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ABSTRACT Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the
heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed
two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised
of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four
founder lines. Instead of using “testers” to evaluate their hybrid values, segregating lines were crossed according to an incomplete
factorial design to produce 951 dent–flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection
was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering
allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA,
31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the
known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in
our design (�20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic
groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect
QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.
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ALLOGAMOUS crops such asmaize generally display high
heterosis and strong inbreeding depression for yield-

related traits. This phenomenon has prompted the invention
of hybrid varieties (East 1908; Shull 1908). The definition of
heterotic groups has played a major role in advancing and
exploiting heterosis in maize breeding. Heterotic groups are
developed to maximize the performance of hybrids. Selection

is performed within one group relative to its performance
when crossed with lines of the reciprocal group. In the U.S.
Corn Belt, hybrid breeding has shaped two main heterotic
groups: the “stiff stalks” and the “nonstiff stalks.” In Northern
Europe the two main heterotic groups are “dent” and “flint.”
Hybrid breeding has been adopted in sunflower, rapeseed, and
rye (Bernardo 2010), but also recently in numerous autoga-
mous species such as tomato, barley, wheat, and rice (Bai and
Lindhout 2007; Longin et al. 2012;Mühleisen et al. 2013). The
definition of heterotic groups remains a major research objec-
tive in species recently subjected to hybrid breeding methods
(cf. Zhao et al. 2015). Hybrids between animals from different
breeds are also used in pigs and poultry, and there is a growing
interest in considering crossbred performances instead of
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purebred performances for improving hybrid value (see
for instance Zeng et al. 2013; Vitezica et al. 2014).

Understanding the genetic basis of hybrid performance
between twogenetic groups is therefore akey issue indefining
efficient hybrid breeding strategies. Hybrid value is tradition-
ally decomposed into two parts: general combining ability
(GCA) and specific combining ability (SCA). GCA is an esti-
mate of the average hybrid performance of the parent. In
hybrid breeding, the GCA of a line is a reflection of its average
performance when crossed with lines from the complemen-
tary group. SCA is the difference between the value of the
hybrid and its prediction based on the GCAs of the parents
(Sprague and Tatum 1942). GCAs reflect the statistically ad-
ditive allelic effects. They involve additive, dominance, and
epistatic gene action effects. SCA only involves dominant and
epistatic gene action effects (cf. Reif et al. 2007). The relative
magnitudes of the GCA and SCA variation determine optimal
strategies for hybrid breeding schemes. In crop species such
as maize, selection for yield is generally carried out in two
stages. In the first stage, new inbred lines of each group are
selected based on their “test-cross hybrid value,” i.e., the
performance of a hybrid(s) with a limited number of lines
representative of the complementary group, called the
tester(s). In the second stage, an incomplete factorial design
is implemented to identify the best hybrid combinations be-
tween inbred lines selected in each group. Test-cross hybrid
value of a line is a combination of its GCA and its SCA with
the (few) tester(s) considered. As the magnitude of SCA
increases relative to GCA, the second stage requires more
resources and the choice of tester in the first stage is critical.
In maize, GCA has a larger contribution to the test-cross
hybrid value than SCA [see for instance Schrag et al. (2006)
or Fischer et al. (2008) for grain yield; Geiger et al. (1986),
Argillier et al. (2000), or Grieder et al. (2012) for whole plant
biomass yield]. However, SCA is large enough to warrant
the use of several testers during the first stage and/or de-
voting substantial resources to the second stage. For species
where heterotic groups were defined recently, a higher ratio
of SCA to GCA is expected (as shown theoretically by Reif
et al. 2007).

Identification of the QTL underpinning hybrid values and
their GCA and SCA components would improve the efficiency of
hybrid breeding, and lead to increased understanding of
heterosis. Most of the QTL detection experiments on maize
yield-related traits have been based on biparental popula-
tions evaluated with a single tester (reviewed in Truntzler
et al. 2010; Manicacci et al. 2011). Such designs limit the
evaluation of heterosis and by definition are unable to de-
tect SCA effects. QTL detection in multiparental populations
has proved efficient for exploring a larger part of the diver-
sity and for increasing power in comparison to biparental
populations (Blanc et al. 2006; Kump et al. 2011; Bardol
et al. 2013; Giraud et al. 2014; Foiada et al. 2015). A few
studies have investigated multiparental populations and es-
timated additivity (GCA) and dominance (SCA). One ap-
proach has been to consider all or some parental lines as

testers (Rebaï et al. 1997; Larièpe et al. 2012). Larièpe et al.
(2012) found QTL with apparent overdominance for heter-
otic traits, such as yield, due to the presence of hybrids be-
tween related lines in the studied design.

Other multiparental QTL studies were conducted on hy-
brids between sets of lines selected in complementary genetic
groups (factorial mating designs corresponding to the second
stage of hybrid breeding programs). This was carried out first
with a limited number of SSR markers by Parisseaux and
Bernardo (2004), then by van Eeuwijk et al. (2010) with
SNP markers. Both studies identified QTL for GCA that were
specific to each heterotic group. SCA effects were considered
negligible in these studies. Technow et al. (2014) used a
factorial design between two heterotic groups corresponding
to the last stages of a breeding program for genomic predic-
tion. The use of a Bayes B model led to the identification of a
few markers with sizable effects on GCA and SCA.

