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Abstract

Background

Familial dilated cardiomyopathy (DCM) is typically a monogenic disorder with dominant

inheritance. Although over 40 genes have been linked to DCM, more than half of the patients

undergoing comprehensive genetic testing are left without molecular diagnosis. Recently,

biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring protein gene

(NRAP) were identified in a few patients with sporadic DCM.

Methods and results

We determined the frequency of rare NRAP variants in a cohort of DCM patients and control

patients to further evaluate role of this gene in cardiomyopathies. A retrospective analysis of

our internal variant database consisting of 31,639 individuals who underwent genetic testing

(either panel or direct exome sequencing) was performed. The DCM group included 577

patients with either a confirmed or suspected DCM diagnosis. A control cohort of 31,062

individuals, including 25,912 individuals with non-cardiac (control group) and 5,150 with

non-DCM cardiac indications (Non-DCM cardiac group). Biallelic (n = 6) or two (n = 5)

NRAP variants (two PTVs or PTV+missense) were identified in 11 unrelated probands with

DCM (1.9%) but none of the controls. None of the 11 probands had an alternative molecular

diagnosis. Family member testing supports co-segregation. Biallelic or potentially biallelic

NRAP variants were enriched in DCM vs. controls (OR 1052, p<0.0001). Based on the fre-

quency of NRAP PTVs in the gnomAD reference population, and predicting full penetrance,

biallelic NRAP variants could explain 0.25%-2.46% of all DCM cases.
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Conclusion

Loss-of-function in NRAP is a cause for autosomal recessive dilated cardiomyopathy, sup-

porting its inclusion in comprehensive genetic testing.

Introduction

Dilated cardiomyopathy (DCM) is characterized by left ventricular enlargement and systolic

dysfunction in the absence of other etiological causes [1]. It is typically an adult-onset disease

but disease onset may take place as early as in infancy. Genetic DCM has incomplete, age-

dependent penetrance and presentation may vary even within the same family ranging from

asymptomatic to end-stage heart failure and sudden cardiac death (SCD). The prevalence of

DCM in the general population is estimated int the range of 1:500 to 1:3,000 [2–4].

Familial DCM is typically considered to be a monogenic disorder following most com-

monly an autosomal dominant pattern of inheritance [1,2,5]. However, X-linked, recessive

and mitochondrial inheritance patterns have been observed [6]. As much as 30–50% of DCM

is thought to be genetic or familial [6,7]. Over 40 genes encoding proteins of cytoskeleton, sar-

comere, nuclear envelope, ion channels, and intercellular junction such as TTN, LMNA,

MYH7, FLNC, DSP, TNNT2, RBM20, DES, TPM1 and DMD contribute to the monogenic

forms of DCM [7–11].

Recently, biallelic protein-truncating variants (PTVs) in the nebulin-related anchoring pro-

tein gene (NRAP) have been identified in a few patients with severe sporadic DCM [12–15],

and have been proposed to cause low-penetrant recessive DCM (Table 1). However, two

healthy individuals (age 33 and 35) in these families had the same homozygous PTV, which

was considered to partially question the variants’ pathogenicity. NRAP is not yet officially a

morbid OMIM gene and has not yet been curated by ClinGen (NIH) or Genomics England

PanelApp [16]. Thus, it is absent from most commercially available gene panels at the

moment.

Since both enrichment and co-segregation of NRAP variants in DCM are unknown, our

aims were to 1) evaluate whether patients who underwent genetic testing due to DCM have a

higher frequency of NRAP variants compared to controls, 2) to study co-segregation of the

NRAP variants, and 3) to define genotype-to-phenotype associations in NRAP-associated

cardiomyopathy.

Materials and methods

Patients

The cohort represents 31,639 consecutive patients referred to genetic testing relying either on

whole exome sequencing platform (WES; n = 24,630) or 4,600 gene high-quality next genera-

tion sequencing assay (HQSA; n = 7009) after January 2017. The inclusion criteria for DCM

group (see later) was referral to genetic testing due to diagnosis or clinical suspicion of DCM.

