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Purpose: The objective of this study was to evaluate whether altered gray matter volume

(GMV) and white matter volume (WMV) are associated with the presence of cerebral

microbleeds (CMBs) in cerebral small vessel disease (CSVD).

Materials and Methods: In this study, we included 26 CSVD patients with CMBs

(CSVD-c), 43 CSVD patients without CMBs (CSVD-n) and 39 healthy controls. All

participants underwent cognitive assessment testing. Both univariate analysis and

multivariate pattern analysis (MVPA) approaches were applied to investigate differences

in brain morphometry among groups.

Results: In univariate analysis, GMV and WMV differences were compared

among groups using voxel-based morphometry (VBM) with diffeomorphic anatomical

registration through exponentiated lie algebra (DARTEL). Compared to healthy controls,

the CSVD-c group and CSVD-n group showed significantly lower GMV than the control

group in similar brain clusters, mainly including the right superior frontal gyrus (medial

orbital), left anterior cingulate gyrus, right inferior frontal gyrus (triangular part) and left

superior frontal gyrus (medial), while the CSVD-n group also showed significantly lower

WMV in the cluster of the left superior frontal gyrus (medial). No significant GMV or WMV

differences were found between the CSVD-c group and the CSVD-n group. Specifically,

we applied the multiple kernel learning (MKL) technique in MVPA to combine GMV and

WMV features, yielding an average of >80% accuracy for three binary classification

problems, which was a considerable improvement over the individual modality approach.

Consistent with the univariate analysis, the MKL weight maps revealed default mode

network and subcortical region damage associated with CSVD compared to controls.

On the other hand, when classifying the CSVD-c group and CSVD-n group in the MVPA

analysis, we found that some WMVs were highly weighted regions (left olfactory cortex
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and right middle frontal gyrus), which hinted at the presence of different white matter

alterations in the CSVD-c group.

Conclusion: Our findings not only suggested that the localized alterations in GMV and

WMV appeared to be associated with the pathophysiology of CSVD but also indicated

that altered brain morphometry could be a potential discriminative pattern to detect

CSVD at the individual level.

Keywords: cerebral small vessel disease, cerebral microbleeds, gray matter volume, white matter volume,

multivariate pattern analysis

INTRODUCTION

Cerebral small vessel disease (CSVD) refers to different
pathologic changes involving small intracranial blood vessels,

including small arteries, arterioles, capillaries, and small veins
(1). CSVD plays a crucial role in lacunar stroke and brain

hemorrhages and is a leading cause of functional loss and
dementia in the elderly population (2). Neuroimaging is

considered the gold standard for detecting CSVD, and the
key neuroimaging markers include small cerebral infarctions,
lacunes, white matter hyperintensities (WMH), enlarged

perivascular spaces (PVS), cerebral microbleeds (CMBs),
and brain atrophy (3). Among these, CMBs have been

recognized to play a synergistic role in both cerebrovascular
and neurodegenerative pathology occurring in the aging brain
(4). CMBs are well-demarcated, hypointense, rounded lesions

on magnetic susceptibility-sensitive sequences of magnetic
resonance imaging (MRI). These hemosiderin-rich lesions form
when the heme iron in red blood cells leaks out from brain

micro-vessels and are then sequestered by macrophages for
storage (5). Several large clinical studies have established an

association of CMBs with vascular and systemic inflammation
(6) as well as with cognitive decline in patients with vascular
dementia and Alzheimer’s disease (AD) (7) and in elderly
subjects (8).

As one of the important neuroimaging markers of CSVD,
CMBs have a significant impact on the cognitive function of
patients with CSVD (9). Histopathologic studies have shown
that the presence of CMBs indicates widespread damage in
arterioles by hypertension, amyloid deposition and surrounding
gliosis, infarction, or even necrosis, resulting in microstructural
damage to the surrounding white matter. Therefore, CMBs
may disrupt white matter tracts involved in cognitive function,
leading to damage to neural networks (10). Therefore, cognitive
impairment in patients with CMBs is thought to correlate
with brain damage in white matter and gray matter structures,
and exploring the relationship between CMBs and cerebral
morphological changes with new techniques is a current hotspot
for CSVD research.

