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Angiogenesis is required for tumor growth and development. Extracellular vesicles (EVs)
are important signaling entities that mediate communication between diverse types of cells
and regulate various cell biological processes, including angiogenesis. Recently, emerging
evidence has suggested that tumor-derived EVs play essential roles in tumor progression
by regulating angiogenesis. Thousands of molecules are carried by EVs, and the twomajor
types of biomolecules, noncoding RNAs (ncRNAs) and proteins, are transported between
cells and regulate physiological and pathological functions in recipient cells. Understanding
the regulation of EVs and their cargoes in tumor angiogenesis has become increasingly
important. In this review, we summarize the effects of tumor-derived EVs and their
cargoes, especially ncRNAs and proteins, on tumor angiogenesis and their
mechanisms, and we highlight the clinical implications of EVs in bodily fluids as
biomarkers and as diagnostic, prognostic, and therapeutic targets in cancer patients.
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1 INTRODUCTION

Angiogenesis, defined as the establishment of new blood vessels from pre-existing vascular networks,
is triggered by proangiogenic factors and depends on the proliferation and migration of endothelial
cells (ECs) (Teleanu et al., 2019; Lugano et al., 2020). In normal healthy tissues, angiogenesis is tightly
regulated by a balance that is maintained between proangiogenic and antiangiogenic factors. Solid
tumors are generally characterized with aberrant angiogenesis, and tumor angiogenesis is critically
required for tumor growth and development (Teleanu et al., 2019; Lugano et al., 2020). Many
proangiogenic factors are upregulated in tumor cells and tumor-associated stromal cells, including
vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and delta ligand-like 4
(Dll4). Hypoxia is a key inducer of tumor angiogenesis and promotes the expression of various
proangiogenic factors in the tumor microenvironment (Abou Khouzam et al., 2020). Recently,
antiangiogenic drugs have been widely applied to the treatment of multiple solid cancers, and cancer
patients have gained tremendous survival benefits from antiangiogenic therapy.

Extracellular vesicles (EVs), such as microvesicles and exosomes, are nanosized vesicles with lipid
membranes that are secreted by most cells. EVs contain many bioactive molecules, such as
microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and
proteins, and these EV cargoes regulate intercellular communication (Mathieu et al., 2019; Liu
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et al., 2021). Donor cell-derived EVs are taken up by recipient
cells, and the encapsulated bioactive components are thus
delivered to recipient cells, enabling their regulation of
recipient cell biological behaviors. An increasing number of
studies have demonstrated that EVs play important roles in
tumorigenesis, tumor growth, metastasis, immune evasion,
drug resistance, and angiogenesis (Todorova et al., 2017; Aslan
et al., 2019). Tumor-derived EVs can transfer proangiogenic
molecules into ECs to promote their angiogenic activity via
various mechanisms such as VEGF/VEGF Receptor (VEGF/
VEGFR), Notch, Wingless-type (WNT), and Hypoxia-
inducible factor (HIF) signaling pathway (Phng et al., 2009;
Horie et al., 2017; Todorova et al., 2017; Aslan et al., 2019).
Thus, targeting EVs might be an innovative and promising
therapeutic strategy to inhibit tumor angiogenesis.

A wide variety of biomolecules, including ncRNAs and
proteins, have been identified as EV cargoes, and these
signaling molecules can be transported from donor cells to
recipient cells. To date, considerable attention has been
directed to the effects of EVs on tumor angiogenesis and the
clinical relevance of these effects. A database of exosomes (http://
www.exocarta.org/) includes 9,769 proteins, 3,408 mRNAs, and
2,838 miRNAs. The mechanisms triggered by these specific
cargos loaded into EVs and delivered from donor cells to
acceptor cells are complex (Abels and Breakefield, 2016;
Mathieu et al., 2019). This article summarizes the current
knowledge on the roles of tumor-derived EVs in angiogenesis,
with a particular emphasis on the molecular mechanisms
involved. We also discuss the main prospects for their
applications in cancer diagnosis, prognosis, and treatment.

2. EXTRACELLULAR VESICLES AND
TUMOR ANGIOGENESIS
2.1 EV-Derived ncRNAs and Tumor
Angiogenesis
Here, we focus on the effects and mechanisms of EV-derived
miRNAs, lncRNAs, and circRNAs on angiogenesis, aiming to
elucidate their potential as tumor biomarkers and therapeutic
targets for tumor angiogenesis.