Compared to tester-based designs, factorial designs be-
tween two complementary heterotic groups enable the simul-
taneous detection of GCA QTL in both groups. Each hybrid
involves a pair of recombinant lines, which reflect the allelic
segregations in their respective groups and therefore both are
informative for QTL mapping. Conversely, tester designs in-
volve a single recombinant line per hybrid. As a consequence,
for the same number of recombinant lines to be evaluated in
each group, factorials potentially require phenotyping fewer
hybrids than tester-based designs. Depending on how the
design is constructed, factorials have the potential to address
QTL involved in the SCA of intergroup hybrids, which is of
direct interest for breeding. However, to date the factorial
populations examined comprised inbred lines displaying a
complex pedigree structure within each group. These map-
ping lines had undergone a first cycle of selection based on
their test-cross value and did not contribute equally to the
hybrid population. An unselected hybrid population with
known family structure would a priori be preferable for
detecting QTL for GCA and SCA. Kadam et al. (2016) recently
developed such a factorial design by crossing segregating
populations from two complementary heterotic groups and
showed its interest for genomic selection. However, the seg-
regating populations had different sizes, resulting in very un-
balanced contributions of founder lines to the hybrids.

A QTL mapping strategy based on the performances of
hybrids between segregating lines created with a balanced
mating design in each heterotic group, without a first step of
selection, has the potential to transform maize breeding. To
evaluate this strategy, two multiparental populations were
developed, one in the flint and one in the dent heterotic
groups. Segregating lines from the two groups were crossed
according to an incomplete balanced factorial design to
produce dent–flint hybrids that were phenotypically evalu-
ated for silage performances. This approach leads to an
original design to decompose hybrid value in its GCA and
SCAQTL components using an extension of the joint linkage
mapping model proposed so far for multiple parental de-
signs. After estimating group-specific GCA and SCA variance
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components in our design, we demonstrate the effectiveness
of this strategy to detect QTL for silage-related traits in maize.
We discuss its broader application to better understand the
basis of hybrid performance and monitor favorable alleles in
hybrid breeding programs.

Materials and Methods

Genetic material

The experimental material consists of dent–flint hybrids
obtained by crossing recombinant inbred lines (Figure 1). Four
founder inbred lines within each heterotic group (dent and
flint) were crossed according to a half-diallel mating design
to produce six different F1’s. From these six F1’s, six biparental
populations were derived (called D1–D6 for the dent and F1–
F6 for the flint populations). The dent lines were obtained by
doubled haploidization and the flint lines were obtained by
selfing independent F2 individuals for five or six generations,
depending on the biparental population. A total of 931 dent
lines and 913 flint lines were obtained. From these “parental
lines,” 863 dent lines and 879 flint lines were crossed in an
incomplete factorial design to produce 1044 experimental hy-
brids. Each biparental population of one group was crossed
with all of the biparental populations of the other group, with
the objective of balancing the contributions of all founders. To
increase the power of our QTL detection approach,we decided
to maximize the number of different inbred lines from each
group at the expense of our ability to separate GCA and SCA.
Therefore, the majority of lines (699 in the dent group and
732 in the flint group) contributed to only one hybrid, but
some lines contributed twice (163 in the dent group and
146 in the flint group) or even three (one dent parental line)
or four times (one flint parental line). All founder lines of one
group were crossed with the founder lines of the other group
to create 16 hybrids which were used as checks.

Genotyping data

The founder lines and the parental lines were genotyped with
an Affymetrix array designed by Limagrain which includes a
subset of 18,480 SNPs of the Illumina 50K SNP Maize array
(Ganal et al. 2011). To avoid ascertainment bias, we only
considered the markers identified in the Panzea project
(Ganal et al. 2011) which were polymorphic among the foun-
der lines. After quality controls based on missing data, hetero-
zygosity, and minor allele frequency, 9643 markers were
retained for further analyses (see details in Giraud et al. 2017).

After checking for genotype consistency between founder
lines and parental lines, off-type lines were excluded as well
as inbred lines showing a high level of heterozygosity. A total of
875dent lines and883flint lineswere retainedandused tobuild
12 genetic maps, 1 for each of the 12 biparental populations, as
well as 1 dent–flint consensus map [see Giraud et al. (2017) for
a description of the methods and individual population maps].
The dent–flint consensus map comprised 9548 markers. This
map had a total length of 1578.6 cM and contains 5216 unique

positions (cf. Supplemental Material, File S1 for the consensus
map and File S2 for the genotypes of the inbred lines).

Field trial design and analysis

Hybrids were evaluated in eight different environments (four
locations in 2013 and four in 2014) in the north of France and
in Germany. Four traits were measured: silage yield [dry
matter yield (DMY) in tons of dry matter per ha], dry matter
content (DMC) at harvest (in percentage of fresh weight),
plant height (PH) (six environments) (measured in centime-
ters), and femaleflowering [silkingdate (DtSILK) indaysafter
January 1, scored as the date atwhich 50%of the plants of the
elementary plot exhibited stigmas, referred to as “silks” in
maize]. Trials were conducted according to common agricul-
tural practices of the region. The field experiments were laid
out as an augmented partially replicated design (Williams
et al. 2011) where 17% of the experimental hybrids and all
of the checks were evaluated twice. Trials were constituted of
1088 elementary plots, laid out in 68 incomplete blocks (see
Giraud et al. 2017 for more details). Outlying observations
(identified from visual inspection of the data and notes taken
during field trial visits) were deleted. For silage yield, data
from one of eight environments were excluded as they were
not correlated with the other environments. Among the hy-
brids evaluated, 951 were considered for further analyses
(950 for PH and DMY), corresponding to hybrids for which
both parents had genotypic data consistent with their pedi-
gree (822 flint parental lines and 802 dent parental lines).
They belong to all of the 36 hybrid populations correspond-
ing to the crosses between the six flint and the six dent line
populations. The number of hybrids per population ranged
from 15 to 32 (Table 1).