This registry study complies with the Declaration of Helsinki. Patients who consented for

Blueprint Genetics to contact them in relation to future research findings after initial testing,

were contacted through their referring healthcare professional when possibly diagnostic

biallelic variants in NRAP gene were found in sequence data. Patients living in the Helsinki

University Hospital (HUS) region in Southern Finland were recruited to the Inherited Cardio-

myopathies Study or KidCMP Study, and segregation studies were carried out when possible.

PLOS ONE LoF in NRAP associates with recessive DCM

PLOS ONE | https://doi.org/10.1371/journal.pone.0245681 February 3, 2021 2 / 13

consent to share the data so that individuals can be

recognized. WES data is each individual’s genetic

fingerprint and provide information allowing to

distinguish each person in the world by any other

individual, thus the data can’t be legally shared as

full. Also the ethical permit acquired for this study

does not allow evaluation of non-cardiac genes

from any of the individuals, thus the WES data

can’t be shared. However, all relevant data

necessary to replicate the study’s results are within

the paper and its Supporting Information files.

Funding: This work was supported by grants from

the Finnish Foundation for Cardiovascular

Research (TH), Aarne Koskelo Foundation (TH),

Special Governmental Subsidy (EVO) grants (TH).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: Drs. Koskenvuo, Saarinen,

Ahonen, Tommiska, Seppälä, Tuupanen, Kangas-
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Participants of the Inherited Cardiomyopathies study gave written informed consent, and the

study was approved by the Ethical Review Committee of The Department of Medicine, Uni-

versity of Helsinki (Dnro 307/13/03/01/2011, HUS/3225/2018, TMK11§274,16.12.2015). This

study has permission from Statistics Finland and Ministry of Social Affairs and Health to

obtain clinical data from deceased patients for research purposes.

Sequencing

Sample preparation including DNA isolation, fragmentation, library preparation techniques,

bioinformatics, and quality control were similar for both WES and HQSA.

When required, the total genomic DNA was extracted from the biological sample using

bead-based method. DNA quality and quantity were assessed using electrophoretic methods.

After assessment of DNA quality, qualified genomic DNA sample was randomly fragmented

using non-contact, isothermal sonochemistry processing. Sequencing library was prepared by

ligating sequencing adapters to both ends of DNA fragments. Sequencing libraries were size-

selected with bead-based method to ensure optimal template size and amplified by polymerase

chain reaction. Regions of interest (exons and intronic targets) were targeted using hybridiza-

tion-based target capture method. The quality of the completed sequencing library was con-

trolled by ensuring the correct template size and quantity and to eliminate the presence of

leftover primers and adapter-adapter dimers. Ready sequencing libraries that passed the qual-

ity control were sequenced using the Illumina’s sequencing-by-synthesis method using paired-

end sequencing (150 by 150 bases). Primary data analysis converting images into base calls

and associated quality scores was carried out by the sequencing instrument using Illumina’s

proprietary software, generating CBCL files as the final output.

Table 1. Previously reported patients with biallelic truncations in NRAP.

Chromosomal

position

Transcript; exon Variant GnomAD

allele

frequency

Pheno-

type

Age at

onset

(years)

gender

LVEDD

(mm)

EF

(%)

Other clinical features References

1 10:115355414 NM_198060.3

Exon 38/42

c.4504 C>T, p.

(Arg1502�)#
92/282804 DCM 26 M 71 15 Biventricular heart failure after

prolonged viral-like illness,

ventricular tachycardia, CK 68

U/l (normal: 39–308), NT-

proBNP 5154 pg/ml, and TnT

15.04 ng/ml. 36- year old

brother# is healthy.

Truszkowska

2017 (12)

2 10:115413838–

115413845

NM_001261463

Exon 5/42

c.400_407del,p.

(Cys134Serfs�12)#
0/251404 DCM NA NA NA NA Monies 2017

(13)

3 10:115400070 NM_001261463

Exon 14/42

c.1344T>A, p.

(Tyr448)�#
34/263614 DCM 3.5 F >3SD 15 DCM after mild respiratory viral

infection, suspected myocarditis,

LVEDV 245ml/m2. Died before

planned Htx. In autopsy no signs

of myocarditis.

Vasilescu 2018

(14)

4 10:115413838–

115413845

NM_001261463

Exon 5/42

c.400_407del,p.