WMH and lacunar infarct correspond to pathophysiological
changes including neuron death, demyelination, and axon loss
and these subcortical lesions may cause degenerative cortical
atrophy in frontal and temporal area (11). Therefore, many
studies reported reduced GMV and WMV in CSVD patients
(11–13). However, few studies have investigated the relationship

between brain volume and CMBs, particularly the relationship
between CMBs and WM. A previous study findings speculated
that higher CMBs were associated with WM atrophy but not
associated with GM atrophy and concluded this caused by CMBs
interrupting brain network connectivity (14). Another study
found that CSVD subjects with deep or infratentorial CMBs had
a lower amygdala GMV than the CSVD subjects with no CMBs
after adjusting for age, sex, and total intracranial volume (TIV),
although this significance was no longer present after further
adjustment for other vascular risk factors (hypertension, diabetes,
cigarette smoking, alcohol consumption, bodymass index (BMI),
and chronic kidney disease (CKD). On the other hand, subjects
with strictly lobar CMBs had larger total, frontal, and occipital
WMVs than the CSVD subjects with no CMBs (15). The results
of previous studies were inconsistent in the relationship between
CMBs and WMV morphological changes, but these results both
gave us the hint that there existed WM changes in CSVD
patients with CMBs compared with CSVD patients without
CMBs. Meanwhile, no healthy subjects were included in these
studies, and the brain morphological alterations between CSVD
patients and healthy controls had not yet been investigated.

Using traditional mass-univariate analyses to quantify the
alterations in GM or WM density or volume between groups
in a voxel-wise manner has an important limitation in that
mass-univariate analyses only aim to test whether there are
any effects in one or more brain regions rather than to test
whether the effects are large enough to have translational
importance for clinical utility (15). Recently, researchers have
developed a growing interest in applying multivariate pattern
analysis (MVPA) to develop neuroimaging biomarkers for
clinical diagnoses of brain diseases (16). MVPA is a promising
machine-learning-based pattern recognition technique that can
be used to classify neuroimaging data by discriminating between
two or more classes (or groups). Relative to traditional
univariate analysis, MVPA has two advantages. First, MVPA
takes the intercorrelation between voxels into consideration
and thus might be more sensitive in detecting subtle and
spatially distributed alterations. Second, MVPA allows statistical
inferences at the single-subject level and thus could be used
to make diagnostic decisions regarding individual patients (17).
MVPA and machine-learning methods have been successfully
applied in the risk stratification of various diseases along
with CSVD, including WMH and enlarged PVS (18–20).
However, no study has investigated the utility of MVPA with
brain morphometric features for the three binary classification
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problems in CSVD patients with CMBs (CSVD-c), CSVD
patients without CMBs (CSVD-n) and healthy controls.

Therefore, we aimed to apply both mass-univariate and
multivariate pattern analysis methods to evaluate brain
morphological alterations in a relatively large sample of CSVD
patients with or without CMBs. We hypothesized that (1) the
CMBs accompanying CSVD will bring about specific brain
morphological changes; (2) MVPA analysis would potentially
be able to discriminate individual patients with CSVD from
healthy controls; and (3) information will be provided on
neurobiological changes that will potentially help to elucidate the
potential pathogenesis of CSVD.

MATERIALS AND METHODS

Subjects
This was a cross-sectional study approved by the institutional
review board of Shandong Provincial Hospital Affiliated to
Shandong First Medical University. Between December 2018
and August 2019, 26 CSVD patients with CMBs (age: 67.08 ±

6.19 years; 10 females) and 43 CSVD patients without CMBs
(age: 66.79 ± 5.19 years; 22 females) were recruited. We also
included 39 healthy subjects (age: 63.90± 8.98 years; 22 females)
in our study. The inclusion criteria for CSVD patients included
diagnosis of recent small subcortical infarct, lacunes of presumed
vascular origin, WMH of presumed vascular origin, enlarged
PVS, CMBs, and brain atrophy, based on current MRI consensus
standards (3). The severity of WMH was assessed using the
Fazekas scale. The scale grades the severity from 0 to 3grade. 0
represents occasional or non-punctate WMH; grade 1, multiple
punctate WMHs; grade 2, bridging of punctate WMHs leading
to confluent lesions; and grade 3, widespread confluent WMH
(21). The total CSVD disease burden was assessed by amended
CSVD score (0–7 scale; scores calculated based on the severity of
CMBs, lacunes, and WMH) that was recently recommended for
predicting cognitive decline (22).

