r = 0.91, r2 = 0.88, and azimuthal angle, r = 0.46, r2 = 0.64) and

between prediction and in silico ground truth.
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compared with nuclei from the predicted images (Figure 4A,

black curve). With increasing experimental time, the number of

detected tracks increased due to cell proliferation in both curves,

with the ratio between in silico ground-truth and predicted tracks

remaining constant at nGT/nPred = 0.58 ± 0.03 (Figure 4A; mean ±

SD, n = 136 frames). Assigning nuclei to tracks resulted in amore

stable nuclei count than counting segmented nuclei alone (Fig-

ure 4A, orange curve). Tracks in the in silico ground truth are,

on average, longer than tracks found in the predicted sequence

(Figure S5), which can be due to under-predictions of Bright2Nuc

(Figure 2), causing nuclei to be lost in a track.

For further tracking evaluation, we calculated the percentage

of in silico ground-truth tracks with a matched predicted track

as a function of the predicted track length (Figure 4B). We
counted a match between two tracks if the distance between

the center of mass of nuclei in the in silico ground-truth and pre-

dicted images was less than 11 mm, which is roughly equal to the

average nuclei diameter. The percentage of matched tracks

decreased steadily from an initial 85% for the minimum require-

ment of two frames to approximately 50% for the requirement of

25 consecutive frames, corresponding to 3 h of imaging

(Figure 4B).

Finally, we compared tracks from the in silico ground truth with

their matched predicted tracks, taking an arbitrary threshold of

five consecutive frames, for which 81% of the in silico ground-

truth tracks had a predicted track match (Figure 4B). Exemplary

velocity vectors were derived by averaging the cell movement

over five consecutive frames matched visually (Figure 4C), and

their spherical coordinates were correlated between the in silico

ground-truth and predicted tracks with Pearson correlations for

the vector lengths, polar angles, and azimuthal angles of r =

0.74, 0.91, and 0.46, respectively (Figure 4D). The distributions

of both the in silico ground-truth and predicted velocity vector

coordinates were similar (Figures S5D–S5F). Movement in the

xy plane was isotropic with a homogeneous distribution of the

polar angle (Figure S5E), whereas the values of the azimuthal

angle remained close to 0 (Figure S5F), indicating little move-

ment in the z direction. The limited z-directed movement was

probably caused by the constrained geometry of the on-chip cul-

tures. However, this confinement did not affect nuclei velocities,

as evidenced by the lack of dependence of the velocity vector

length on the z position of the nuclei (Figure S5C). Overall,

considering a track length of five frames, Bright2Nuc coupled

with the TrackMate algorithm allowed us to track 81% of the

nuclei in 3D cell culture (Figure 4C).

Label-free detection of cell velocities during
differentiation
During DE differentiation, hPSCs undergo synchronous epithe-

lial-mesenchymal transition (EMT).23–25 It is known that DE cells

show significantly higher migration in 2D experiments compared

with pluripotent cells in a scratch assay,23 which argues that DE

cells exhibit higher cell mobility than stem cells. Therefore, in

the last step,we investigatedwhether Bright2Nuc in combination

with single-nuclei tracking can detect motility changes in label-

free 3D cell cultures during DE differentiation. Along this line,

we detected changes in the expression of cell adhesion

molecules indicative of EMT during the DE differentiation on

chip (Figure 5A). IF images of fixed 3D cell cultures along the

DE differentiation trajectory showed that epithelial-cadherin

(E-CAD)/neural-cadherin (N-CAD) expression changes co-

occurred with upregulation of the DE marker SOX17. The sin-

gle-cell transcriptomic dataset21 also confirmed EMT TF

changes, such as SNAIL1/2, whose expression peaked between

the 24 and 48 h time points (Figure S4). To assess changes in cell

motility duringDEdifferentiation, we captured bright-fieldmovies

of six 3D cell cultures every 24 h over 75 min with a 5 min/frame

acquisition period (Figure 5). Bright-field images were acquired

using confocal microscopy with the same resolution as before.

The Bright2Nuc + TrackMate approach was then used to extract

the nuclei velocities, defined as the effective displacement of the

nuclei over five frames (Figure 5A). Strikingly, we observed an
Cell Reports Methods 3, 100523, July 24, 2023 7



Figure 5. Single-cell live tracking in 3D cell cultures during DE dif-

ferentiation captures increased cell mobility

(A) A significant increase in effective displacement correlates with the change

in cadherin expression, as shown in the IF confocal images of 3D cell cultures

fixed along the DE differentiation trajectory, showing the evolution of epithelial-

cadherin (E-CAD) and neural-cadherin (N-CAD) expression. The evolution of

the differentiation marker SOX17 was shown to mark progress toward the DE

stage. Scale bar: 100 mm.