2.1.1 miRNAs
Various miRNAs are packaged into tumor-derived EVs and can
be transferred into recipient ECs (Muralidharan-Chari et al.,
2009). Once internalized by ECs, these miRNAs can initiate an
angiogenic switch by modulating EC proliferation and migration
and regulating the expression of angiogenesis-related genes
(Huang et al., 2020a; Li et al., 2020; Masoumi-Dehghi et al., 2020).

VEGF/VEGFR and HIF signaling pathways are the main
targets of miRNAs that regulate angiogenesis. Exosomal miR-
130a secreted by gastric cancer (GC) cells targeted c-MYB in ECs
and promoted angiogenesis in vitro and in vivo (Yang et al., 2018).
Similarly, GC cell-derived exosomal miR-155 downregulated
c-MYB but increased the expression of VEGF in ECs, which
enhanced EC tube formation and increased microvessel density
in xenografted tumors (Deng et al., 2020). Moreover, inhibition of

signal transducer and activator of transcription 3 (STAT3)
reduced miR-21 levels in exosomes derived from transformed
human bronchial epithelial cells, and these exosomes suppressed
angiogenesis by blocking the STAT3/VEGF axis in ECs (Liu et al.,
2016). MiR-182-5p in glioblastoma-derived EVs directly targeted
Kruppel like factor 2 (KLF2) and KLF4, which resulted in VEGFR
accumulation in ECs and thus promoted angiogenesis (Li et al.,
2020). In addition, HIF is a critical angiogenesis inducer that
regulates the cellular response to hypoxia-induced stress (Shao
et al., 2018). Under hypoxic conditions, HIF-1α is stabilized and
its expression is increased, which facilitates the expression of
various proangiogenic factors (Horie et al., 2017). Tumor cell-
derived exosomal miRNAs, such as miR-21-5p, miR-23a, miR-
155, miR-181a, miR-182-5p, and miR-619-5p, were also
upregulated under hypoxia. Prolyl hydroxylase (PHD) is a
negative regulator of HIFs, and inhibition of PHD can induce
the accumulation of HIFs in cells. Exosomal miR-23a derived
from hypoxic lung cancer cells inhibited the expression of PHD1
and PHD2 and led to the accumulation of HIF-1α in ECs, thereby
enhancing angiogenesis (Hsu et al., 2017).

EVs derived from tumor stromal cells, such as cancer-
associated fibroblasts (CAFs) and tumor-associated
macrophages (TAMs), can trigger tumor angiogenesis via
various mechanisms. Tumor-derived EVs can promote the
transformation of fibroblasts into CAFs and induce M2
polarization of macrophages, thereby inducing the
proangiogenic macrophage phenotype switch. For example,
lung cancer cell-secreted exosomal miR-210 activated the janus
kinase 2 (JAK2)/STAT3 pathway by targeting ten-eleven
translocation 2 (TET2) in fibroblasts and thus initiated the
acquisition of the proangiogenic phenotype in CAFs, as
indicated by the upregulation of VEGFA, MMP9, and FGF2
(Fan et al., 2020). TAMs are immune cells that play a significant
role in tumor angiogenesis (Zheng et al., 2018) and M2
macrophages express high levels of proangiogenic factors such
as VEGF (Corliss et al., 2016). M2 macrophages were associated
with increased microvessel density in pancreatic ductal
adenocarcinoma (PDAC) tissues, and exosomal miR-155-5p
and miR-211-5p derived from M2 macrophages targeted E2F
transcription factor 2 (E2F2) and promoted the angiogenic
functions of mouse aortic ECs in vitro (Yang et al., 2021).

Collectively, miRNA-derived from tumor-secreted EVs
regulate angiogenesis primarily by modulating the VEGF/
VEGFR and HIF-1α signaling pathways. In addition to those
derived from tumor cells, EVs derived from CAFs and TAMs
have been shown to regulate tumor angiogenesis via various
mechanisms. The effects and mechanisms of other EV-derived
miRNAs on tumor angiogenesis are summarized in Table 1.