Image Acquisition
All subjects were imaged on a MAGNETOM Skyra 3.0 T
MR scanner (Siemens Healthcare, Erlangen, Germany) using
a product 32-channel head coil for signal reception. The
brain scanning protocol consisted of a 3D T1-weighted
(T1W) magnetization-prepared rapid gradient echo (MPRAGE)
sequence for anatomical structure (repetition time (TR)= 7.3ms,
echo time (TE)= 2.4ms, inversion time (TI)= 900ms, flip angle
= 9◦, isotropic voxel size= 1mm3) and a 3Dmulti-echo gradient
echo (mGRE) sequence for quantitative susceptibility mapping
(QSM) (TR = 50ms, first TE = 6.8ms, TE interval = 4.1ms,
number of echoes = 10, flip angle = 15◦, voxel size = 1 × 1 ×

2 mm3). In addition, T2-weighted (T2W) turbo spin echo, T2W
fluid-attenuated inversion recovery (FLAIR), diffusion-weighted,
and susceptibility-weighted imaging (SWI) scans were acquired
to detect brain abnormalities. Before the scan, all participants
remained in a normal state of respiration and heart rate. All
participants were required to be awake and quietly breathing
until the end of the scan.

Diagnosis of CMBs in CSVD Patients
Through the conventional MRI sequence and SWI images,
small subcortical infarct, lacune of presumed vascular origin,
WMH of presumed vascular origin, PVS, CMBs, and brain
atrophy were diagnosed by a senior neuroradiologist. CMBs
are small (generally 2–5mm in diameter) hypointense lesions
that are visible on paramagnetic-sensitive MRI sequences such
as T2∗-weighted gradient-recalled echo (GRE) or susceptibility-
weighted sequences and are most commonly located in the
cortico-subcortical junction and deep gray or white matter in the
cerebral hemispheres, brainstem, and cerebellum (23–25).

Cognitive Assessments
All participants underwent the Montreal Cognitive Assessment
(MoCA) Beijing version (www.mocatest.org), which is a one-
page 30-point test administered in 10min (26). The optimal
cutoff for detecting cognitive impairment was 13/14 points for
illiterate individuals, 19/20 for individuals with 1–6 years of
education, and 24/25 for individuals with 7 or more years of
education (27). In addition, a variety of executive functions,
including flexibility, working memory and inhibition, were
assessed. Briefly, these tests included the following: the Rey
auditory verbal learning test (AVLT) for assessing verbal memory
abilities (28); the symbol digit modalities test (SDMT) for
evaluating attention and information processing speed (29); the
trail-making test (TMT) for evaluating attention, information
processing speed, visual search and motor coordination (30); and
the Stroop color-word test (SCWT) (31). The test implementer
was professionally trained and qualified and had no knowledge
of the subject grouping.

VBM-DARTEL Processing
After data acquisition, 3D T1W image processing was performed
using VBM with Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL) (32) based on the
statistical parametric mapping (SPM8, http://www.fil.ion.ucl.ac.
uk/spm) toolbox (pipeline shown in Figure 1). DARTEL is a fully
deformable registration and normalization method that provides
precise inter-subject alignment throughout the iterative unified
model. First, all the 3D T1W images were aligned to conventional
AC-PC space using manually identified landmarks, including the
anterior commissure (AC), the posterior commissure (PC), and
the mid-sagittal plane. Then, the aligned images were segmented
into GM, WM and cerebrospinal fluid (CSF) in native space with
unified segmentation using the New Segment tool in SPM (16).
Afterward, all the segmented GM and WM images were rigidly
transformed to produce a series of aligned GM and WM images.
The study-specific GM templates were then created by the
DARTEL algorithm with the aligned serial images from all the
subjects. During the template creation process, all aligned images
were warped to the template, yielding a series of flow fields,
which parameterized the deformation. After normalization
and modulation, the modulated data were transformed into
Montreal Neurological Institute (MNI) space. Finally, the gray
matter volume (GMV) and white matter volume (WMV) and
partitions were smoothed with an isotropic Gaussian kernel of
8-mm full-width at half-maximum (FWHM).
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FIGURE 1 | The processing pipeline of VBM-DARTEL analysis using Statistical Parametric Mapping software. DARTEL, diffeomorphic anatomical registration through

exponentiated lie algebra; GRF, Gaussian random field.