(B) Distribution of the effective displacement over five frames, calculated using

Bright2Nuc and TrackMate on bright-field movies with a 24 h interval along the

DE differentiation trajectory. Each time point represents the distribution of the

velocity vectors of nuclei in six 3D cell cultures (number of nuclei: N0h = 2,862,

N24h = 1,308, N48h = 2,144, and N72h = 2,820). Movies were acquired with a

5 min per frame interval of over 75 min. White circles indicate the mean, boxes

mark the first and third quartiles, and bars indicate the standard deviation. For

significance testing a Mann-Whitney U test was perfromed (ns. > 0.05, *p <

0.05, **p < 0.01, ***p < 0.001).
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increase in effective cell displacement up to48hafter induction of

the DE differentiation. The highest effective cell displacement

(D48h = 0.98 ± 0.30 mm/min, mean ± SD) coincided with the time

point of the E-CAD/N-CAD expression change and the appear-

ance of the DE-specific marker SOX17. The population median

of the four effective cell displacement distributions (D0h =

0.78 ± 0.22 mm/min, D24h = 0.70 ± 0.26 mm/min, D48h = 0.98 ±

0.30 mm/min, D72h = 0.82 ± 0.24 mm/min, mean ± SD) differs

significantly (p = 3.9 3 10�242, Kruskal-Wallis H test). Post hoc
8 Cell Reports Methods 3, 100523, July 24, 2023
analysis with a Bonferroni correction revealed a significant in-

crease at the 48 h time point compared with the other time points

(p0–48h = 7.3 3 10�165, p24–48h = 1.4 3 10�164, p48–72h = 2.3 3

10�109, Mann-Whitney U test). Thus, the cells displayed higher

motility duringDEdifferentiation thanduring the pluripotent state.

Notably, cell movements within the 3D cell cultures were non-

directed throughout differentiation, as evidencedby thehomoge-

neously low values of directionality calculated from the same

velocity vectors. Interestingly, the measured increase in cell

migration rates during DE differentiation was lower than that pre-

viously reported in 2D cultures,23 where DE cells showed a five

times higher migration rate than that of pluripotent cells. This

could reflect the more complex extracellular matrix (ECM) within

the3Dcell culture comparedwith asimple 2Dcell surfaceculture.

DISCUSSION

Microfluidic cell culture technologies for controlling the massive

parallelization of 3D cell cultures are rapidly advancing, while

high-throughput analytical methods to exploit miniaturized bio-

logical samples are lacking. In this study, we provide a label-

free and live imaging approach to cope with the faster image

acquisition of on-chip-cultivated 3D stem cell cultures. The

developed neural network learning algorithm, Bright2Nuc, can

be coupled with pre-existing image analysis tools such as

StarDist and TrackMate for segmentation and tracking, respec-

tively. With StarDist, Bright2Nuc enabled us to infer the cell num-

ber and nuclear locations from accessible confocal bright-field

images with an accuracy of over 80% for 3D cell cultures with

more than 10,000 cells. Using the simplest imaging methods

for high-content imaging, we offer a general imaging approach

for screening 3D tissues. Deep learning approaches to detect

cell nuclei have been previously employed for 2D adherent cell

cultures8,9,11,12 or histological tissue slices.10 Existing neural net-

works have not yet attempted to infer information from cell im-

ages acquired with lower numerical aperture objectives and xy

resolution9–11 in 3D. Beyond locating only the nucleus volume

and positions, morphological features from inferred nuclei and

corresponding bright-field images allowed the determination of

transcriptional cell states along the pluripotent-to-DE differenti-

ation trajectory. Notably, the resulting cell state predictions

were more continuous than the cell state descriptions generated

from the fluorescence signals of descriptive fluorescence

markers, which is the standard research approach in develop-

mental biology. Our results highlight the currently untapped po-

tential information contained in the bright-field images.

In addition to the static view, we demonstrated that

Bright2Nuc can resolve real-time information from live nuclei in

3D cell cultures by using a neural network together with the

TrackMate algorithm. For example, we captured label-free cell

dynamics, indicating EMT on a timescale of hours. The homoge-

neous transition from pluripotent to DE cell stage within the on-

chip-cultivated 3D cell culture was reflected in the nuclei velocity

changes during differentiation.