(Cys134Serfs�12)#
0/251404 DCM 1 F 15 Cardiac arrest. CK 163 U/l

(normal 26–168), Brother died at

17 months for cardiomyopathy,

genotype unknown. Father# is

healthy

Ahmed 2019

(15)

Abbreviations: DCM, dilated cardiomyopathy; F, female; GnomAD; Allele frequency in gnomAD, Htx, heart transplantation; LVEDD; Left ventricular end-diastolic

diameter; M, male; NA, not available; Pheno, phenotype
#, homozygous. No homozygotes for these variants are present in the gnomAD reference population cohort.

https://doi.org/10.1371/journal.pone.0245681.t001
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Base called raw sequencing data was transformed into FASTQ format using Illumina’s soft-

ware (bcl2fastq). Sequence reads of each sample were mapped to the human reference genome

(GRCh37/hg19). Burrows-Wheeler Aligner (BWA-MEM) software was used for read align-

ment. Duplicate read marking, local realignment around indels, base quality score recalibra-

tion and variant calling were performed using GATK algorithms (Sentieon) for nuclear DNA.

Variant data was annotated using a collection of tools (VcfAnno and VEP) with a variety of

public and private variant databases including but not limited to gnomAD, ClinVar and

HGMD. The median sequencing depth and coverage across the target regions for the tested

sample were calculated based on MQ0 aligned reads. The sequencing run included in-process

reference sample(s) for quality control, which passed our thresholds for sensitivity and speci-

ficity. The patient’s sample was subjected to thorough quality control measures including

assessments for contamination and sample mix-up.

Analysis in this study was limited to single-nucleotide variants, and small insertions/dele-

tions and their combinations (INDELs) up to 220 bps within protein coding exons and exon-

intron boundaries (± 20 bps). Copy number variations were excluded from the analysis. Per-

formance metrics were as follows: WES: Median coverage 174x, >20x depth at target region

99.4%,>20x depth at NRAP gene 100%, sensitivity for SNVs 99.65%, indels 1–50 bps 99.1%,

and specificity >99.9% and HQSA: median coverage 143x, >20x depth at target region

99.86%,>20x depth at NRAP gene 100%, sensitivity for SNVs 99.89%, indels 1–50 bps 99.2%

and specificity >99.9%). Both assays have been validated in a CAP and ISO accredited labora-

tory (Blueprint Genetics, Finland).

NRAP variants. Since our aim to evaluate the role of potentially disease causing NRAP
variants, the analysis was limited only to the variants with the highest potential to cause dis-

ease, specifically PTVs (nonsense, frameshift, canonical splice site, start lost) and missense var-

iants as most of the synonymous and intronic variants are less likely to be disease causing. In

addition, variants were included into further analysis only if no homozygous carriers were

present in the Genome Aggregation Database control cohort (gnomAD) [17] and missense

variants with 100 or less heterozygous individuals in gnomAD. Frequency of such high-quality

variants were compared between patients with clinical or suspected dilated cardiomyopathy

(DCM group), other cardiology indication (Non-DCM cardiac group consisting patients

tested due diagnosis or suspicion inherited aortopathy, channelopathy or cardiomyopathy

other than DCM) or any other clinical indication for panel or exome testing (Control group).

Statistics

Comparisons between groups were performed with either Fisher’s exact or Chi-Square test for

categorical variables and unpaired T-test for normally distributed continuous variables. Odds

ratios (ORs) for DCM and non-DCM cardiac group vs. control group were calculated, and

95% confidence intervals (CIs) were determined using the conditional maximum likelihood/

Fishers’ method. Normally distributed parameters are presented as mean ± standard

deviation.

Results

Whole exome sequencing (WES) data set and NRAP variants

All variant calls from the NRAP gene were queried from the internal variant database in 31,639

individuals who underwent genetic testing using NGS-panels or direct WES approach. Of

these patients, 577 were tested due to DCM or suspected DCM (DCM group), 5,150 due to

suspicion of other monogenic cardiac disease (Non-DCM cardiac group) and 25,912 served as

controls (control group).
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Enrichment of NRAP variants in DCM

We identified cases with two rare NRAP variants, of which at least one was a PTV in 11 out

577 (1.91%) patients in the DCM group but none were in either the non-DCM cardiac group

or control group (Table 2). Frequency of such variant combination was significantly greater in

the DCM group vs. controls (OR 1052, 95%CI 62–17876, p<0.0001; Table 3). Three of the

Table 2. NRAP variants observed in the patients with dilated cardiomyopathy.