2.1.2 LncRNAs
Tumor-secreted EV-derived lncRNAs can be transmitted to ECs
where they promote the expression of proangiogenic genes and
initiate angiogenesis by either binding to endogenous miRNAs or
interacting with mRNAs and proteins (Ma et al., 2017; De Los
Santos et al., 2019; Zhang et al., 2020). For example, lncRNA-H19
functions as an oncogene and is upregulated in multiple types of
cancer (Iempridee, 2017). Exosomes derived from CD90+ liver
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TABLE 1 | The effects and mechanisms of miRNAs, lncRNAs, and circRNAs derived from tumor EVs on angiogenesis.

Cargoes Cancer types Recipient cells Target genes or signaling pathways Functions References

MiRNAs

miR-9 NPC HUVECs MDK, PDK/Akt pathway Inhibition Lu et al. (2018)
Glioma HUVECs COL18A1, THBS2, PTCH1, PHD3, HIF-1α, VEGF Promotion Chen et al. (2019)

miR-17-5p NPC HUVECs BAMBI Promotion Duan et al. (2019)
miR-21 ESCC HUVECs SPRY1 Promotion Zhuang et al. (2020)
miR-21-5p Hypoxic PTC HUVECs TGFBI, COL4A1 Promotion Wu et al. (2019a)
miR-23a Hypoxic HCC HUVECs SIRT1 Promotion Sruthi et al. (2018)

NPC HUVECs TSGA10 Promotion Bao et al. (2018)
GC HUVECs PTEN Promotion Du et al. (2020)

miR-25-3p CRC HUVECs KLF2, KLF4, VEGFR2, ZO-1, Occludin, Claudin5 Promotion Zeng et al. (2018)
miR-26a Glioma stem cells HBMECs PTEN, PI3K/Akt pathway Promotion Wang et al. (2019c)
miR-27a PC HMVECs BTG2 Promotion Shang et al. (2020b)

ccRCC HUVECs SFRP1 Promotion Hou et al. (2021)
miR-92a-3p Retinoblastoma HUVECs KLF2 Promotion Chen et al. (2021a)
miR-130a GC HUVECs c-MYB Promotion Yang et al. (2018)
miR-130b-3p OSCC HUVECs PTEN Promotion Yan et al. (2021)
miR-135b GC HUVECs FOXO1 Promotion Bai et al. (2019)
miR-135b-5p CAFs from CRC HUVECs TXINP Promotion Yin et al. (2021)
miR-141 SCLC HUVECs KLF12 Promotion Mao et al. (2020)
miR-141-3p EOC HUVECs SOCS5, VEGFR2, JAK/STAT3 and NF-κB signaling pathways Promotion Masoumi-Dehghi

et al. (2020)
miR-148a-3p Glioma HUVECs ERRFI1, EGFR/MAPK signaling pathway Promotion Wang et al. (2020b)
miR-155 GC HUVECs c-MYB/VEGFA axis Promotion Deng et al. (2020)
miR-155 GC HUVECs FOXO3a Promotion Zhou et al. (2019)

Melanoma fibroblasts SOCS1/JAK2/STAT axis, VEGFA, FGF2, MMP9 Promotion Zhou et al. (2018)
Hypoxic HCC HUVECs — Promotion Matsuura et al.

(2019)
miR-155-5p M2 macrophages MAECs Targets E2F2 in PDAC Promotion Yang et al. (2021)
miR-221-5p
miR-181a Hypoxic PTC HUVECs DACT2, MLL3, YAP/VEGF axis Promotion Wang et al. (2021b)
miR-182-5p Hypoxic GBM HUVECs KLF2, KLF4, VEGFR, ZO-1, occludin, claudin-5 Promotion Li et al. (2020)
miR-183-5p CRC HMEC-1 FOXO1 Promotion Shang et al. (2020a)
miR-205 OC HUVECs PTEN/Akt pathway Promotion He et al. (2019)
miR-210 LC CAFs JAK2/STAT3 Promotion Fan et al. (2020)

HCC HUVECs SMAD4, STAT6 Promotion Lin et al. (2018)
miR-210-3p OSCC HUVECs EFNA3, PI3K/Akt pathway Promotion Wang et al. (2020a)
miR-221-3p CSCC HUVECs THBS2 Promotion Wu et al. (2019b)