Limitations of the study
One limitation of our study is the limited or missing ground-truth

data for cell segmentation and cell tracking, respectively.
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Although we manually segmented six 3D cell cultures, the large-

scale benchmarking of segmentations in Bright2Nuc images

was performed using in-silico-generated ground-truth data.

Nevertheless, the Pearson correlation coefficients between

the segmented Bright2Nuc images and in-silico-generated

ground-truth data were comparable to those of the sparse

manually generated ground truth, which argues for the applica-

bility of our approach. The generation of complete manually an-

notated cell tracks for 3D cell cultures with over 400 cells per

frame over 136 frames is challenging. However, here, the surro-

gated in silico ground-truth data generated from fluorescence

images of an iSPC reporter cell line with labeled nuclei showed

a high correlation with the tracking results obtained from the

Bright2Nuc images, demonstrating that the accuracy of our

tracking approach was comparable to using fluorescence im-

ages from labeled cells or organelles. So far, Bright2Nuc was

only tested on images taken under the given constraints in terms

of the used image acquisition microenvironment and micro-

scope equipment. The application of Bright2Nuc to other imag-

ing modalities remains to be shown. Our ablation study showed

that 10 s of 3D cell culture was sufficient to train Bright2Nuc

successfully, limiting the time required to provide annotated

training data for future experiments. Within our working range,

Bright2Nuc allowed for the assessment of motion directionality,

cell migration, and neighboring cell-cell contacts upon the for-

mation of architectural structures in the endodermal tissue.

This can be directly extended to resolve more complex tissue

formations such as those fully developing into pancreatic or liver

cell types. To further decrease the image acquisition time and in-

crease the time resolution for subsequent 3D cell culture, we

expect Bright2Nuc to be adopted for wide-field bright-field im-

ages. In summary, we believe that the general framework of

Bright2Nuc opens a diverse field of applications for dynamic

high-content screening of 3D cell cultures on chips.
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anti-FOXA2 Cell Signaling Cat#8186S; RRID: AB_10891055

anti-SOX17 Acris/Novus Cat#GT15094; RRID: AB_1623027

anti-N-Cadherin BD Cat#610920; RRID: AB_2077527

anti-E-Cadherin Cell Signaling Cat#3195S; RRID: AB_2291471

anti-Mouse Invitrogen Cat#A21202; RRID: AB_141607

anti-Rabbit Invitrogen Cat#A31572; RRID: AB_162543

anti-Goat Invitrogen Cat#A21082; RRID: AB_2535739

anti-Mouse Dianova Cat#715-175-151; RRID: AB_2619678

anti-Goat Invitrogen Cat#A11055; RRID: AB_2534102

Chemicals, peptides, and recombinant proteins

ActA Peprotech Cat# 120-14-300

CHIR99021, GSK3b inhibitor Tebu-bio Cat# 24804-0004

ROCK inhibitor, Y-27632 Santa Cruz Biotechnology Cat# sc-281642A

MCDB131 Gibco� Cat# 10372-019

Glutamax Life Technologies Cat# 35050-079

BSA Sigma Aldrich Cat# 10775835001

Sodium bicarbonate Sigma Aldrich Cat# S6297

Glucose Sigma Aldrich Cat# G8769

ITS-X Life Technologies Cat# 51500-056

Ascorbic acid Sigma-Aldrich Cat# A4544

Penicillin/Streptomycin Gibco� Cat# 15140-122

Deposited data

All datasets are deposited in zenodo. This paper https://doi.org/10.5281/zenodo.7014598

Experimental models: Cell lines

hiPSC cell line M. Hohwieler, et al., Human pluripotent

stem cell-derived acinar/ductal organoids

generate human pancreas upon orthotopic

transplantation and allow disease

modeling. Gut 66, 473–486 (2017).26

N/A

SOX2-T2A-tdTomato reporter hiPSC line A. Shahryari, et al., Increasing Gene Editing