Patient Variants HGVS nomenclature Variant type Exon gnomAD AC SIFT Cons. ACMG Class

1 10:115374685 c.3099G>A, p.(Trp1033�) Nonsense 28/42 18 LP

2 10:115356904 c.4371del, p.(Thr1458Glnfs�36) Frameshift 37/42 100 P

10:115423570 c.72G>C, p.(Gln24His) Missense 1/42 34 Delet. (0.01) Full P

3 10:115356904 c.4371del, p.(Thr1458Glnfs�36) Frameshift 37/42 100 P

10:115423570 c.72G>C, p.(Gln24His) Missense 1/42 34 Delet. (0.01) Full P

4 10:115400070 c.1344T>A, p.(Tyr448�) Nonsense 14/42 35 Delet. (0.01) Full P

10:115423593 c.49G>A, p.(Glu17Lys) Missense 1/42 5 VUS

5 10:115356904 c.4371del, p.(Thr1458Glnfs�36) Frameshift 37/42 100 P

10:115355414 c.4504C>T, p.(Arg1502�) Nonsense 38/42 95 P

6 10:115423570 c.72G>C, p.(Gln24His) Missense 1/42 34 Delet. (0.01) Full P

10:115355414 c.4504C>T, p.(Arg1502�) Nonsense 38/42 95 P

7 10:115423570 c.72G>C, p.(Gln24His) Missense 1/42 34 Delet. (0.01) Full P

10:115355414 c.4504C>T, p.(Arg1502�) Nonsense 38/42 95 P

8 10:115356904 c.4371del, p.(Thr1458Glnfs�36) Frameshift 37/42 100 P

9 10:115374675 c.3109C>T, p.(Arg1037�) Nonsense 28/42 2 LP

10 10:115364570 c.4025G>A, p.(Ser1342Asn) Missense 35/42 3 Delet. (0.01) Full VUS

10:115423640 c.2T>C, p.(Met1?) Start lost 1/42 21 LP

11 10:115400070 c.1344T>A, p.(Tyr448�) Nonsense 14/42 35 P

Genomic coordinates refer to human reference genome (GRCh37/hg19) and mutation nomenclature is based on GenBank accession NM_001261463.1 (NRAP).

Homozygotes and compound heterozygous patients are marked with bold font. Cons, Conservation in mammals; Delet., Deleterious; GnomAD AC, Allele count in

gnomAD reference population cohort; LP, Likely pathogenic; P, Pathogenic; VUS, Variant of Uncertain Significance. No homozygotes for these variants are present in

the gnomAD reference population cohort.

https://doi.org/10.1371/journal.pone.0245681.t002

Table 3. Enrichment of rare NRAP variants in patients with dilated cardiomyopathy (DCM).

Control group Non-DCM cardiac group OR (95% CI), P-value DCM group OR (95% CI), p-value

Individuals (n) 25912 5150 577

Dominant hypothesis

Only one PTV variant 75 (0.29%) 24 (0.47%) 1.61 (1.02–2.56), p = 0.04 11 (1.91%) 6.71 (3.5–12.7), p<0.0001

Only one missense variant 698 (2.45%) 132 (2.56%) 1.05 (0.86–1.26), p = 0.65 10 (1.74%) 0.70 (0.4–1.3), p = 0.27

Recessive hypothesis

Two missense variants 27 (0.10%) 1 (0.02%) 0.18 (0.02–1.35), p = 0.10 0 (0.0%) 0.81 (0.05–13.4), p = 0.89