Variance component analysis

Genetic variance decompositionwas done on elementary plot
values. The objectives were to estimate trait heritabilities,
evaluate the relative importance of the GCA and SCA com-
ponents in the hybrid variance, and the proportion of this
variationdue to thepopulation structure.Thegeneralmodel is

Yhlxyz ¼mþ ll þ thðii9Þ 3 th þ Hhðkk9Þ 3 ð12 thÞ
þ
�
RxðlÞ þ CyðlÞ

�
3 ð12 dlÞ þ BzðlÞ 3 dl þ Ehlxyz;

(1)

where Yhlxyz is the phenotypic value of the hth hybrid evalu-
ated in the lth environment at the plot located at row x;
column y, and in block z: In this model, m is the intercept,
ll is the fixed effect of the environment l: To distinguish be-
tween the checks and the experimental hybrids, we used the
parameter th: th is set to 1 for check hybrids and to 0 for
experimental hybrids. thðii9Þ is the fixed genetic effect of the
check hybrid derived from the cross between the dent foun-
der line i and the flint founder line i9: Hhðkk9Þ is the genetic
value of the hybrid h issued from the cross between the flint
parental line k and the dent parental line k9: Two models
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were used for Hhðkk9Þ (see below). To correct for spatial het-
erogeneities, we included in the model either a random block
effect BzðlÞ or random row RxðlÞ and column CyðlÞ effects,
depending on the environment and trait. The choice between
the two models was done by analyzing each environment
independently and by choosing the best correction model

based on the likelihood. dlis set to 1 for the environment l
if the spatial effects are modeled by block effects, 0 other-
wise. These effects are assumed to be independent and nor-
mally distributed with variances specific to each environment.
Ehlxyz is the residual effect associated with the model with
Ehlxyz � Nð0;s2

ElÞ; with a unique variance within each

Figure 1 Schematic representation of the ex-
perimental design. Circled crosses indicate self-
crossing generations and the dashed arrow
indicates several generations of self-crossing.
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environment. In this model, the hybrid effect Hhðkk9Þ was
decomposed into its GCA and SCA components, either con-
sidering or ignoring the population structure of the hybrid
design.

Thus, in model (1.1), Hhðkk9Þ is decomposed into

uF;k þ uD;k9 þ skk9; (1.1)

where uF;k (respectively uD;k9) is the random GCA effect of the
line k (k9) from the flint (dent) group. These effects are as-
sumed to follow normal distributions with zero mean and two
group-specific variances: uF;k � Nð0;s2

FÞ ½uD;k9 � Nð0;s2
DÞ�:

skk9 is the random SCA effect of the interaction between the
inbred lines k and k9; with skk9 � Nð0;s2

SÞ:
In model (1.2), the hybrid value is decomposed into the

population structure and thewithin-population GCA and SCA
components. Thus Hhðkk9Þ is decomposed into

aij þ bi9j9 þ ðabÞiji9j9 þ u*F;k þ u*D;k9 þ s*kk9; (1.2)

where aij (bi9j9) is the fixed effect of the flint (dent) popula-
tion of origin of the flint (dent) parental line k (k9) derived
from the cross between founder lines i and j (i9 and j9), ðabÞiji9j9
is the fixed effect corresponding to the interaction between the
flint and dent populations of origin of the parental lines. u*F;k;
u*D;k; and s*kk9 are the within-population equivalents of uF;k;
uD;k; and skk9: These effects are assumed to follow the same distri-
bution for all hybrid populations considered, i.e.,u*F;k � Nð0;s*2

F Þ;
u*D;k � Nð0;s*2

D Þ;and s*kk9 � Nð0;s*2
s Þ:

Frommodel (1.1) we derived the heritabilityH at the whole
design level as H ¼ s2

H=½s2
H þ ðs2

E=nrepHÞ�; where s2
H is the

genetic variance of the hybrids, computed as the sum of the
GCA and SCAvariance components; nrepH is the average num-
ber of times an experimental hybrid was evaluated in the whole

design; and s2
E is the average residual variance of themodel over

all environments. Thewithin-population heritability of the design
was calculated with a similar formula but considering the
within-population genetic variance s2

H* computed from model
(1.2). In the two models, the significance of the GCA and SCA
effects was tested with a likelihood ratio test and we computed
the percentages of SCA in the hybrid genetic variance and the
within-population hybrid genetic variance.

The joint analysis of the hybrids between founder lines
(considered as fixed effects) and the experimental hybrids
(considered as random effects) allowed an efficient use of all
field plots for estimating spatial field effects and partitioning
variance into itsgenetic/nongeneticcomponents.Wetriedtofit
specific variances for each hybrid population, but as it did not
significantly improve the adjustment of the models (P-value of
likelihood ratio test.5%)whatever the trait considered,wefit
homogeneous variances among populations in the final anal-
yses. We also did not include interaction effects between hy-
brids and environments, which are thus part of the residuals of
the models. Evaluation of genotype by environment interac-
tions was not an objective of this study. Models were fit using
the ASReml-R package (Butler et al. 2007; RCoreTeam2013).

Computation of adjusted means and correlations
between traits

QTL detection was based on the least-square means (ls-means)
of eachhybrid over theenvironments. Toobtain these ls-means,
we first corrected single-plot values by the best linear unbiased
predictionsof the spatialfieldeffects obtainedwithmodel (1.2).
Then for each trait, the correcteddataof all hybridswereused to
compute ls-means of hybrids using a model including a hybrid
effect and an environment effect, both considered as fixed.
Correlations between the different traits were calculated based

Table 1 Distribution of the 951 hybrids considered for QTL detection in the 36 populations according to the populations of origin of their
parental lines