Efficiency for CRISPR-Cas9 by Small RNAs

in Pluripotent Stem Cells. CRISPR J 4, 491–

501 (2021).27

N/A

Software and algorithms

All source code files used within this paper

are published on Github

This paper 1) https://github.com/marrlab/Bright2Nuc

2) https://zenodo.org/badge/latestdoi/

519176662

Stardist Weigert, M., et al. Star-convex Polyhedra

for 3D Object Detection and Segmentation

in Microscopy. 2020 Ieee Winter Conf Appl

Comput Vis Wacv 00, 3655–3662. 10.1109/

wacv45572.2020.9093435.15

https://github.com/stardist/stardist

TrackMate Tinevez, et al. (2016) TrackMate: An open

and extensible platform for single-particle

tracking. Methods San Diego Calif 115, 80–

90. 10.1016/j.ymeth.2016.09.016.22

https://imagej.net/plugins/trackmate/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Matthias

Meier (matthias.meier@helmholtz-munich.de).

Materials availability
This study did not generate new unique reagents nor use new biological samples.

Data and code availability
Image data have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the key re-

sources table. All original code has been deposited at Github and is publicly available as of the date of publication. DOIs are listed

in the key resources table. Bright2Nuc is available as a pip-installable package, together with commented analysis scripts at https://

github.com/marrlab/Bright2Nuc. The dataset is made available via Zenodo with the https://doi.org/10.5281/zenodo.7014598. Any

additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

When not specified otherwise, experiments were conducted using a hiPSC cell line26 which was kindly provided by Prof. A. Kleger

from Internal Medicine I, University Hospital, Ulm, Germany. The cell line was derived from a male patient. In some experiments for

the acquisition of live fluorescence nuclear signals, a SOX2-T2A-tdTomato reporter hiPSC line was used, generated by Shahryari

et al.27 from Prof. H. Lickert Helmholtz Zentrum Munich. The cell line was derived from a female patient. Usage of the hiPSC was

approved by the ethic commission of the Medical Faculty of TUM (reference number 400/21 S-KH). All cell lines were maintained

in a pluripotent state as 2D adherent monolayers in conventional cell culture plates coated with Geltrex (Life Technologies,

Cat#A1413302), fed daily using mTeSR Plus maintenance medium and maintained in a humidified atmosphere at 37�C and 5%

CO2. After reaching 70–80% confluence, the cells were passaged with 0.5 mM EDTA (AppliChem, Cat#A4892) in PBS. To enhance

cell viability after splitting, the maintenance medium was supplemented with 10 mM ROCK inhibitor for the following 24 h. Myco-

plasma-free cell culture was regularly confirmed using a MycoAlert Plus Mycoplasma Detection Kit (Lonza, Cat#LT07-703).

METHOD DETAILS

Microfluidic chip fabrication
PDMS chips were produced using traditional soft lithography techniques for two-layered devices.13 Briefly, two molds were fabri-

cated by photolithography. The mold for the control channel network was made to have features 25mm in height using SU-8 3025

(MicroChem, Cat #C1.02.003–0003). The mold for the flow flayer was fabricated in three steps. First, the flow channel was made us-

ing the AZ40XT photoresist (MicroChemicals, #104XT01) at a height of 40mmand re-flowed to obtain rounded half-channels. Second,

the perfusion channels of the cell culture chambers were produced at a height of 20mm using SU-8 3025. Finally, the cell chambers

were made using SU-8 3050 MicroChemicals, Cat# C1.02.003–0005) at a height of 50mm. All masks for photolithography were de-

signed using the AutoCAD software (AutoDesk, 2019) and photoresists were patterned using a laser Micro Pattern Generator

(mPG101, Heidelberg Instruments). All molds were coated with CYTOP (AGC Chemicals, Cat# CTL-809M) to prevent the adhesion

of the PDMS. Chips were cast from the molds using Sylgard 184 PDMS (Dow Corning, Cat#DBE-712). The chips were assembled

in a push-down configuration with the flow layer on the bottom. Flow and control layers were bonded using the off-ratio PDMS

bonding procedure (5:1 pre-polymer to cross-linking reagents ratio for the control layer and 20:1 ratio for the flow layer). Finally,

the flow layer was bonded to a glass slide carrier (Brain Laboratories, Cat#4450) through oxygen plasma activation (20 W at 0.9

mbar for 25 s). Each cell culture chamber comprised a central flow channel and two side channels bifurcating at the entry of the cul-

ture chamber. Pneumatic membrane valves divided the central flow channel into four 6403 400mm2 cell culture compartments with a

volume of 0.013 mL. Gapswith a cross-section of 203 20mm2 allowed the crossing of fluids between the side channels and the culture

compartments.