Univariate Analysis
To compare GMV and WMV and identify abnormalities among
the three groups, one-way analysis of covariance ANCOVA was
performed with age, sex and TIV as covariates using the DPABI
toolbox. For post-hoc tests, the least-significant difference (LSD)
method was applied, and the corrected p-values for comparing
group means of any pairs were calculated (33). Then, the p maps
were converted to Z maps, and using the Z maps, we performed
Gaussian random field (GRF) correction (34) to correct for
multiple comparisons. The statistical threshold was set at a voxel-
level p < 0.001 with a cluster-level p < 0.05 (two-tailed) in
the DPABI toolbox (33). All coordinates are reported in MNI
space. Brain regions with significant intergroup differences in
GMV were defined as regions of interest (ROIs), and the mean
GMV and WMV of these ROIs were extracted from CSVD

patients. Pearson’s correlations between mean GMV and clinical
parameters were calculated using SPSS Version 24.0 (SPSS Inc,
Chicago, IL, USA), and significance was set to p < 0.05.

Multivariate Pattern Analysis
MVPA was carried out to classify different groups based on
GMV and WMV maps and investigate unique information
that may be overlooked by univariate approaches. The Pattern
Recognition Neuroimaging Toolbox (PRo-NTo) (35) was used
to implement a binary classifier based on the multiple kernel
learning (MKL) approach, which models the whole brain as
a combination of regional patterns and therefore learns the
contribution of different brain regions to the classification
model (16). As an optimized MKL technique called “simple
MKL” implemented in PRoNTo assumes sparsity in the kernel
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FIGURE 2 | The flow chart of machine learning based multivariate pattern analysis (MVPA) and nested cross-validation pipeline used in our study. Permutation test

was used to evaluate the significance of the classification performance for 5,000 times randomly.

combination, this technique selects only a subset of brain regions
to perform the classification, and the remaining regions have a
null contribution to the model. Regions were defined using the
automated anatomical labeling (AAL) atlas (36), which splits the
brain into 90 cortical and subcortical regions (detailed shown in
Supplementary Table S1). For each region and each modality,
a linear kernel was computed based on the regional pattern
containing all voxels within the region, and MKL was used to
combine multiple (modalities × number of regions) kernels.
Considering that the number of voxels varies among brain
regions, the kernels were mean-centered and normalized using
standard kernel operations implemented in PRoNTo. Age, sex
and TIV were included as covariates.

Then, nested cross-validation (CV) with hyperparameter
optimization was used to train the classification model and
assess the generalization error (16). The outer loop was used
to assess the model’s performance, and the inner loop was
used to optimize the model hyperparameters. For the inner
loop, a 10-fold CV on subjects-per-group-out technique was
used; for the outer loop, the leave-one-subject-out technique
was used. As the simple MKL model employs a binary
support vector machine (SVM) for classification, we used soft-
margin hyperparameter optimization with the best configuration
among C = 0.01, 0.1, 1 and 10. All C values were tested
using a 10-fold CV (inner folds), and then the best C value
was used for the outer loop (pipeline shown in Figure 2).
As in our previous study (16), the statistics we used to
evaluate classification performance are accuracy, sensitivity,
specificity and the area under the curve (AUC) for the receiver

operating characteristic (ROC) curve. Accuracy was defined as
(TP+TN)/(TP+TN+FN+FP), where TP = true positive, TN
=true negative, FP = false positive and FN = false negative.
Sensitivity was defined as TP/(TP+FN), and specificity was
defined as TN/(FP+TN).

After constructing the optimal classification model,
we built weight maps representing the SVM weights per
voxel and also maps summarizing the weights per ROI
as defined by AAL atlas. As a simple kernel model was
implemented by MKL-SVM, the weights per voxel will be
averaged (in absolute value) within each region, and the
regional weight maps were the spatial representation of
the decision function that defined regional contributions
to the classification process. Confidence intervals (p-values)
generated by non-parametric permutation testing with 5000
randomizations were used to assure low variability in the outputs
of classification models.

RESULTS

Demographic and Clinical Characteristics
The demographic and clinical characteristics of each group
are summarized in Table 1. One-way analysis of variance
(ANCOVA) with LSD post-hoc tests was performed to
assess differences in age, TIV, and MoCA, AVLT, SDMT,
SCWT, and TMT scores, and a chi-square test was used to
assess differences in sex, lacunes and vascular risk factors
(smoking, hypertension, treated hypercholesterolemia and
diabetes mellitus) among groups. The rank sum test of
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TABLE 1 | Demographic and clinical characteristics of CSVD patients and controls.