Parental line
populations

F1: F373 3

F02803
F2: F373 3

F03802
F3: F02803 3

F03802
F4: F373 3

F7088
F5: F02803 3

F7088
F6: F03802 3

F7088
Total no. of

hybrids
Total no. of

lines

D1: F1808
3 F04401

31 27 22 30 25 27 162 139

D2: F1808
3 F98902

34 27 22 30 23 32 168 144

D3: F04401
3 F98902

28 29 23 30 26 27 163 140

D4: F1808
3 F7082

28 28 25 30 27 27 165 138

D5: F04401
3 F7082

33 29 23 28 24 30 167 142

D6: F98902
3 F7082

24 23 15 25 21 18 126 99

Total no. of
hybrids

178 163 130 173 146 161 951 802a

Total no. of
lines

162 139 111 154 118 138 822b 1624

Dent populations are named D1–D6 and flint populations are named F1–F6, followed by the names of the two founder lines. The number of hybrids derived from each
parental population is indicated (“Total no. of hybrids”) as well as the number of lines that contributed to hybrids (“Total no. of lines”).
a Total number of flint lines contributing to hybrids.
b Total number of dent lines contributing to hybrids.
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on these ls-means. The R scripts used to estimate variance
components and ls-means are included in File S3.

QTL detection

The QTL detection model considers the founder alleles trans-
mitted to the hybrids and makes the assumption that each of
the eight founder lines carries a different allele. The popula-
tion structure of the design was taken into account in the
model. We included random genetic effects corresponding to
the parents of the hybrids to account for the fact that some
parental inbred lines were involved in several hybrids.

y ¼ 1 � mþ A � aþ B � bþ C � ðabÞ þ XFAD � gFAD

þ XFAF � uFAF þ XFADF � ðguÞFA þ ZD � uD þ ZF � uF þ e;
(2)

where y is an N 3 1 vector of the ls-means of the N experi-
mental hybrids phenotyped for the considered trait, m is the
intercept, and 1 is an N 3 1 vector of 1. The term a (b) is a
63 1 vector of the fixed effects of the dent (flint) populations
of origin of the dent (flint) parental line, (ab) is a 36 3
1 vector of the fixed interaction effects between the dent
and flint populations of parental lines. A, B, and C are the
corresponding design matrices. uD (uF) is an ND 3 1 (NF 3 1)
vector of the random effects of the Nd dent (NF flint) parents,
with uD � Nð0; Is2

DÞ ½ uF � Nð0; Is2
FÞ�: ZD and ZF are the cor-

responding designmatrices. uD and uF are similar to the GCA
effects ofmodel (1.2) and correspond in this model to the GCA
residuals not accounted for by the QTL. e is an N3 1 vector of
the residuals of themodelwith e � Nð0; Is2

e Þ: TheQTL effect is
decomposed into three terms: gFA D; uFA F ; and ðguÞFA: The
first term, gFA D (uFA F), is the 43 1 vector of the allelic effects
at the marker associated with each dent (flint) founder line.
These effects correspond to the GCA effects of the QTL. For
eachmarker, XFA D (XFA F) is anN34matrix of theprobabilities
that thehybrid received its dent (flint) allele fromeachof the four
dent (flint) founder lines. ðguÞFA is the 16 3 1 vector of the
interactions, or SCAs, between the founder alleles; and XFA DF

is anN316matrix corresponding to the element-wise product
between each column of XFA D and each column of XFA F : As
the sum of probabilities for each allele equals 1, this model has
3 d.f. for the additive effects of the founder alleles (GCAs) in
each group and 9 d.f. for the interaction effects (SCA). Probabil-
ities that a hybrid received one of the four dent (flint) founder
alleles were inferred for each position of the 9548 mapped
markers based on the genotypes of its parental lines at the closest
informative markers. These probabilities were computed with
PlantImpute (Hickey et al. 2015) using 10 iterations.

QTL detection was performed with ASReml-R (Butler et al.
2007) considering the level of significance of the Wald test for
the QTL effects. We considered a 5% genome-wide significance
threshold based on the number of effective markers (Gao et al.
2008). The total effect at eachmarker position was tested using
the “group” function of the ASReml-R package (Butler et al.
2007). After the first initial single-marker scan along the ge-
nome, a multimarker procedure was implemented using a for-
ward and backward marker selection process. In the forward

stage, the genomewas scannedwith amodel includingmarkers
identified in previous steps and themost significant marker was
added to the model. The process stopped when no more
markers had significant effects at the 5%genome-wide risk level
(in total, or for the GCA or SCA component). Finally, in the
backward stage, all effects included in the model at the end of
the forward process were jointly tested. Markers with no signif-
icant effect were removed step by step. The R scripts used to
perform QTL detection are included in File S3.

The percentage of phenotypic variance explained by the
population effects R2

pop was calculated according to Nakagawa
and Schielzeth (2013): R2

pop ¼ s2
pop=ðs2

pop þ s2
D þ s2

F þ s2
e Þ;

where s2
pop is the variance of the predicted values based

on the population effects of the model when no QTL are
included in the model, and s2

D; s
2
F ; and s2

e are the esti-
mated variance components of the same model. Similarly,
we estimated the percentage of variance explained by the
population structure and the QTL effects (R2

PopþQTL) as
R2
PopþQTL ¼ s2

PopþQTL=ðs2
PopþQTL þ s2

D þ s2
F þ s2

e Þ; where
s2
PopþQTL corresponds to the variance of the predicted perfor-

mances based on the population and QTL effects, and s2
D; s

2
F ;

ands2
e are the variance components in the correspondingmodel.

To estimate the percentage of variance explained by the detected
QTL (R2

QTL), we adapted the R2 presented by Nakagawa and
Schielzeth (2013) as R2

QTL ¼ s2
QTL=ðs2

PopþQTL þ s2
D þ s2

F þ s2
e Þ

where s2
QTL is the variance of predictions based on QTL effects,

orthogonalized by the population effects. From these parameters,
we estimated the percentage of within-population phenotypic
variance explained by the QTL as R2*

QTL ¼ R2
QTL=ð12R2

popÞ: We
also estimated the individual R2 of each QTL after orthogonal-
izing predictions by the population effects and the effects of
the other QTL.