Microfluidic chip operations
Pneumaticmicrofluidic valves (PMVs)within the chipswere operated by applying a 1.5mbar pressure on the control lines. The pressure

could be switchedon and off automatically on each control line using a homemade systemenabling the individual control of 24 solenoid

valves (SMC, Cat#LMV155RHY-5A-Q). Additionally, the system included a pressure regulator (Festo, Cat#VPPM-6L) connected to 8

additional solenoid valves which applied a controllable pressure (0–1.5 bar) on light-proof gas-tight bottles containing the reagents to

be introduced in the chip. All connections were made using Tygon tubings (Proliquid, Cat# ND 100-80). Chips were placed in a micro-

scope stage top incubator (Tokai Hit, Cat#STX) for maintaining a 37�C and 5%CO2 humidified environment while allowing live imaging.

Before cell seeding, the cell culture chambers were coated with a 10% Pluronic F-127 (Sigma-Aldrich, Cat#9003-11-6) in phosphate-

buffered saline overnight to prevent cell adhesion to the glass substrate or PDMS walls. Adherent cells were harvested at 70–80%
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confluence with TrypLE Express (Gibco, Cat# 12604013) and resuspended in 40–60 mL at a 1.5–3.53 108 cells/mL inmaintenanceme-

dium (mTeSR Plus; StemCell Technologies, Cat#) supplemented with 10mM ROCK inhibitor (Y-27632, Santa Cruz Biotechnology,

Cat#sc-281642A). For the formation of 3Dcell cultures, a homogeneous single-cell solutionwas introduced into each cell culture cham-

ber with PMVs in the open state. Upon actuation of the PMVs in the cell culture chamber, cells in the four compartments were isolated

from themainflowstream, andcells in the sidechannelscouldbe rinsed.Onceseeded,cellswere left to self-aggregate for 4 hbefore the

first media renewal; media was then renewed in the cell culture chambers every 2 h using a 100 mbar forward fluidic pressure. The

average diameter of on-chip 3D cell cultures depended on the single-cell solution density, i.e., 138 ± 13 mm for a cell density of

1.53108cells/mLand243±19mmforacelldensityof3.53108cells/mL.The3Dcell culture formationprocessafter seedingwas robust,

asdemonstratedbya lowaverage coefficient of variationCV=0.10± 0.05andachip-to-chip variation as lowasCV=0.08 (SI FigureS1).

Definitive endoderm differentiation
Before DE induction, cells were fed for 24 h with maintenance medium and ROCK inhibitor and another 24 h with maintenance me-

dium only. DE differentiation was induced 48 h after on-chip seeding, the start of differentiation has been called 0 h in this paper. We

followed the differentiation protocol as published in previous literature,28 where the basal mediumwas supplementedwith 100 ng/mL

activin A (AA) (Peprotech, Cat# 120-14-300) and 3 mM CHIR-99021 (Tebu-bio, Cat#24804-0004) on the first day of differentiation.

Basal medium supplemented with 100 ng/mL AA and 0.3 mM CHIR was added on the second day, and basal medium with

100 ng/mL AA was added on the third day of differentiation.

Immunocytochemistry on-chip
Partial fixations of 3D cell cultures (fixation of a subset of cell cultures in a singlemicrofluidic platform, while keeping other cell cultures

alive) were performed using NHS Ester (Bis-PEG4-NHS ester, BroadPharma, CAT#BP-21602). At the end of all experiments, before

immunocytochemistry, all cell cultures were fixed in 4%paraformaldehyde in deionized water for 1 h (even if previously partially fixed

NHS ester). Cell membraneswere permeabilizedwith 0.2%Triton X-100 and 100mMglycine in deionizedwater for 6 h and blocked in

a blocking solution containing 3% donkey serum, 10% fetal calf serum, 0.1% Tween 20, and 0.1% bovine serum albumin (BSA) in

PBS. Primary antibodies were diluted in the blocking solution and incubated in the cell culture chambers for 24 h before being rinsed

away with PBS. Secondary antibodies and DAPI were then diluted also in the blocking solution and incubated for 24 h. All cell culture

chambers were thoroughly rinsed with PBS prior to imaging. All steps were conducted on-chip and at room temperature. The anti-

bodies used are listed in the key resource table.