CC MVECs MAPK10 Promotion Zhang et al. (2019)
miR-378b HCC HUVECs TGFBR3 Promotion Chen et al. (2021b)
miR-549a TKI-resistant ccRCC HUVECs HIF-1α, VEGF Promotion Xuan et al. (2021)
miR-619-5p Hypoxic NSCLC HUVECs RCAN1.4 Promotion Kim et al. (2020)
miR-944 Glioma stem cells HUVECs VEGFC, Akt, Erk1/2 signaling pathway Inhibition Jiang et al. (2021)
miR-1229 CRC HUVECs HIPK2, VEGF pathway Promotion Hu et al. (2019)
miR-1260b NSCLC HUVECs HIPK2 Promotion Kim et al. (2021)
miR-1290 HCC HUVECs SMEK1 Promotion Wang et al. (2021a)
miR-3157-3p NSCLC HUVECs TIMP2, KLF2, VEGF, MMP2, MMP9, occludin Promotion Ma et al. (2021)
miR-3682-3p HCC HUVECs ANGPT1, RAS-MEK1/2-ERK1/2 signaling pathway Inhibition Dong et al. (2021)

LncRNAs

LncRNA H19 Glioma HBMVECs miR-29a, VASH2 Promotion Jia et al. (2016)
LncRNA H19 CD90+ liver cancer HUVECs VEGF, VEGFR, ICAM1 Promotion Conigliaro et al.

(2015)
LncRNA HOTAIR Glioma HBMVECs VEGFA Promotion Ma et al. (2017)
LncRNA CCAT2 Glioma HUVECs VEGFA, TGFβ Promotion Lang et al. (2017b)
LncRNA POU3F3 Glioma HBMECs bFGF, FGFR, VEGFA, and ANG Inhibition Lang et al. (2017a)
LncRNA MALAT1 EOC HUVECs VEGFA, VEGFD, ENA78, PIGF, IL8, ANG, bFGF, Leptin Promotion Qiu et al. (2018)
LncRNA GAS5 LC HUVECs miR-29-3p, PTEN Inhibition Cheng et al. (2019)
LncRNA p21 NSCLC HUVECs miR-23a, miR-146b, miR-330, miR-494 Promotion Castellano et al.

(2020)
LncRNA UCA1 PC HUVECs miR-96-5p/AMOTL2/ERK1/2 axis Promotion Guo et al. (2020)
LncRNA RAMP2-AS1 Chondrosarcoma HUVECs miR-2355-5p/VEGFR axis Promotion Cheng et al. (2020)
LncRNA APC1 CRC HUVECs Rab5b, MAPK Promotion Wang et al. (2019a)
LncRNA TUG1 CC HUVECs — Promotion Lei and Mou, (2020)

(Continued on following page)
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TABLE 1 | (Continued) The effects and mechanisms of miRNAs, lncRNAs, and circRNAs derived from tumor EVs on angiogenesis.

Cargoes Cancer types Recipient cells Target genes or signaling pathways Functions References

LncRNA X26 nt GC HUVECs VE-cadherin Promotion Chen et al. (2021c)
LncRNA OIP5-AS1 Osteosarcoma HUVECs miR-153, ATG5 Promotion Li et al. (2021c)
LncRNA AC073352.1 BC HUVECs YBX1 stabilization Promotion Kong et al. (2021)
LncRNA SNHG16 HCC HUVECs miR-4500/GALNT1 axis, PI3K/Akt/mTOR pathway Promotion Li et al. (2021b)
LncRNA CCAT1 PC HUVECs miR-1138-5p/HMGA1 axis Promotion Han et al. (2021)
LncRNA LINC00161 HCC HUVECs miR-590-3p/ROCK axis Promotion You et al. (2021)
LncRNA SNHG11 PC HUVECs miR-324-3p/VEGFA axis Promotion Fang et al. (2021)