To evaluate the quality of prediction of the QTLmodels, we
also performed a cross-validation approach. A total of 80% of
the data (training set) was sampled and used to identify QTL,
estimate the population andQTL effects, andpredict the values
of the hybrids on the remaining 20% (test set). Sampling was
stratified by population and was repeated 100 times. We
observed that a full de novo QTL detection for each sampling
would have led to excessive computing time. Therefore, for
each sampling the significance of the QTL detected in the
whole data set was tested in the training set and, following a
backward procedure, only significant QTL were considered in
the prediction model. The percentages of variance explained
were estimated by the squared correlation between the pre-
dicted and observed hybrid values of the test set. This proce-
dure was conducted (i) without taking into account SCA QTL
effects; and (ii) taking them into account for QTL for which
they were significant at a 5% individual risk level. We also
considered a model including only the population effects.

Data availability

Raw phenotypic data, adjustedmeans of hybrid performances,
genetic map, and genotypic data are available in File S4, File
S5, File S1, and File S2, respectively. The pedigree of the
segregating populations is described in File S6. The R scripts
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used for data analysis are available in File S3. File S7 con-
tains the P-values of each marker in the single-marker QTL
detection model. The markers with significant effects in the
final multi-marker models are shown in Table S1. All the
supplemental files are described in the File S8.

Results

Adjusted means and correlations between traits

The adjusted means of the experimental hybrids had greater
variation than the hybrids between founder lines for all traits
(Table 2). Adjusted means of hybrids between founder lines
were on average slightly higher than the average values of
the experimental hybrids (Table 2). DMY was positively cor-
related to PH (0.64) and DtSILK (0.57), and negatively cor-
related to DMC (20.28). DMCwas also negatively correlated
to PH (20.28) and DtSILK (20.55). These correlations are
consistent with those usually observed for these traits.

Genetic variance analysis

We observed large and significant hybrid variances for all
traits (Table 2). Broad-sense heritabilities at the design level
were high for all traits: between 0.81 (DMY) and 0.89 (DMC
and DtSILK). For all the traits except DMC, the dent and flint

population effects were both significant at P , 5%, whereas
their interaction was not. For DMC, the effect of the dent
population was not significant (results not shown), in agree-
ment with the small variation of DMC performances among
the dent founder lines. Considering population effects in the
model reduced the genetic variances but did not affect the
inferences. In particular, GCAwas significant for all traits and
within-population heritabilities remained high (Table 2).

Thedecompositionof thehybrid variance intoGCAandSCA
showed that most of the hybrid variation was due to GCA. For
the model which did not take into account the population
structure, SCA was only significant (P , 5%) for DMY and
DtSILK. It represented between 11.7% (DMC) and 17.4%
(DMY) of the hybrid genetic variance. When considering the
population structure in the model, the SCA variance compo-
nentwas significant for all traits but PH. The proportion of SCA
represented �20% of the within-population genetic variance
for all traits but PH, for which it was lower. The SD for SCA
variances were large, which was expected from the design
because of the small number of inbred lines that contributed
to more than one hybrid.

QTL detection

The thresholds at a 5% genome-wide level used for QTL
detection were determined as 2log(P-value) equal to 3.84.

Table 2 Average performances across environments for the hybrids and variance components

Trait

Average performancesa Variance components

Hybrids between founder lines Experimental hybrids Effects Globalb Within-populationb

DMC 33.5 (30.2–36.1) 33.0 (25.7–41.3) Flint GCA 2.31 (0.26)*** 0.98 (0.23)***
(% of fresh weight) Dent GCA 0.92 (0.27)*** 0.96 (0.23)***

SCA 0.43 (0.27)ns 0.53 (0.25)*
Residual 1.45–6.13c 1.52–6.04c

H 0.89 0.85
%SCA 11.7 21.5

DMY 16.5 (14.8–18.4) 16.0 (11.8–20.2) Flint GCA 0.28 (0.10)*** 0.30 (0.10)***
(t.ha21) Dent GCA 0.74 (0.10)*** 0.44 (0.09)***

SCA 0.22 (0.11)* 0.20 (0.10)*
Residual 1.00–3.53c 1.02–3.56c

H 0.81 0.77
%SCA 17.4 21.0

DtSILK 211.6 (209.2–213.6) 211.5 (206.7–217.9) Flint GCA 0.74 (0.19)*** 0.51 (0.19)***
(days after January 1) Dent GCA 1.26 (0.18)*** 1.09 (0.17)***

SCA 0.39 (0.19)* 0.47 (0.19)**
Residual 0.96–6.13c 0.96–6.12c

H 0.89 0.88
%SCA 16.3 22.6

PH 251 (229–275) 248 (204–283) Flint GCA 42.9 (11.7)*** 38.4 (8.9)***
(cm) Dent GCA 92.8 (11.0)*** 45.1 (8.2)***

SCA 19.3 (11.8)ns 13.4 (8.8)ns

Residual 50.0–243.6c 46.7–243.2c

H 0.88 0.82
%SCA 12.4 13.8

Shown are the average performances across environments for the hybrids between founder lines and the experimental hybrids and variance components estimated using
two models ignoring (global) or including (within-population) the population structure of the design, for DMC, DMY, female flowering time (DtSILK), and PH. Variance
components were used to compute trait heritability and the percentage of hybrid variance due to SCA (in bold). ns, nonsignificant; H, heritability; %SCA, percentage of
hybrid variance due to SCA. * P , 5%, ** P , 1%, *** P , 0.1%.
a For each category of hybrids, range of variation (minimal and maximum values) is indicated between brackets.
b SD of the GCA and SCA variance components is shown between brackets along with the level of significance of the random effect.
c Minimum and maximum environmental residual variances.
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In total 42 QTL were detected for the four studied traits
(Table 3): between 9 for DtSILK and 12 for DMY.