One PTV + one missense 0 0 NA 6 (1.04%) 590 (33–10494), p<0.0001

Two PTV variants 0 0 NA 5 (0.87%) 407 (22–7575), p<0.0001

PTV + missense or 2 PTVs 0 0 NA 11 (1.91%) 1052(62–17876), p<0.0001

Control group patients underwent genetic testing due to non-cardiac reasons and non-DCM group patients due to cardiological reasons excluding patients with DCM

or suspected DCM. DCM group includes patients tested with a DCM Panel or other panels because of confirmed or suspected DCM. Abbreviations: pts, patients; OR,

odds ratio; 95% CI, 95% confidence interval, DCM, dilated cardiomyopathy, PTV, Protein-truncating variant (means here nonsense, frameshift variant, consensus splice

site, start lost). Only variants with 100 or fewer heterozygous individuals in a gnomAD reference population cohort were included in calculations.

https://doi.org/10.1371/journal.pone.0245681.t003
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patients had familial cardiomyopathy and eight had a sporadic disease. In these 11 individuals,

four had a homozygous PTV, one had two heterozygous PTVs (phase unknown) and two were

compound heterozygous for a PTV and a missense variant (in trans). In five patients, the

phase of the NRAP variants was unknown. Two presumably unrelated patients had the same

frameshift/missense variant combination (c.4371del, p.Thr1458Glnfs�36 and c.72G>C, p.

Gln24His) and two had the same nonsense/missense variant combination (c.4504C>T, p.

Arg1502� and c.72G>C, p.Gln24His). Thus, the p.(Gln24His) missense variant was observed

altogether in four presumably unrelated patients. This variant may in fact lead to splicing

defect as it affects the last nucleotide of the exon 1. Alamut Visual Splicing software v2.11

(Interactive Biosoftware, France) predicts that this variant either leads to loss of the native

splice donor (NNSPLICE) or significant weakening of this site (SSF, MaxEnt). One patient

had a start lost variant, NRAP p.(Met1?), which is expected to cause loss-of-function as there is

an alternative out-of-frame start codon 5-bp down-stream from the wild type initiation codon.

None of these 11 patients had an alternative molecular diagnosis identified in either large

NGS panel (n = 9) or exome sequencing (n = 2). Six (55%) of the patients have had major end-

points, defined as history of cardiac transplantation (n = 2), death on waiting list for heart

transplantation (n = 1) or during left ventricular assist device (LVAD) treatment (n = 2), and

previous cardiac arrest (n = 1). The mean age at the time of the major endpoint was 22.8±19.4

years (Table 4). Four of these six patients had homozygous PTV in NRAP and one patient had

two PTVs (phase unknown). Patients with two PTVs (n = 5) were younger at disease onset

than patients with PTV + missense variant (n = 6) combination (19.6±20.4 vs. 48.3±12.3 years,

p = 0.018). None of the patients had known skeletal muscle involvement.

A single heterozygous PTV without another rare NRAP variant was observed in 11 patients

(1.91%) and they were also enriched in the DCM group (OR 6.71, 95% CI 3.5–12.7, p<0.0001;

Table 3). The single heterozygous PTV group excludes all patients with two rare NRAP vari-

ants as defined earlier. However, one of these patients also had another moderately rare (500

heterozygotes in gnomAD) missense variant in NRAP (c.2963A>C, p.(Gln988Pro); phase

unknown) in addition to a start-lost variant. The patient had no alternative molecular diagno-

sis in established cardiomyopathy genes. Of the 11 patients with only one heterozygous PTV

in NRAP, three had another molecular diagnosis including three PTVs affecting A-band of

TTN and one had an additional frameshift variant in DSP.

Table 4. Clinical characteristics of patients with biallelic or potentially biallelic NRAP variants.

Patient Age Gender Phenotype LVEDD(mm)/EF% Age at onset Htx Died Other

1 19 F DCM NA <19 Yes, at age of 19

2 36 F DCM 71/10-15% NA 36

3 31 M DCM 70/13% 28 Mild LGE

4 57 M DCM NA 56 Maximum treatment for heart failure

5 4 F DCM 58/20% 4 LVAD

6 59 F DCM 63/34% 46

7 59 M DCM NA/30% NA LBBB

8 43 M DCM NA 22 Yes, at age 43

9 53 F DCM NA NA History of cardiac arrest

10 48 M DCM/HF NA NA

11 2 M DCM NA NA 2

Age means age at last follow-up. Abbreviations: DCM, Dilated cardiomyopathy; EF, Ejection fraction; F, Female; HF, Heart failure; Htx, Heart transplantation; LBBB,