CicrRNAs

Circ-100338 HCC HUVECs MMP9 Promotion Huang et al. (2020b)
Circ-SHKBP1 GC — miR-582-3p/HUR/VEGF axis Promotion Xie et al. (2020b)
Circ-RanGAP1 GC HUVECs miR-877-3p/VEGFA axis Promotion Lu et al. (2020)
Circ-CCAC1 CCA HUVECs SH3GL2, EZH2, ZO-1, Occludin Promotion Xu et al. (2021)
Circ-0044366 GC HUVECs miR-29a/VEGF axis Promotion Li et al. (2021a)
Circ-CMTM3 HCC HUVECs miR-3619-5p/SOX9 Promotion Hu et al. (2021)

Abbreviation: Breast cancer, BC; Cervical cancer, CC, Cervical squamous cell carcinoma; CSCC; Clear cell renal cell carcinoma, ccRCC; Cholangiocarcinoma, CCA;
Colorectal cancer, CRC; Epithelial ovarian cancer, EOC; Esophageal squamous cell carcinoma, ESCC; Gastric cancer, Glioblastoma, GBM; GC; Hepatocellular carcinoma,
HCC; Lung cancer, LC; Mouse aortic endothelial cells, MAECs; Nasopharyngeal carcinoma, NPC; Non-small cell lung cancer, NSCLC; Ovarian cancer, OC; Oral squamous
cell carcinoma, OSCC; Pancreatic cancer, PC; Pancreatic ductal adenocarcinoma, PDAC; Papillary thyroid cancer, PTC; Small cell lung cancer, SCLC., Tyrosine kinase
inhibitor, TKI.

FIGURE 1 | The effects and mechanisms of lncRNAs derived from tumor EVs on angiogenesis.
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cancer cells were found to be enriched in lncRNA H19 and
promoted the angiogenic phenotype of human umbilical vein
endothelial cells (HUVECs), probably by regulating VEGF and
VEGFR1 expression (Conigliaro et al., 2015). Chondrosarcoma
cell-derived exosomes containing lncRNA-RAMP2-AS1
promoted the proliferation, migration and tube formation of
ECs by upregulating VEGFR2 by sponging miR-2355-5p (Cheng
et al., 2020). LncRNA-UCA1 was highly expressed in exosomes
derived from hypoxic pancreatic cancer (PC) cells and promoted
angiogenesis and tumor growth by regulating the miR-96-5p/
AMOTL2/ERK1/2 axis (Guo et al., 2020). PC-derived exosomal
lncRNA SNHG11 promoted the expression of VEGFA by
sponging miR-324-3p (Fang et al., 2021). Additionally, glioma-
derived exosomal lncRNA-CCAT2 (Lang et al., 2017b) and
lncRNA-POU3F3 (Lang et al., 2017a) enhanced angiogenesis
by inducing VEGFA expression. LncRNA-APC1, a suppressor
of angiogenesis, was significantly downregulated in colorectal
cancer cell-derived EVs. It directly bound to and degraded Rab5b
mRNA to decrease EV production and block the mitogen-
activated protein kinase (MAPK) signaling pathway in
HUVECs to suppress angiogenesis (Wang et al., 2019a).
Together, these studies demonstrate that tumor exosomal
lncRNAs regulate angiogenesis mainly by modulating VEGFA

expression and the VEGF/VEGFR and MAPK pathways. The
effects and mechanisms of other EV-derived lncRNAs on tumor
angiogenesis are summarized in Figure 1 and Table 1.

2.1.3 CircRNAs
CircRNAs constitute a class of endogenous ncRNAs that form a
covalently closed loop without a 5′-cap or 3′-poly-A tail (Gan
et al., 2021). They are produced by backsplicing protein-coding
precursor mRNAs and regarded as variants of competitive
endogenous (ceRNAs) that can sponge and thus inhibit the
activity of miRNAs (Hansen et al., 2013). Accumulating
evidence has demonstrated that circRNAs are involved in
various biological processes by regulating gene expression at
the transcriptional or posttranscriptional levels (Du et al.,
2016). CircRNAs can also be loaded into EVs and mediate
cell-cell communication. Circ-SHKBP1 in GC cell-derived
exosomes promoted angiogenesis by sponging miR-582-3p and
thus increased the expression of hu-antigen R (HUR), which
regulated VEGF mRNA stability (Xie et al., 2020b). Circ-
RanGAP1 in secreted exosomes derived from the plasma of
GC patients and promoted GC progression by targeting the
miR-877-3p/VEGFA axis (Lu et al., 2020). Additionally, circ-
0044366/circ29, which is highly expressed in GC cell-derived

FIGURE 2 | The effects and mechanisms of circRNAs derived from tumor EVs on angiogenesis.
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exosomes, was delivered into ECs and sponged miR-29a to
promote angiogenesis by upregulating VEGF (Li et al., 2021a).
In summary, tumor EV-derived circRNAs affect tumor
angiogenesis primarily by regulating VEGF expression. The
effects and mechanisms of other EV-derived circRNAs on
tumor angiogenesis are summarized in Figure 2 and Table 1.