The majority of the QTL explained ,5% of the variation
(see Table S1). The only notable exception was a QTL de-
tected on chromosome 10 at 44.5 cM, which explained �8%
of the variance for DMC and 12% of the variance for DtSILK.
This QTL region was also detected but with a smaller effect
for DMY and PH. Other QTL regions also showed pleiotropic
effects on different traits (Figure 2 and Table S1).

Wetested the levelof significanceofGCA/SCAcomponents
for all QTL that were detected (Figure 2 and Table S1). A
majority of QTL appeared specific to one group: 7 QTL were
significant for both GCA effects, 21 only for the dent GCA
effect, and 12 only for the flint GCA effect (Figure 2 and Table
S1). The other QTL correspond to QTL with significant global
effect but no significant individual GCA component. Interest-
ingly, no founder line presented favorable alleles at all de-
tected QTL. For instance, considering the dent and flint GCA
effects for DMY, all founder lines presented positive and neg-
ative allelic effects at the QTL (Figure 3). This is consistent
with the transgressive segregation observed in the experi-
mental hybrid populations compared to the founder hybrids.
None of the detected QTL showed a significant SCA effect at a
5% genome-wide level. However, 13 QTL were significant for
SCA with an individual risk at 5%. QTL with significant SCA
effects were located all over the genome.

The detected QTL explained jointly from 30.7% (PH) to
36.7%(DtSILK)of the total phenotypic variance, andbetween
43.2 and 47.9%of thewithin-population phenotypic variance
(for DtSILK and DMC, respectively). The increase in the
percentage of phenotypic variance explained when taking
into account SCA was moderate (between +6 and +7% for
all traits) (Table 3).

These R2 values (Table 3) were computed on the data also
used to estimate QTL effects, potentially giving an unfair
advantage to models with a high number of parameters
(i.e., models including SCA effects). Cross-validations were
performed to eliminate this potential bias. They also provide an
evaluationof the quality of predictions of ourQTLmodels for new
hybrids derived from the same populations. We observed a

strong reduction of the R2 obtained by cross-validation com-
pared to the R2 evaluated on the whole data set (R2pop+QTL

column of Table 3). For instance, for DMY the R2pop+QTL de-
creased from 55% for themodel including SCA to 27% (Table
4). The number of QTL found significant when considering
only four-fifths of the data were lower than the number of
QTL detected using the whole data set (results not shown).
Taking into account the SCA effects that were significant at a
5% individual risk always had a small negative impact on the
R2 of the models in the cross-validation process (Table 4).

Discussion

Genetic variance components

We observed significant variation among hybrids for all traits,
with transgressive segregation evident in the hybrids. Experi-
mental hybrids showed on average a slight decrease in perfor-
mance compared to hybrids between founder lines. This
suggests that recombination may have broken some favorable
epistatic interactions between founder alleles. However, these
effects seem limited and we cannot exclude that these differ-
ences were also partly explained by the small imbalance of our
design or by segregation distortions (although no strong dis-
tortionwas observed, cf. Giraud et al. 2017). The fact that some
of the parental inbred lines contributed to more than one hy-
brid allowed us to estimate SCA/GCA variance components.
Although the SCA variance component estimate was not very
accurate, our results showed that most of the hybrid variance
was due to GCA, with �20% of the within-population genetic
variance due to SCA. This proportion was smaller for PH
(14%). To our knowledge, few studies estimated SCA vari-
ances on European silage maize, limiting the number of pos-
sible comparisons. In a factorial between 11 dent and 11 flint
lines, Geiger et al. (1986) found that SCA explained 8% of the
hybrid variance for PH and DMC, and 15% for DMY. Signifi-
cant but small SCA effects were found by Argillier et al. (2000)
and Grieder et al. (2012) for DMC and DMY. Estimations of
GCA/SCA components obtained for hybrid designs evaluated
for grain yield considering dent–flint hybrids (Schrag et al.
2006, 2009, 2010; Fischer et al. 2008; and more recently
Technow et al. 2014) or other heterotic patterns (Parisseaux
and Bernardo 2004) consistently showed that SCA usually
explained ,10% of the hybrid variation for the traits consid-
ered.Most studies cited abovewere based on factorials derived
from inbred lines that passed through a selection stage based
on their test-cross values on the tester(s). This selection is
expected to have reduced the magnitude of GCA but may also
have retained lines with similar SCAs with the tester(s). This
may have affected the relative proportions of the GCA and SCA
components, potentially explaining the lower proportion of
SCA observed compared to our study. In our design, the pa-
rental lines are derived without selection from the founder
lines. They thus represent the whole allelic diversity available
in each population, allowing us to estimate unbiased GCA and
SCA components of the hybrid values of candidate lines.