Left bundle branch block; LGE, Late gadolinium enhancement at cardiac MRI; LVEDD, Left ventricular end-diastolic diameter in mm; M, Male; NA, Not available or

not known.

https://doi.org/10.1371/journal.pone.0245681.t004
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Familial segregation

We were able to recruit two out of the three probands with familial disease and one with spo-

radic disease for additional screening. Co-segregation was assessed from 18 family members

who underwent screening of familial variants and clinical history, as well as and clinical evalu-

ation including ECG and echocardiography. Cardiac MRI was performed as needed.

In family 2, the proband died at the age of 38 years from severe biventricular heart failure.

She was compound heterozygous for c.4371del, p.(Thr1458Glnfs�36) and c.72G>C, p.

(Gln24His) in NRAP (Table 2, Fig 1). At the time of last imaging study, her LVEDD was 71

mm, LVEF was 13% and RVEF was 17%, and she had elevated levels of TnI and proBNP and a

widened QRS (132 ms). One of the proband’s brothers was diagnosed with DCM at the age of

24 years and he died at age of 34 years of severe biventricular heart failure. No DNA sample

was available from this individual for genetic testing. Two of the family members were com-

pound heterozygous for the same variants. One had a diagnosis of mild DCM at age 20 and no

progression since initiating ACE inhibitor treatment, and the other had upper normal LV size

despite of treatment initiation at the age of 21 years. All five heterozygous siblings and one

with wild type allele were healthy. The parents of the proband were both heterozygous for one

the variants and had normal echocardiography.

In family 6, the proband was diagnosed with DCM at the age of 47 years due to dilated LV

and reduced LV function (LVEDD 63mm, EF 34%). She was compound heterozygous for

c.4504C>T, p.(Arg1502�) and c.72G>C, p.(Gln24His) in NRAP (Table 2, Fig 2). Mild

improvement in LV size and function were observed with medical treatment. The proband’s

sister died at the age 40 years due to DCM. She was an obligate compound heterozygote for

the same variants as the proband, which was discovered after the testing of her children. Three

of the proband’s siblings have died during childhood, but no samples were available from any

of them for genetic testing. In the extended family, two heterozygous individuals and two with

wild type alleles were healthy. The proband’s parents, who were both obligatory heterozygotes

for one variant, had no known cardiomyopathy and had a normal life span.

Fig 1. Pedigree of the family-2 where the index patient and her affected brother were compound heterozygous for c.4371del, p.

(Thr1458Glnfs�36) and c.72G>C, p.(Gln24His) in NRAP similarly as her 21-year brother who were on medication initiated before

the results of genetic testing were available due to borderline imaging findings suggesting cardiomyopathy. He did not fulfill

diagnostic criteria of DCM at the time of the study. DNA was not available from one affected individual who died for DCM at age of

34. All family members who were heterozygous only for the other variant or were homozygous for the wild type allele were

unaffected.

https://doi.org/10.1371/journal.pone.0245681.g001
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In family 11, the proband was diagnosed with DCM at age 2 due to dilated LV and reduced

LV function. The patient was homozygous for c.1344T>A, p.(Tyr448�) in NRAP (Table 2, Fig

3). He received LVAD soon after hospitalization due to severe heart failure but he died before

planned transplantation. The proband’s parents were heterozygotes for the variant and his

older sister was homozygous for a wild type allele. All family members were healthy.

Estimating frequency of biallelic protein truncating NRAP variants in

general population

As we discovered significant new evidence supporting the role of biallelic NRAP variants in

DCM, we decided to further estimate the potential contribution of this gene on DCM at a

global scale. We queried the count of NRAP-PTV in gnomAD reference population v2.1.1. In

total 733 high-quality PTVs were present in the database. The average number of alleles

reported at these positions was 233,756 indicating a cumulative allele frequency of 0.31%.

Fig 2. Pedigree of the family-6 where the index patient and her affected brother were compound heterozygous for c.4504C>T, p.

