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Primary aldosteronism (PA) is the most common cause of secondary hypertension and
reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a
broad-spectrum phenotype, spanning from normotension to hypertension. In this regard,
several studies have made advances in the identification of mediators and novel
biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs)
and their cargo.

Aim: To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-
7i-5p as novel biomarkers for PA.

Subjects and Methods: A cross-sectional study was performed in 41 adult subjects
classified as normotensive controls (CTL), essential hypertensives (EH), and primary
aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP)
and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and
aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were
defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9,
and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p
and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were
performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were
performed with SPSS v21 and Graphpad-Prism v9.

Results: PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the
control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-
MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The
concentration and size of uEVs and miRNA Let-7i-5p did not show any difference
between groups. In PA, we found significantly lower levels of miR-21-5p than controls
(p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected
AUC for AGP1 of 0.90 (IC 95 [0.79 – 1.00], p <0.001), and combination of AGP1 and
org November 2021 | Volume 12 | Article 7687341

https://www.frontiersin.org/articles/10.3389/fimmu.2021.768734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.768734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.768734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.768734/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ccarvajm@uc.cl
https://doi.org/10.3389/fimmu.2021.768734
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.768734
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.768734&domain=pdf&date_stamp=2021-11-05


Carvajal et al. Serum AGP1 and miR-21-5p in Primary Aldosteronism

Frontiers in Immunology | www.frontiersin.
EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 – 1.00], p<0.001) to discriminate the
PA condition from EH and controls.

Conclusion: Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs
was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin
activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p
to identify the PA condition, place both as potential biomarkers of PA.
Keywords: primary aldosteronism (PA), biomarker, lipocalin, miR-21-5p, extracellular vesicles, AGP1, Alpha-1-acid
glycoprotein-1
INTRODUCTION

The etiology of arterial hypertension (AHT) is unknown in more
than 80-90% of cases, which is named essential hypertension
(EH). One third of EH has been suggested to be associated with
endocrine disorders (1). Primary aldosteronism (PA) is an
endocrine disorder, currently identified as a broad-spectrum
phenotype, spanning from normotension (4% prevalence) to
hypertension (10% prevalence) (2–6). PA is characterized by an
inappropriately high circulating aldosterone independent of
known physiological regulators such as renin, angiotensin II,
potassium, and sodium status (e.g., high saline intake) (7). The
diagnosis of PA is relevant, not only for its association to high
blood pressure but also for the harmful effects in extra-renal
tissues, generally associated with the mineralocorticoid receptor
(MR) activation by aldosterone which induces inflammation (8,
9), tissue remodeling, and fibrosis (8, 10–14), affecting the renal,
heart, the vascular system (endothelial cells and smooth muscles
cells), the immune system (15) and the adipose tissue (16).

Several studies have tied to advance in the identification of novel
biomarkers for PA that support its early detection and also other
reported effects as inflammation, endothelial dysfunction, renal
damage, vascular remodeling and (17, 18), and oxidative stress
(19, 20). Early “surrogate biomarkers” have been previously
evaluated, such as high sensitive C-reactive protein (hs-CRP),
Plasminogen inhibi tor act ivator-1 (PAI-1) , matr ix
metallopeptidase 9 (MMP-9) and malondialdehyde (MDA) (8, 9),
free Cystatin-C (CysC), and neutrophil gelatinase associated
lipocalin (NGAL or LCN2) (21–23). However, none of these
biomarkers are currently available in clinical diagnoses for arterial
hypertension or PA. Recent proteomic studies have shown that
urinary and serum alpha-1-acid glycoprotein-1 (AGP1), also known
as ORM1, have been proposed as prognostic biomarkers for
inflammatory diseases such as chronic heart failure (24), some
types of cancer (25), and lately for PA (26).