Table 3 QTL detection results for the different traits

Trait No. R2
pop

Without SCA With SCA

R2
pop+QTL R2

QTL R2*QTL R2
pop+QTL R2

QTL R2*QTL

DMC 10 (4) 32.4 60.1 27.6 40.9 63.8 32.4 47.9
DMY 12 (5) 21.9 49.5 27.7 35.5 55.1 34.2 43.9
DtSILK 9 (2) 15.0 46.6 31.4 36.9 51.5 36.7 43.2
PH 11(2) 33.8 60.0 26.6 40.2 63.0 30.7 46.4

Shown are the QTL detection results for the different traits: DMC, DMY, female
flowering time (DtSILK), and PH. For each trait we indicated the number of QTL
detected (No.) and between brackets the number of these QTL showing significant
SCA effects at a 5% individual risk level, the proportion of the phenotypic variance
(R2QTL, in %), and of the within-population phenotypic variance (R2*QTL, in %)
explained by the detected QTL (with and without including SCA effects in the
model). The percentage of variance explained by the population effect is also in-
dicated (R2pop).
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Figure 2 QTL detected for the different traits: (A) DMY, (B) DMC, (C) DtSILK, and (D) PH. The chromosome number is indicated on the x-axis. For each
trait, graphics correspond to the test of the global effect (“Global”) or of one component (“Flint GCA,” “Dent GCA,” and “SCA” effects). The blue
(black) dots correspond to positions that were above (below) the threshold in the single-marker analysis (see File S7 for detailed results). The red n’s
correspond to the 2log(P-value) of the QTL that were included in the final multilocus model, with tests conditioned by the other QTL effects of the
model. Note that values of 2log(P-value) .16 were set to 16.
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Thepredominance ofGCAover SCA is expected for hybrids
obtained by crossing two divergent populations (Reif et al.
2007). In our study, founder lines derive from two heterotic
groups created from populations that diverged .500 years
ago (Tenaillon and Charcosset 2011). These two groups have
undergone several cycles of reciprocal selection since the
1950s, which is expected to increase differentiation at loci
showing dominance effects. If one QTL is fixed in one group
but still segregates in the other group, dominance effects
become confounded with additive effects (Technow et al.
2014). This results in a decrease of the SCA variance com-
pared to the GCA variances over time. Even if the proportion
of SCA is limited compared to GCA (20 vs. 40% for each GCA
in our study), it might be sufficient to hinder an accurate
estimation of GCA when using only a small number (one or
two) of tester lines from the opposite group, as it is usually
done in breeding programs.

QTL detection reveals complex allelic series and a
predominance of group-specific GCA QTL

One advantage of our new genetic design is the known
pedigree relationshipsbetweenhybridsandaclearpopulation
structure, which can easily be accounted for in the QTL de-
tection models to control for spurious association between
markers and QTL. The structure of biparental populations
allowed us to trace founder alleles down to the hybrids and

thus toperformaQTLdetectionbasedon linkage information.
This QTL detection model can be seen as an extension of the
models used to detect QTL in multiparental population(s)
crossed to the tester(s) (as done in Rebaï et al. 1997; Blanc
et al. 2006; Giraud et al. 2014) or evaluated per se (Buckler
et al. 2009).

Most QTL detected in our design are group-specific GCA
QTL. This is in agreementwithGiraud et al. (2014)who found
different QTL in the dent and flint heterotic group. Among
those group-specific QTL, we detected a QTL for DtSILK on
chromosome 8 that is specific to the dent group. This QTL is
located in a region where two flowering time QTL have been
cloned [Vgt1 and Vgt2 (Salvi et al. 2007; Bouchet et al.
2013)]. Association mapping showed that for both QTL the
early alleles are almost fixed in the flint group whereas they
still segregate in the dent pool, consistent with Bouchet et al.
(2013). We also observed a major QTL for DtSILK on chro-
mosome 10. This QTL is significant in both the dent and flint
group but has a larger effect in the flint group. This QTL likely
corresponds to the QTL detected with a similar pattern in
Giraud et al. (2014), close to the ZmCCT gene, which was
fine mapped as a major flowering time QTL by Ducrocq et al.
(2009) and validated by Coles et al. (2011). The predomi-
nance of group-specific GCA QTL was also observed by van
Eeuwijk et al. (2010), when analyzing a maize factorial be-
tween two other heterotic groups for ear height, and by

Figure 3 GCA effects for the founder lines for the QTL detected for DMY (in t.ha21). Allelic effects are centered on zero for the dent founder lines
(F1808, F04401, F7082, and F98902) and for the flint founder lines (F02803, F03802, F373, and F7088). QTL presenting a dent (flint) GCA effect not
significant at a 5% individual risk level had their dent (flint) effects set to zero.
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Parisseaux and Bernardo (2004), when considering intergroup
hybrids obtained by crossing pairs of lines issued from a total of
nine different heterotic groups. Group-specific GCA QTL may be
due to actual differences in QTL allelic variability but may also
result from epistatic effects differing between heterotic groups.

SCA represented �20% of the within-population genetic
variance (except for PH), but we did not detect QTLwith SCA
effects significant at a 5% genome-wide risk level. We never-
theless detected dominance and/or SCA effects significant at
a 5% individual risk level for some QTL. Cross-validation
results showed that adding SCA QTL effects to the models
slightly decreased the quality of prediction of hybrid values,
suggesting that these moderate QTL SCA effects may not be
well estimated in training sets. These results contrast strongly
with those of Lu et al. (2003), Frascaroli et al. (2007, 2009),
Schön et al. (2010), and Larièpe et al. (2012) who found a
majority of QTL with large dominance effects for grain yield.
An important feature of these studies is that they involve hy-
brids with a high level of inbreeding due to the use of parental
lines as testers, contrary to our present study in which all
hybrids evaluated are created from unrelated parents. This
suggests that, in the absence of inbreeding, SCA is likely due
to numerous small effects that are hardly detectable and/or
that SCA is due to epistatic effects not included in our detection
models. Similar effects may explain the differences in the QTL
detected in biparental populations when comparing results
obtained with different testers unrelated to the mapping pop-
ulation (Schön et al. 1994; Lübberstedt et al. 1997;Melchinger
et al. 1998; Austin et al. 2000).