2.2 EV-Derived Proteins and Tumor
Angiogenesis
In recent years, researchers have identified thousands of proteins
from different types of tumor-derived EVs, and some of these
proteins were characterized with proangiogenic properties and
can stimulate various steps in the angiogenic cascade. For
example, EVs derived from colorectal cancer perivascular cells
contained growth arrest specific 6 (Gas6) and promoted the
recruitment of endothelial progenitor cells (EPCs) to tumors
by activating the Axl pathway, thus leading to tumor
revascularization after withdrawal of antiangiogenic drugs
(Huang et al., 2021). VEGFA was carried in EVs derived from
ex vivo cultured patient-derived glioblastoma stem-like cells and
promoted angiogenesis of human brain ECs (Treps et al., 2017).
Breast cancer cell-derived EVs contained VEGF90K, which was
generated by VEGF165 crosslinking and triggered sustained
activation of VEGFRs in ECs by interacting with heat shock
protein 90 (HSP90) (Feng et al., 2017). Furthermore, EVs secreted
by ovarian (ES2), colorectal (HCT116), and renal (786–0) cancer
cells, in bodily fluids of tumor-bearing mice, and in ovarian
cancer patient ascites could stimulate EC migration and tube
formation. These responses were mediated by the 189 amino acid
isoform of VEGF (VEGF189), which was bound to the surface of
these EVs because of its high affinity for heparin (Ko et al., 2019).
Collectively, these findings indicate that proangiogenic factors
(e.g., Gas6 and VEGFA) and different subtypes of VEGF promote
tumor angiogenesis through different mechanisms.

In addition to conventional proangiogenic cytokines, other
angiogenesis-related proteins have also been found in EVs.
Ephrin type B receptor 2 (EPHB2) in small EVs derived from
head and neck squamous cell carcinoma (HNSCC) activated
ephrin-B reverse signaling and induced STAT3
phosphorylation in ECs, which promoted angiogenesis both
in vitro and in vivo (Sato et al., 2019). Moreover, soluble
E-cadherin, which was localized to the surface of exosomes
derived from ovarian cancer (OV) cells, activated the
β-catenin and nuclear factor-κB (NF-κB) signaling pathways
by interacting with VE-cadherin on ECs, leading to
angiogenesis in vitro and in vivo (Tang et al., 2018). Exosomal
Annexin II secreted by breast cancer cells promoted tPA-
dependent angiogenesis in vitro and in vivo (Maji et al., 2017).
Wnt5A induced the secretion of exosomes containing
proangiogenic proteins (e.g., VEGF and MMP2) and
immunomodulatory factors (e.g., IL-8 and IL-6) by melanoma
cells (Ekstrom et al., 2014). Additionally, other angiogenic
proteins have been found in many cancer cell-secreted EVs,
such as yes-associated protein (YAP) (Wang et al., 2019b),
angiopoietin 2 (ANGPT2) (Xie et al., 2020a), profilin 2
(PFN2) (Cao et al., 2020), Dll4 (Sheldon et al., 2010), ANG,

IL-6, IL-8, tissue inhibitor of metalloproteinases-1 (TIMP-1),
TIMP-2, activating transcription factor 2 (ATF2), metastasis
associated 1 (MTA1), and Rho associated coiled-coil
containing protein kinase 1/2 (ROCK1/2) (Skog et al., 2008;
Chan et al., 2015; Yi et al., 2015; Ikeda et al., 2021). More
proteins in different types of tumor-derived EVs and their
proangiogenic mechanisms are summarized in Figure 3 and
Table 2.