(Arg1502�) and c.72G>C, p.(Gln24His) in NRAP. All family members who were heterozygous only for the other variant were

unaffected.

https://doi.org/10.1371/journal.pone.0245681.g002

Fig 3. Pedigree of the family-11 where the index patient was homozygous for c.1344T>A, p.(Tyr448�) in NRAP
whereas all other family members who were heterozygous for the variant or had homozygous wild type allele were

unaffected.

https://doi.org/10.1371/journal.pone.0245681.g003

PLOS ONE LoF in NRAP associates with recessive DCM

PLOS ONE | https://doi.org/10.1371/journal.pone.0245681 February 3, 2021 8 / 13

https://doi.org/10.1371/journal.pone.0245681.g002
https://doi.org/10.1371/journal.pone.0245681.g003
https://doi.org/10.1371/journal.pone.0245681


Thus, the probability of homozygosity or compound heterozygosity is approximately

0.000983% at the individual level. This is equal to 1 case per 101,700 individuals if we assume

that only PTV variants would be disease causing.

Discussion

Our data suggest that the variants in the NRAP gene are associated with DCM and may explain

up to 1.91% of DCM cases in an unselected clinical cohort consisting of patients with either

clinically diagnosed DCM or suspected DCM. Because small disease cohorts may provide inac-

curate estimates due to non-random inclusion and pure coincidence, we decided to estimate

the prevalence of potentially biallelic NRAP-PTV in a large population data set (gnomAD).

This analysis yielded a frequency of 0.000983%, equal to 1 case per 101,700 individuals. If all of

these variants were fully penetrant, NRAP might explain up to 0.34%-2.03% of all DCM cases

when relying on variable (1:3,000 to 1:500) estimates of DCM prevalence in the general popu-

lation. Thus, our DCM patient cohort and population data cohort provide essentially similar

estimates of the contribution of NRAP in DCM.

In general, non-syndromic familial cardiomyopathies follow dominant inheritance [1,18].

In 2016, the ALPK3 gene was discovered to be a rare cause of a recessive pediatric cardiomyop-

athy, which typically presents with DCM and non-compaction that progress to hypertrophic

cardiomyopathy and possibly some syndromic features [19]. Some other genes such as

GATAD1 [20], PLEKHM2 [21], and PPCS [22] have been shown to associate with recessive

non-syndromic DCM. However, not much evidence has been gathered after initial reports,

possibly reflecting the rarity of such gene-to-phenotype associations. Classic genes encoding

cardiac desmosome proteins initially connected to ARVC/arrhythmogenic cardiomyopathy

are now considered established causes of the DCM phenotype [10,23]. Notably, some variants

in DSG2 gene cause recessive ARVC that may be difficult to distinguish from DCM [24]. How-

ever, based on the numbers of reported patients and mutation database submissions (e.g. Clin-

Var) of patients carrying variants in previously described recessive cardiomyopathy genes, it

seems likely that NRAP has a more prominent contribution to the etiology.

Previous reports involving NRAP gene did not include segregation analysis [13] had insuffi-

cient data obtained from the family studies to fully support segregation or were inconsistent

with co-segregation [12,14,15]. In the first study suggesting association of NRAP with cardio-

myopathy, the proband’s 35-year-old brother who was homozygous for PTV in NRAP was

considered unaffected while being asymptomatic and having normal echocardiography and

ECG [12]. Thus, the authors concluded that NRAP may be a low penetrance genetic risk factor

for DCM even though the previous observation can also be explained by age-dependent pene-

trance of cardiomyopathies. Later, Ahmed et al. published a consanguineous pedigree in

which the index patient was a baby girl who presented at the age of 13 months with heart fail-

ure, easy fatigability, weakness, irritability, and shortness of breath and was diagnosed with

DCM [15]. Whole exome sequencing revealed that her healthy 33-year-old father was homozy-

gous for the same frameshift variant identified in the proband whereas the mother was hetero-

zygous. The proband’s family history included one stillbirth and another brother who was

diagnosed with cardiomyopathy at the age of 12 months and died at 17 months without a

molecular diagnosis (samples were not available for genetic testing). Otherwise the extended

pedigree did not reveal any known cardiomyopathy cases, which also suggests recessive inheri-

tance. Our previous study reported a family in which the index patient who was diagnosed

with DCM at the age of 3 years [14]. The proband was homozygous for NRAP p.(Tyr448�).