Also, Larièpe et al. (2012) and Schön et al. (2010) detected
a large proportion ofQTLwith (pseudo-)overdominance in the
pericentromeric regions, consistent with the observation of
McMullen et al. (2009) that these regions show delayed fixa-
tionwhen developing recombinant inbred lines. In our design,
the QTL presenting significant effects for SCA at a 5% individ-
ual risk level were not specifically mapped in the pericentro-
meric regions. A similar observation was reported by Technow
et al. (2014) for hybrids between two heterotic groups. Alto-
gether these observations support the hypothesis that recipro-
cal selection of heterotic groups has fixed complementary
haplotypes in low recombinant centromeric regions involving
linked dominant QTL. Such regions appear with large effects
in populations that recombine different groups (e.g., Schön
et al. 2010; Larièpe et al. 2012) and not in studies that only
evaluate hybrids between groups (Technow et al. 2014; our
present study).

Hence, all results show that performance of hybrids be-
tween lines from different heterotic groups is mostly affected
by GCA QTL that are located at different positions in the two
groupsof interest. This is a combined consequenceof (i) initial
foundation of heterotic groups to prevent inbreeding by max-
imizing their differentiation; and (ii) later reciprocal selection
(seeabove) that reinforceddifferentiation.A smaller fractionof
QTL segregates in both groups and/or present SCA effects. In a
reciprocal selection process these QTL are expected to evolve
toward the first category (group-specific GCA QTL), or the
absence of effect in any of the two groups when one favorable
dominant allele becomes fixed in one of the two groups.

Possible adaptation of the QTL detection model

One of the main drawbacks of the linkage-based QTL de-
tection model used in this study is that it requires the estima-
tionofmanyparameters (35d.f. for thecombinationsbetween
the dent and flint populations plus 6 d.f. for theGCA and 9 d.f.
for the SCA per QTL) which makes it necessary to develop
large segregating populations to get enough power and ac-
curateQTL effect estimates in practice. This certainly explains
the strong reduction of R2 observed in cross-validation re-
sults. For this reason, it might become difficult to apply it to
designs involving a larger number of founder lines and pop-
ulations. Several alternative approaches can be explored to
improve the power of the QTL detection model. One option
for more complex cases would be to cluster the parental
alleles based on their local similarities [as proposed by Leroux
et al. (2014), and applied to experimental data by Bardol et al.
(2013), Giraud et al. (2014), and Han et al. (2016)]. A simple
option could be to consider, as done in genome-wide association
study models, the SNP alleles received by each parental line or
even thehybrid SNPgenotypes directly. This is beyond the scope
of this study but is addressed in a companion article (Giraud
et al. 2017).

Interest of hybrids between recombinant materials
vs. tester designs

One important feature of the design we implemented is that
each hybrid is informative about both heterotic groups, which
allowed us to reduce the number of tested hybrids by a factor
of two in comparison to a test-cross evaluation based on a
single tester from the opposite group and the same number of
segregating lines in each group. The use of a factorial makes it
necessary toproducehybridsusinghandmadecrosses,whereas
tester-based hybrids can be more easily produced in isolation

Table 4 Cross-validation estimates of the quality of prediction of different models (average R2 and its SD) including population effects or
population effects and QTL effects

Model DMC DMY DtSILK PH

Population effects 28.4 6 4.18 (SD) 17.1 6 4.16 (SD) 10.4 6 2.97 (SD) 29.2 6 4.35 (SD)
Pop+QTL GCA 48.2 6 4.48 (SD) 29.0 6 5.32 (SD) 32.9 6 4.60 (SD) 49.8 6 4.82 (SD)
Pop+QTL GCA and SCA 47.4 6 4.58 (SD) 27.3 6 5.13 (SD) 32.1 6 4.81 (SD) 48.3 6 4.78 (SD)

For the models including QTL, for each sampling, QTL detected in the whole data set had their effects in the training set tested following a backward procedure and only the
significant QTL were considered in the prediction model. Predictions were based on GCA effects only or on models considering also SCA effects significant at a 5% individual
risk level. Pop, population.
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blocks. As a first rough estimation (C. Bauland, personal com-
munication), for planting 10 maize elementary plots for phe-
notyping, the additional cost of producing seeds by hand
crosses rather than with an isolation block is ,50%. This is
less than the cost of phenotyping a single plot. It would
nevertheless be interesting to compare the cost efficiency
of different factorial and tester designs, for different species,
experimentally or using simulations. Although not a direct
experimental comparison due to different founders, it can
be noted that in the joint analysis of two nested association
mapping (NAM) designs (one flint and one dent) evaluated
each for silage test-cross performances, Giraud et al. (2014)
detected equal or slightly higher (up to six for PH) numbers
of QTL than in our study. These differences are small in
regards to the fact that these NAM designs involved almost
two times more hybrids (�1650 hybrids).

Also, our design certainly leads to better estimations of
GCA QTL effects than designs based on few testers and gives
the possibility to detect QTL involved in SCA (even if, as in our
case, only small SCA effects were found). The factorial design
we studied was obtained by crossing two multiparental de-
signs, each comprised of connected biparental populations.
Suchmultiparentaldesigns areclose to the typeofpopulations
routinely produced by breeders. One can also consider de-
veloping factorials from other types of multiparental designs
suchasmultiparentadvancedgeneration inter-cross (MAGIC)
populations (Huang et al. 2015). Our QTL detection model
can be extended easily to this case by simply removing the
population structure effects.

The QTL detected in this study open the way to the
implementation of a marker-assisted selection of new lines,
taking into account complementarities of favorable alleles in
each group (based on GCA and also on SCA), to produce the
next generation of superior hybrids. Our results are encour-
aging but the QTL that were detected only partly explain the
hybrid variability. It would thus be interesting to compare
these predictions based on detected QTL with genomic pre-
dictions [as performed recently by Kadam et al. (2016) on a
similar design], and to evaluate how to combine both sources
of information. This issue is beyond the scope of this article
but will be addressed in another study.
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