3 EXTRACELLULAR VESICLES AND
CLINICAL IMPLICATIONS

As ncRNAs or proteins loaded in EVs can be distributed in
various biofluids, such as blood, urine, tears, saliva, milk, and
ascites (Keller et al., 2011), the ability to analyze their cargoes and
levels in bodily fluids makes them promising biomarkers for
cancer diagnosis and prognosis (Sun and Liu, 2014). Liquid
biopsy is a noninvasive method of detecting precise
information about the tumor environment/status, which can
provide information prior to treatment (Rekker et al., 2014).
Through liquid biopsy, numerous proangiogenic contents in EVs
have been identified.

Similar to that on circulating free DNA or cell-free DNA and
several oncoproteins, such as prostate-specific antigen (PSA) and
alpha-fetoprotein (AFP), emerging evidence has suggested that
EV-associated ncRNAs and proteins can serve as biomarkers and
diagnostic, prognostic, and therapeutic targets in cancer patients.

The levels of serum miR-210 and serum-derived exosomal
miR-210 were much higher in HCC patients than in healthy
donors. A high level of miR-210 was associated with higher
microvessel density in HCC patients (Lin et al., 2018).
Increased expression of exosomal circRNA-100338 in the
serum of HCC patients was associated with tumor growth and
angiogenesis in primary and metastatic HCC. Exosomal
circRNA-100338 can serve as a predictor of poor prognosis
and lung metastasis in HCC patients following curative
hepatectomy (Huang et al., 2020b). Serum exosomal Annexin
II promoted angiogenesis, and a high level of serum exosomal
Annexin II was associated with tumor grade, poor overall survival
(OS), and poor disease-free survival in African-American women
with triple-negative breast cancer (Chaudhary et al., 2020).
Increased expression of lnc-UCA1 was positively correlated
with microvessel density in PC tissues. Exosomal lnc-UCA1
levels were greatly increased in PC patient serum and were
associated with tumor size, lymphatic invasion, late tumor
node and metastasis stage, and poor OS (Guo et al., 2020).
The elevated expression of metastasis associated lung
adenocarcinoma transcript 1 (MALAT1) in exosomes derived
from epithelial ovarian cancer (EOC) patient serum was
significantly correlated with an advanced and metastatic
phenotype and served as an independent predictive factor for
the OS of EOC patients (Qiu et al., 2018). NSCLC patients with
high levels of lncRNA-p21 in EVs derived from tumor-draining
pulmonary veins exhibited shorter relapse-free survival and OS
(Castellano et al., 2020). The level of circ-CCAC1 in the EVs in
the serum of cholangiocarcinoma patients was significantly
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FIGURE 3 | The effects and mechanisms of proteins derived from tumor EVs on angiogenesis.

TABLE 2 | The effects and mechanisms of proteins derived from tumor EVs on angiogenesis.

Cargoes Tumor types
or donor
cells

Recipient
cells

Signaling pathways Functions References

Gas6 Perivascular cells
from CRC

EPCs Activation the Axl pathway Revascularization Huang et al.
(2021)

VEGF90K BC HUVECs VEGF90K-HSP90 complex Proangiogenesis Feng et al. (2017)
VEGF189 OC, CRC, ccRCC, OC

patient ascites
HUVECs Association with the surface of small EVs via

heparin-binding
Proangiogenesis Ko et al. (2019)

EPHB2 HNSCC HUVECs Ephrin-B2-STAT3 angiogenic signaling
cascade

Proangiogenesis Sato et al. (2019)

Soluble E-cadherin OC HUVECs Activation of the β-catenin and NF-κB
signaling pathways in ECs

Proangiogenesis Tang et al.
(2018)

Annexin II BC HUVECs Activation of the tPA pathway Proangiogenesis Maji et al. (2017)
YAP LC HUVECs — Proangiogenesis Wang et al.

(2019b)
Coagulation factor III, IGFBP3, uPA,
TSP-1, endostatin

HNSCC HUVECs Functional reprogramming and phenotypic
modulation of ECs

Proangiogenesis Ludwig et al.
(2018)

ANGPT2 HCC HUVECs — Proangiogenesis Xie et al. (2020a)
PFN2 LC HUVECs Activation of the Erk pathway Proangiogenesis Cao et al. (2020)
ICAM-1, CD44v5 NPC HUVECs — Proangiogenesis Chan et al.