Characteristics CSVD-c CSVD-n HC P-value (ANOVA/χ2) P-value (post-hoc)

CSVD-c vs. HC CSVD-c vs. CSVD-n CSVD-n vs. HC

Gender 16 M/10 F 21 M/22 F 17 M/22 F 0.359χ2 - - -

Age (y) 67.08 ± 6.19 66.68 ± 5.16 63.93 ± 8.87 0.105a - - -

Education (y) 11.56 ± 2.81 11.33 ± 2.68 12.97 ± 3.53 0.041a

smoking 10 (38.5%) 9 (20.9%) 10 (25.6%) 0.275χ2 - - -

Hypertension 24 (92.3%) 38 (88.3%) 12 (30.8%) <0.001χ2 <0.001 0.600 <0.001

Treated Hypercholesterolaemia 15 (57.7%) 13 (30.2%) 5 (12.8%) 0.001χ2 0.024 <0.001 0.057

Diabetes Mellitus 9 (34.6%) 9 (20.9%) 4 (10.3%) 0.057χ2 - - -

Amended CSVD score 4 (2, 5.25) 2 (1, 2) 0 (0.0) <0.001b <0.001 <0.001 <0.001

WMH 2 (1, 3) 1 (1, 2) 0 (0.0) <0.001b <0.001 0.079 <0.001

Lacune 14 (53.8%) 3 (7.0%) 0 (0.0%) <0.001χ2 <0.001 <0.001 0.093

MoCA 25.48 ± 2.67 27.58 ± 0.85 29.22 ± 3.27 <0.001a <0.001 0.001 0.003

AVLT 54.80 ± 16.01 64.38 ± 9.02 67.83 ± 8.49 <0.001a <0.001 <0.001 0.126

SDMT 23.96 ± 10.62 31.19 ± 7.55 41.95 ± 17.03 <0.001a <0.001 0.016 <0.001

SCWT 186.67 ± 68.53 145.24 ± 26.82 134.77 ± 37.42 <0.001a <0.001 <0.001 N.S.

TMT-A+B 332.92 ± 170.61 262.69 ± 74.01 208.58 ± 99.66 <0.001a <0.001 0.012 0.032

TIV 1.61 ± 0.13 1.56 ± 0.14 1.62 ± 0.16 0.187a - - -

χ2: chi-square test, a: one-way analysis of variance (ANOVA) test, b: Kruskal-Walllis test. WMH, white matter hyperintensities. MoCA, Montreal Cognitive Assessment; AVLT, sum of

Rey auditory verbal learning test (N1-7); SDMT, symbol digit modalities test; SCWT, sum of Stroop color-word test (stroop1-3); TMT, the trail-making test; TMT A+B, sum of TMT-A and

TMT-B; TIV, total intracranial volume; CSVD-c, CSVD with CMBs group; CSVD-n, CSVD without CMBs group; HC, control group; N.S., not significant.

TABLE 2 | Significant altered GMV and WMV among three groups.

Condition Brain regions Cluster size z-score of peak

voxel

MNI coordinates of peak voxel

x y z

GMV

CSVD-c<control

Right superior frontal gyrus,

medial orbital

271 5.17 1 43 −2

Right inferior frontal gyrus,

triangular part

22 4.18 50 24 1

Left anterior cingulate gyrus 16 4.16 1 33 29

Left superior frontal gyrus, medial 38 3.80 −2 44 32

GMV

CSVD-n<control

Right superior frontal gyrus,

medial orbital

267 4.82 1 48 −3

Left anterior cingulate gyrus 16 4.36 1 32 30

Left superior frontal gyrus, medial 58 5.09 −2 44 32

WMV

CSVD-n<control

Left superior frontal gyrus, medial 50 4.88 −11 52 18

No significant differences were found between the two CSVD groups.

CSVD-c, CSVD with CMBs; CSVD-n, CSVD without CMBs.

Cluster size: the number of voxels in the (identified significant) cluster. ANOVA and LSD post-hoc test in a pair-wise manner within the areas identified by ANOVA were used to identify

the GMV and WMV changes between groups with Gaussian random field (GRF) multiple comparison corrections (voxel level p < 0.001, cluster level p < 0.05).

multiple independent samples (Kruskal-Wallis test) was

used to compare CSVD scores and the severity of WMH

among groups. The CSVD-c group had significantly lower

MoCA, AVLT, and SDMT scores and significantly higher

SCWT and TMT scores than the other groups. The CSVD-c

group had a higher percentage of hypertension and treated

hypercholesterolemia. No significant differences were found in

age, sex, smoking and diabetes mellitus status, or TIV among the

three groups.