Three family members were heterozygous for the variant and one had a homozygous wildtype

allele, and all of them were considered healthy. Individuals who are heterozygous for a single
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LoF variant in NRAP are cardiologically healthy in all previously published reports as well as

in our study suggesting that NRAP does not cause dominantly inherited monogenic DCM.

However, we cannot exclude the possibility that it would increase susceptibility to cardiomy-

opathy even when heterozygous due to observed enrichment of single LoF variants in our

DCM cohort.

NRAP seems to associate with severe DCM as the proportion of patients with major cardiac

endpoint (death, cardiac arrest, transplant and LVAD) is similar or higher compared to

LMNA related cardiac laminopathy (54.5% vs. 58.3%) [25]. NRAP patients also seem to have

an earlier onset of major cardiac end-points when compared to cardiac laminopathy or DCM

in general (22.8±19.4 vs. 51.0±8.7 and was 59.0±14.2 years) [25]. In addition, the rate of cardiac

transplantation and LVAD utilization was higher in our NRAP group compared to a Norwe-

gian LMNA cohort (45% vs. 33%) [26].

Our data also suggest that two PTVs in NRAP cause more severe disease than PTV + mis-

sense combination in NRAP. There are no previous observations on the PTV + missense vari-

ant combination in DCM, thus further studies are needed to confirm whether the previous

assumption is correct. Given that our data did not show enrichment of potentially biallelic

missense variants in the DCM group, these variants may not contribute to the DCM pathogen-

esis alone. However, at this time we cannot exclude the possibility that a small proportion of

biallelic missense variants are disease causing alone.

NRAP appear to play important role in myocardial architecture and sarcomere function,

supporting the biological plausibility of our findings. The NRAP gene on chromosome 10q25.3

encodes the nebulin related anchoring protein. This protein is involved in anchoring terminal

actin filaments to the membrane, tension transmission from myofibrils to extracellular matrix,

as well as having a significant role in myofibrillogenesis during cardiomyocyte development,

and it is involved in the sarcomeric contraction cycle in adult heart [27,28]. The N-terminal

LIM domain of NRAP interacts with α-actinin and talin [29,30], while the domain with single

repeats interacts also with actin, the Kelch-like family member 41 (KLHL41) [31], and cysteine

and glycine-rich protein 3 (CSRP3) [27], and the C-terminal super repeats interact with filamin

C (FLNC) [31] and vinculin (VCL) [29]. Experimentally, upregulation of NRAP expression

was observed in DCM mice models and human DCM patients [27,32]. This has been sug-

gested to be an adaptive response to correct for disorganized actin thin filament architecture at

intercalated disc junctions. NRAP is expressed in the myocardium and in striated muscle.

Truszkowska et al. previously reported an absence of NRAP protein in the myocardium of a

DCM proband with biallelic PTV in NRAP whileNRAP protein was clearly present in a control

heart [12].

Study limitations

In one of the three probands with familial DCM, we were unable to obtain samples from the

parents and other family members to further prove segregation of the phenotype with the

genotype. Similarly, DNA samples were available only in one of the eight probands with spo-

radic DCM. Even though the data supported recessive inheritance since heterozygous individ-

uals were unaffected, more thorough segregation studies would have brought depth to the

scientific message especially by clarifying penetrance of NRAP related DCM. Moreover, no

functional studies were carried out, nor animal models were generated for any of the identified

variants. Four of the patients carried the same splice region missense variant, NRAP p.

(Gln24His), but we did not perform transcriptional analysis to determine this variant’s effect

on splicing that would have increase our understanding on disease mechanisms. None of the

NRAP variants detected via NGS were confirmed with Sanger sequencing since all of them had
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high variant call quality score, fulfilled several other quality control criteria for true positive

call, and the reporting followed CLIA/CAP/ISO-15189 approved policy. This study provides

the first statistical association between the NRAP gene and DCM without mechanistic insights

or evidence that have been partially provided in the initial case reports.

The results of this study demonstrate significant enrichment of NRAP variants in DCM

patients with severe clinical events and their co-segregation in multiple families support an

inclusion of NRAP in genetic testing of cardiomyopathies.
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