(2015)

Abbreviations: urokinase type plasminogen activator, uPA; tissue plasminogen activator, tPA.
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increased compared to that of patients with benign hepatobiliary
disease, indicating that circ-CCAC1 in EVs may serve as a
biomarker for cholangiocarcinoma (Xu et al., 2021). CRC
patients with metastasis showed a higher level of miR-25-3p in
exosomes than patients without metastasis (Zeng et al., 2018).
The expression of miR-619-5p in exosomes was increased in the
serum of NSCLC patients, indicating that miR-619-5p can serve
as a diagnostic indicator (Kim et al., 2020). High levels of
exosomal miR-1260b were associated with high-grade disease,
metastasis, and poor survival in patients with NSCLC (Kim et al.,
2021).

Moreover, prostate-specific membrane antigen (PSMA) has
emerged as a specific prostate tumor biomarker in prostate
tumor-derived exosomes. Ziaei et al. developed a novel
biofunctionalized silica nanostructure to capture tumor-
derived exosomes through the interaction of PSMA and its
ligand TG97, providing a noninvasive approach for prostate
cancer diagnosis (Ziaei et al., 2017). The company MiRXES
performed a test to analyze the levels of 12 miRNA
biomarkers linked to GC and calculated a cancer risk score for
each patient (Kapoor et al., 2020). Another study indicated that
the level of phosphatidylserine-expressing tumor-derived
exosomes in the blood is a reliable biomarker for early-stage
cancer diagnosis (Sharma et al., 2017).

4 CONCLUSION AND PERSPECTIVES

Tumor angiogenesis plays a critical role in tumor growth and
development, and antiangiogenic therapy has been frequently
applied to the clinical treatment of multiple solid tumors. Among
the generally known proangiogenic signaling pathways, miRNAs,
lncRNAs, circRNAs, and proteins carried by tumor-secreted EVs
have recently emerged as important modulators of tumor
angiogenesis, acting through a variety of mechanisms, as
described in this review.

Antiangiogenic therapy has been widely used for the treatment
of various solid tumors and has conferred tremendous survival
benefits to cancer patients (Teleanu et al., 2019; Lugano et al.,
2020). Antiangiogenic drugs, such as bevacizumab, sorafenib, and
regorafenib, inhibit tumor growth by suppressing angiogenesis
primarily through blocking the VEGF/VEGFR pathway.
However, many patients receive only modest survival benefits
and develop acquired resistance to antiangiogenic drugs
(Huijbers et al., 2016; Gacche and Assaraf, 2018). Drug
resistance is one of the most important obstacles to treatment
because it limits the clinical applications of antiangiogenic drugs,
and the diseases still progress, which results in poor outcomes and

unsatisfactory quality of life (Sennino and McDonald, 2012; van
Beijnum et al., 2015). Since exosome-derived ncRNAs and
proteins play important roles in tumor angiogenesis, targeting
ncRNAs and proangiogenic proteins may be a potential
therapeutic strategy to inhibit tumor angiogenesis.

Because a single miRNA, lncRNA, and circRNA species has
the potential to regulate angiogenesis by modulating multiple
targets, these ncRNAs hold great promise for use in therapeutic
approaches to the treatment of tumor angiogenesis. However, in
addition to tumors, ncRNAs significantly regulate the biological
functions of normal cells, and systemic targeting of ncRNAs
might affect physiological angiogenesis in normal tissues.
Therefore, it is important to develop more specific therapeutic
approaches based on angiogenesis-related ncRNAs. Moreover,
EVs have turned out to be possible natural carriers of therapeutic
agents with long half-time and non-immunogenic properties
(Lakhal and Wood, 2011). These EV-based nanocarriers
exhibit several advantages such as a high capacity for
overcoming various biological barriers and high stability in the
blood (Ha et al., 2016). However, the safety, specificity, and
proficiency of this promising approach in clinical trials still
remain more mysterious. EVs-based nanocarriers still face
many challenges in clinical application.

In summary, this review provides deeper insight into the
regulatory role of tumor-derived EVs on angiogenesis.
Therefore, revealing the mechanisms of tumor-derived EVs on
angiogenesis and seeking their potential as biomarkers and
diagnostic, prognostic, and therapeutic targets in cancer
patients will be popular research directions in the future.
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