Univariate Analysis of GMV and WMV
Differences
We performed univariate analyses to explore GMV and WMV
alterations among groups. Compared with the control group,
the CSVD-c group and CSVD-n group showed significantly
(ANCOVA and LSD post-hoc test with GRF correction, voxel-
level p < 0.001, cluster-level p < 0.05) decreased GMV in
similar brain clusters, which mainly included the right superior
frontal gyrus (medial orbital), left anterior cingulate gyrus, right
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inferior frontal gyrus (triangular part) and left superior frontal
gyrus (medial). Meanwhile, the CSVD-n group also showed
significantly decreased WMV in the cluster of the left medial
superior frontal gyrus. The detailed results are shown in Table 2

and Figure 3. No significant differences in GMV or WMV were
found between the CSVD-c group and the CSVD-n group.

Multivariate Pattern Analysis and
Classification Results
Regarding the three binary classification problems, the
detailed statistics and ROC curves for evaluating classification
performance are shown in Table 3 and Figure 4. As the results
show, the MKL models that combined GMV and WMV
features enhanced the classification accuracy for each binary
classification problem. Based on the optimal MKL model
combining GMV and WMV features, regional weight maps
obtained by MKL (per region) were also calculated. The CSVD-c
group vs. control group contrast suggested high regional weight
in the bilateral medial superior frontal gyri (12.96 and 5.94%),
bilateral anterior cingulate gyri (6.48 and 5.45%), right gyrus
rectus (7.91%), and right superior frontal gyrus (medial orbital)
(5.04%) for GMV and in the left olfactory cortex (12.09%) and
left parahippocampal gyrus (7.91%) for WMV (Figure 5A).
Meanwhile, the CSVD-n group vs. control group contrast
suggested high regional weight in the left medial superior
frontal gyrus (7.02%), cuneus (5.98%), and precuneus (5.96%)
for GMV and in the left anterior cingulate gyrus (8.02%) and
left inferior temporal gyrus (7.15%) for WMV (Figure 5B).
In addition, the CSVD-c group vs. CSVD-n group contrast
suggested high regional weight in the right temporal pole of
the middle temporal gyrus (11.21%), right temporal pole of the
superior temporal gyrus (7.39%), and right parahippocampal
gyrus (5.62%) for GMV and in the left olfactory cortex (12.42%)
and right middle frontal gyrus (9.50%) for WMV (Figure 5C).
The ROIs with high weight detected from two CSVD groups vs.
control group contrasts were relatively analogous to the ROIs
with significant differences in the univariate analyses. Of note,
we achieved good classification accuracy (81.16%) in the CSVD-c
group vs. CSVD-n group, despite no significant differences
between groups, and the ROIs with high weights in the MKL
model provided important supplementary information for the
univariate analyses.

DISCUSSION

The current study applied both univariate analyses and the
MVPA approach to explore brain morphological alterations in a
relatively large cohort of CSVD patients with or without CMBs.
Our study revealed that compared with the control group, the
CSVD-c and CSVD-n groups showed significantly decreased
GMV in similar brain clusters, which mainly included the right
superior frontal gyrus (medial orbital), left anterior cingulate
gyrus, right inferior frontal gyrus (triangular part) and left
superior frontal gyrus (medial). According to many previous
researchers, these regions with decreased GMV are mainly
involved in the default mode network (DMN) (37). At the same

FIGURE 3 | Brain regions showing significantly decreased GMV in (A) CSVD-c

group and (B) CSVD-n group (ANOVA and LSD post-hoc test with GRF

correction, voxel level p < 0.001, cluster level p < 0.05), and (C) decreased

WMV in CSVD-n group compared with control group.

time, the CSVD-n group showed significantly decreased WMV
in the cluster of the left superior frontal gyrus (medial) compared
with controls. No significant GMV or WMV differences were
found between the CSVD-c group and the CSVD-n group.
Additionally, CSVD patients could be differentiated from healthy
controls using the MKL model based on GMV and WMV
maps with high classification accuracy (86.15%; p < 0.05).
Brain regions involving the DMN and subcortical regions were
identified to have high differentiating power in these MKL
modles. Meanwhile, we achieved good classification accuracy
(81.16%) in the CSVD-c group vs. CSVD-n group contrast using
the MKL model.