Image acquisition
IF images and live bright-field images were acquired using a laser scanning confocal inverted microscope (Zeiss LSM 880 Airyscan)

controlled by the ZEN Black version number software with a 20x/0.8-NA (numerical aperture) objective (Zeiss Plan-Apochromat 20x/

0.8 M27), with up to five 8-bit or 16-bit data channels per image: transmitted light (bright-field using either the 633 nm or the 561 nm

wavelength laser), DNA labeled with DAPI, and three types of antibodies distributed in the green (488 nm excitation), yellow (561 nm),

and red (633 nm) channels. All images were acquired with a 0.25 3 0.25 mm2 pixel size with the number of pixels being adjusted so

that the scanning area could fit the imaged object in the frame (typical scanning areas were around 2003 200 mm2). Confocal stacks

were acquired to image the full 50 mm z-depth of the 3D cell cultures with a z-resolution of 1 mm. For the imaging of fixed tissue, the

pixel dwell time was kept in the 1–2 ms range, depending on scanning area size, with a 2-fold line averaging. For live tissue, pixel dwell

timeswere reduced to the 0.6–0.9 ms range, to accelerate imaging so that a full confocal stack of a 3D cell culture could be acquired in

less than 4 min.

Fluorescence signal correction
Prior to nuclear fluorescence signal quantification, two types of corrections were applied to the confocal image stacks. The first

correction pertained to the weakening of fluorescence signals caused by the imaging depth in the 3D cell cultures. We calculated

the relative average nuclear fluorescence signals (ratio between the average nuclear signal at a given depth and the average nuclear

signal at the lowest point of the cell culture) as a function of the imaging depth. Under the assumption that nuclear signals should be

constant on average relative to imaging depth, we calculated the imaging-depth decay rate through linear regression over all samples

and for each wavelength. This wavelength-dependent correction was then applied to all image stacks. A second correction ad-

dressed antibody penetration inside the 3D cell culture during full-mount staining. Antibody penetration is a complex issue, which

we resolved assuming that it factored in three main components: the antibodies, the x-y distance to the border of the cell culture,

and the tissue type (differentiation state). We thus calculated the relative average nuclear fluorescence signal per antibody as a func-

tion of x-y distance to the border of the cell culture. The decay rates were calculated through linear regression per antibody for every

sample within a time point to account for tissue type. All stacks were corrected under the assumption that nuclear signals should be

constant on average relative to x-y penetration.

In silico nuclear staining
Bright2Nuc is a deep learning framework with amodified 3DU-Net,29 based on the InstantDL30 package, designed to predict nuclear

markers from bright-field images (Figures 2A and 2B). Bright2Nuc works on 3D data, predicting the nuclear marker from slice to slice.
Cell Reports Methods 3, 100523, July 24, 2023 e3



Article
ll

OPEN ACCESS
To incorporate 3D information from the bright-field image stack, we added nearest neighbor slices to the input of the network. Thus,

three consecutive bright-field Z-slices (Z = k, Z = k-1, and Z = k+1 positions) are simultaneously considered by the model to predict

each slice (Z = k) of the nucleus prediction. The U-Net architecture was modified from the 3D U-Net used in InstantDL by keeping the

3D convolutional layers the same but using anisotropic max-pooling in the encoder, and anisotropic up-sampling in the decoder,

keeping the z-dimension unchanged. Bright2Nuc can be trained and evaluated using 3D stacks, through which it will automatically

iterate during training, Bright2Nuc will crop or pad the input data to a size of 384 pixels in x-y dimension. During inference, it can

handle arbitrary image sizes. If desired, it can rescale the images to keep the nuclei diameter constant, which simplifies transfer

learning between datasets. An average nucleus diameter of 30 pixels worked best for our model. All considered images were bili-

nearly downscaled by a factor of 2 to a 0.5 mm/px xy-resolution before being processed for further analysis. We trained

Bright2Nuc (i) on 162 fixed 3D cell culture images in 3D in bright-field and with a DAPI staining and (ii) on 93 cell cultures recorded

in 3D in live tissue in bright-field and with a SOX2-T2A-tdTomato reporter signal. Together, we used approximately a quarter million

nuclei/cells. For training, we optimized a mean squared error loss for 50 epochs with a batch size of 5. For data augmentation, we

used brightness and contrast shifts of 30% of the pixel values, horizontal and vertical flips, and zooms with a maximum of 30% of the

image size. The test set contained 85 cell cultures split in a stratified manner from the experimental data, summing up to around

80.000 cells/nuclei. Bright2Nuc is a ready-to-use python package, it can be downloaded via GitHub or installed using pip install

and comes with our pre-trained model.