Using univariate analyses, our results showed that the CSVD-
c group and CSVD-n group had significantly decreased GMV in
similar brain clusters compared with the healthy control group,
mainly involving the DMN. The core mechanism underlying
CSVD-related brain injury is diffuse cerebrovascular endothelial
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TABLE 3 | The statistics for evaluating classification performance.

Modality ACC SEN SPE AUC P

Condition:CSVD-c group vs. control group

GMV 84.62% 76.92% 89.74% 0.857 <0.05

WMV 76.92% 69.23% 82.05% 0.817 <0.05

GMV+WMV 86.15% 80.77% 89.74% 0.926 <0.05

Condition:CSVD-n group vs. control group

GMV 74.39% 67.44% 82.05% 0.815 <0.05

WMV 74.39% 65.12% 84.62% 0.804 <0.05

GMV+WMV 81.71% 69.77% 94.87% 0.891 <0.05

Condition:CSVD-c group vs. CSVD-n group

GMV 68.12% 57.69% 74.42% 0.770 <0.05

WMV 79.71% 73.08% 83.72% 0.815 <0.05

GMV+WMV 81.16% 69.23% 88.37% 0.881 <0.05

ACC/SEN/SPE, accuracy/sensitivity/specificity; AUC, area under the ROC curve. P:

p-values generated by non-parametric permutation testing with 5,000 randomizations.

failure. Endothelial damage leads to increased permeability with
leakage of material into the vessel wall and perivascular tissue,
leading to brain inflammation (38). Brain inflammation can
lead to neuronal dysfunction and cell death (39, 40). In this
study, we obtained similar results. We found that the TMT
scores were significantly higher and the MoCA, AVLT and
SDMT scores were significantly lower in the CSVD patients than
in the healthy controls, suggesting that these related cognitive
functions were significantly disrupted in CSVD patients. We
thought this might be because the decreased GMV regions
associated with CSVD mainly involved the DMN. The DMN is
a set of functionally connected regions that plays crucial roles
in internal cognitive processing. DMN connectivity strength has
been positively correlated with individual cognitive performances
(e.g., working memory, autobiographical memory, attention, and
language) (41), and damage to the default network can cause
cognitive impairment.

Compared to traditional univariate analysis, the MVPA
approach can be used to make diagnostic decisions. Our results
showed that the combination of GMV and WMV features
improved the accuracy for each binary classification problem
compared to using GMV or WMV features alone. For the
classification of the CSVD and control groups, the high-weighted
GMV feature areas included the bilateral superior frontal gyrus
(medial part or medial orbital part) and bilateral anterior
cingulate gyrus. More volume loss regions were identified
compared to the univariate analyses. Meanwhile, many high-
weighted WMV feature regions could also be found, such as the
left anterior cingulate gyrus, left para-hippocampal gyrus and left
inferior temporal gyrus.

The anterior cingulate gyrus is one of the important structures
responsible for the executive function of the brain, and it
mainly monitors ongoing directional behaviors and coordinates
cognitive processes (42). The medial part of the superior frontal
gyrus is commonly deactivated during the cognitive-related
processing and has been ascribed to be a component of the
default mode network and a study also found that the superior

frontal gyrus is anatomically connected with the cingulate cortex
(mostly the anterior cingulate gyrus and the mid-cingulate
cortex) through resting-state functional connectivity analysis
(43). These results suggest the injury of superior frontal gyrus
and anterior cingulate gyrus related to decline of cognitive
control. Our results also indicated that the impaired anterior
cingulate gyrus and superior frontal gyrus were related with the
decline of cognitive function. A study revealed damaged GMV
and functional connectivity (FC) in the cerebellum in CSVD
patients withWMHand reduced connectivity of cerebellar lobule
VI to the left anterior cingulate gyrus owing to WMH (44).
These results, similar to ours, showed WM lesions in CSVD.
Furthermore, WMH can disrupt white matter tracts or U-fibers
that mediate cortical–cortical or cortical–subcortical connections
(45), which also provides evidence for our results.

The results of previous studies were inconsistent in the
relationship between CMBs and WMV morphological changes,
one showed reduced WMV (14), the other showed increased
WMV (15). But using the MVPA approach could overcome
this shortcoming came from the embarrassment of different
conclusions, our analysis just concern existential WM changes,
no matter WMV reduced or increased. Our results showed
that CSVD should be considered a whole-brain disease
and that GMV and WMV were both significantly altered,
which was also hinted at by previous studies indicating that
local white matter lesions may influence the gray matter in
remote areas (46). Therefore, we combined between-group
statistical comparison and MVPA-based individual classification
to provide complementary information for revealing the
potential pathogenesis of CSVD and assisting clinical diagnosis.