Nuclei segmentation
We trained two StarDist 3D models, one to segment cell nuclei from images of a nuclear marker staining (stardist_nuc), and one to

segment 3D cell cultures with an in silico staining (stardist_silico). Wemanually segmented five 3D cell cultures and trained stardist_-

nuc on the corresponding DAPI staining. To train stardist_silico, we created a training set of 15 3D cell cultures.We used the same five

manually segmented cell cultures with the corresponding DAPI staining adding the same five in silico stained cell cultures to the

training set. Additionally, five in silico stained 3D cell cultures from the SOX2-T2A-tdTomato-reporter dataset were added, for which

the segmentation in silico ground truth was obtained by segmenting the SOX2-T2A-tdTomato signal using the first Stardist model

trained on DAPI and manually verifying the results, summing up to 15 cell cultures. We trained the models as described in the

StarDist documentation, but changed the anisotropy to two (x: 0.5, y: 0.5, z: 1) to match our imaging resolution. To adapt the

StarDist model to the live tissue data, we found it sufficient to lower the StarDist threshold to 0.29 without retraining the stardist_silico

model (SI Figure S8). With two resultingmodels (one for DAPI, one for in silico) we segmented all DAPI stained 3D cell cultures and the

in silico stained 3D cell cultures used in this paper.

Transcription factor expression prediction
To assess the differentiation status of single nuclei, we formulated the expression of the pluripotent marker OCT4 (eOCT4), and the two

differentiation markers FOXA2 (eFOXA2) and SOX17 (eSOX17) as a single ratio called differentiation label (DL) (SI Figure S4). Single-

nuclei TFs expression were extracted from the corrected IF images (see fluorescence signal correction in materials) by calculating

the average fluorescence over each of the 3D DAPI StarDist segmentations. TFs expressions were normalized per dataset between

0 and 1 to the 1-th and 99-th percentiles, respectively. DL was then calculated for each nucleus as:

DL= 1

1+
2eOCT4

eFOXA2+eSOX17

From each segmented nucleus, 56 bright-field and 64morphological features were extracted. The data were then

randomly split into 5-folds, with an 80%/20% ratio between train and test set, and a random forest regressor was trained with 1000

estimators on each fold. In total, five random forest models were trained using the scikit-learn31 framework in a round-robin fashion,

splitting 20% of the nuclei into test sets iteratively so that each nucleus was contained in the test set once.

Live cell tracking
Single nuclei from the live in silico stained 3D cell cultures were tracked with TrackMate,22 using the integrated LoG detector with a

sigma of 22 pixels (11 mm) and a quality threshold of 10. Data anisotropy was accounted for by setting the x- and yvalues to 0.5 mm

(leaving the z-value at 1 mm). The maximum linking distance was set to 22 pixels (11 mm) and the frame gap to two frames and 22

pixels. Tracking results were saved as a.csv file and evaluated in Python using pandas.32 Predicted tracks outside the cell culture

were filtered out using neighborhood-based filtering, removing all tracks that have less than 5 neighbors in a distance of 50 pixels

per time point. Effective displacements were calculated as the effective distance over five frames divided by the time, with the effec-

tive distance being the distance between the centers of mass of the considered nucleus between the first and fifth frames. Direction-

ality was also calculated over five frames as the ratio of the effective distance and the total distance, with the total distance being the

sum of distances between the centers of mass and between all considered frames.

Single-cell analysis
For the single-cell analysis the raw data from the hiPSCs differentiation toward DE from Cuomo et al.21 was downloaded and reproc-

essed. For quality filtering, cells with less than 1200 genes were excluded, as were genes present in amaximum of 2 cells. In addition,

all cells expressing more than 15% mitochondrial genes were excluded. Expression was normalized to 10000 counts per cell. After

determining the variable genes, total counts and the percentage of mitochondrial genes were regressed for further analysis. For the
e4 Cell Reports Methods 3, 100523, July 24, 2023
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calculation of neighbors, 24 PCs and 10 next neighbors were used according to the elbow method. The UMAP plot shown in SI Fig-

ure S10 was plotted with an initial position of the previously calculated PAGA graph. The Paga graph was computed using a Leiden

clustering (data not shown) with a resolution 0.4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis can be found in the text and figure legends. The statistical test, the number of samples n and the

quantity measured is reported at the corresponding section in the text or figure legend.
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