Notably, no significant GMV or WMV difference was found
in univariate analysis between the CSVD-c and CSVD-n groups.
This might reveal that the presence or absence of cerebral
CMBs in patients with CSVD has little effect on changes in
GMV, which is consistent with the findings of previous research
(15). However, the MVPA analysis could mine multivoxel
spatial pattern information and achieved a relatively good
classification accuracy between the two CSVD groups (81.16%;
p < 0.05). The classification of the CSVD-c and CSVD-n
groups suggested that high-weighted regions were in the right
temporal pole of the middle temporal gyrus, temporal pole
of the superior temporal gyrus, right para-hippocampal gyrus
for GMV and in the left olfactory cortex and right middle
frontal gyrus for WMV. This result might have reflected more
potential WM and GM changes in the CSVD-c group than
in the CSVD-n group. CSVD-c patients have more severe
inflammation in the brain because CMBs themselves could
lead to a sustained local inflammatory response, characterized
by initial activation and persistent increase in microglia and
macrophages (47). Many investigations have reported that
CMBs are associated with cognitive dysfunction in the elderly
(48–50), and epidemiological studies have shown that CMBs
adversely affect the cognitive function of patients with CSVD
and are independent risk factors for cognitive decline (51). In
our study, the CSVD-c patients had more serious cognitive
problems than the CSVD-n patients. Hence, we speculated that
more severe brain inflammation problems in CSVD-c patients
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FIGURE 4 | Receiver operating characteristic (ROC) curve for (A) CSVD-c vs. HC, (B) CSVD-n vs. HC, and (C) CSVD-c vs. CSVD-n classification problems. HC,

healthy controls.

FIGURE 5 | Weight (per region) maps modeled by multi-kernel learning (MKL) combining GMV and WMV features. As a simple kernel model was implemented by

MKL-SVM, the weights per voxel will be averaged (in absolute value) within each ROI as defined by AAL atlas. The regional MKL weights representing regional

contribution to (A) CSVD-c vs. HC, (B) CSVD-n vs. HC, and (C) CSVD-c vs. CSVD-n classification problems were rendered on the ICBM152 template. Weights with

lower (1% or less) contribution are not shown. HC, healthy controls.

might be the reason for them having poor cognitive scores.
The middle temporal gyrus has been shown to be recruited
during the processing of words and during the observation of
actions (52). The human superior temporal gyrus is critical
for extracting meaningful linguistic features from speech input
(53). The hippocampus and surrounding medial temporal lobe
structures play a key role in learning andmemory formation (54).
The hippocampus and parahippocampus were associated with
olfactory ability (55). These previous studies showed the involved
regions in CSVD-c patients correlated with cognitive function.
Therefore, our results hinted the injury of right temporal
lobe, right para-hippocampal gyrus and the left olfactory

might be the reason why CSVD-c group had more serious
congnitive decline.

In this study, we conducted VBM-DARTEL preprocessing
using VBM8 within SPM8 toolbox. A recent study (56) has
shown that VBM analysis through CAT12 within SPM12
toolbox is more robust to detect the small brain morphological
changes than VBM8. Therefore, we also conducted VBM-
DARTEL preprocessing using CAT12 as the supplementary
experiment. The univariate results showed the number of
significant voxels revealed by CAT12 method is more than
VBM8 method, while the structural localization of peak
voxels is similar between these two methods, and detailed
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results were shown in Supplementary Materials. In our future
research, we will combine VBM and MVPA analysis based
on CAT12. More longitudinal studies with a large sample
size are needed in the future to understand the relationship
between CMBs and the cerebral morphology changes. Besides,
more specific features for neurodegeneration such as age,
gender and cardiovascular risk factors should be included in
future research to explore the neurodegeneration pathology
of CSVD.

CONCLUSION

In conclusion, we found significantly lower decreased GMV
and WMV in the frontal and anterior cingulate gyrus regions
in CSVD patients. In addition, our work has shown that
an appropriate a proper combination of MVPA and MKL
methods can substantially improve the classification accuracy
of CSVD patients. Our findings may clarify the potential
pathogenesis of CSVD and provide further support in favor of
machine-learning approaches in improving the clinical diagnosis
of CSVD.
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