Experimental and clinical studies demonstrate that small
extracellular vesicles (sEVs) or exosomes are potential biomarkers
of disease (27), including in cancer, metabolic disorders, and
cardiovascular diseases (28, 29). Urinary EVs originated mainly
from cells lining the renal tubules carrying proteins, lipids, RNA,
and miRNA, and have been recognized recently as a source of
diagnostic biomarkers for different renal and endocrine pathologies
(30–36), including primary aldosteronism (26).
org 2
MicroRNAs (miRNAs) are short non-coding RNA molecules
genome-encoded, that are approximately 22 nucleotides in length
and modulate downstream gene expression by post-
transcriptional mechanisms, specifically by binding to the 3′
untranslated regions (UTR) of a target messenger RNA
(mRNA), leading to mRNA degradation or repression of
translation (37–39). Recent literature (30, 37, 40–46) proposes
that microRNAs in exosomes are involved in physiological and
pathophysiological processes correlated with hypertension (47)
response to sodium intake (48) and PA (26, 30). miRNAs are
packaged into EVs for transport into different biofluids (e.g.,
blood, urine) and change according to the metabolic
microenvironment (e.g., inflammation) of the parent cell. In
endocrine hypertension phenotypes, such as nonclassic-AME
(31) and PA, have been identified in the differential expression
of EV-associated miRNAs, such as miR-192, miR-204 (31),
miRNA-21, and Let-7i. miR-21 has been found in EVs isolated
from urine (43), plasma (44), and endothelial cells (45). Romero
et al. reported on the protective role of miR-21 in the cardiac
pathology triggered by excess aldosterone in the heart of mice and
rats (49, 50). Let-7i negatively regulates cardiac inflammation and
fibrosis in presence of angiotensin II or aldosterone (49–51).
Similarly, Deccman et al. identified circulating miR-30e-5p,
miR-30d-5p, miR-223-3p, and miR-7-5p in PA patients with
bilateral adrenal hyperplasia (BAH) and aldosterone-producing
adenoma (APA). Altogether, these reports highlight the potential
role of both miRNA and EV-associated miRNAs as biomarkers or
mediators of PA (46).

The current study aimed to evaluate lipocalins LCN2 and
AGP1, and specific urinary extracellular vesicles miR-21-5p and
Let-7i-5p as novel biomarkers of primary aldosteronism.
METHODS

This study used the serum, plasma, and urine samples from a
biobank obtained from a cohort of 206 adult Chilean subjects of
both genders, between 18 and 65 years old. The subjects were
recruited from outpatient centers associated with the UC-
Christus Health Network in Santiago, Chile, following the
guidelines of the Declaration of Helsinki and approved by the
Ethics Committee of the Faculty of Medicine of the Pontificia
Universidad Católica de Chile (Certification CEC-MEDUC 12-
November 2021 | Volume 12 | Article 768734
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207 and 14-268, and updated by CEC-MEDUC 190823001
and 200619004).

All subjects had a sodium diet ad libitum and declared that
they did not ingest any herbal products or extreme diets during
the month prior to the analysis. Subjects with a BMI >30 kg/m2,
kidney disease, diabetes mellitus, liver, and heart failure were
excluded. Subjects using glucocorticoids, contraceptives, or some
interfering drugs, such Ag-II-receptor blockers (ARB), ACE-
Inhibitors (ACEI), and spironolactone (MR antagonist), were
also excluded.

After exclusion criteria were applied, 132 subjects were
included in the study. The subjects were classified as
normotensive controls (CTL), have clinical and biochemical
parameters in the normal range, essential hypertensives (EH)
according to the 2017 ACC/AHA Guidelines for High Blood
Pressure (52), and subjects having a positive screening for PA
(Aldosterone >9ng/dl, PRA <1 ng/ml*h), according to The
Endocrine Society 2016 guidelines (53) and Vaidya et al. (5,
54–56). All studied subjects (PA, EH, and CTL) have a clinical
record including medical history and physical examination, as
well a biochemical profile, creatinine, electrolytes, aldosterone,
plasma renin activity (PRA), serum, and 24-hour and morning
urine samples. Aldosterone and PRA were measured by
immunoassay using a commercial kit (DiaSorin, Stillwater,
MN). Urine samples for uEV isolation were stored at -80C
with a 1X protease inhibitor cocktail (Roche, USA).

Evaluation of the Parameters Associated
With Inflammation, Endothelial, and Renal
Damage in PA Subjects
The inflammatory status of all subjects was evaluated by
measuring hs-CRP with a nephelometric assay (BN ProSpec
Systems; Siemens Healthcare Diagnostics Products, Marburg,
Germany) and IL-6 by an ELISA with commercial reagents and
standards (D6050, R&D Systems, Minneapolis, MN), according
to the manufacturer’s protocols. Endothelial damage was
evaluated by surrogate markers such as PAI-1, MMP9, and
MMP2 activities. PAI-1 was determined by ELISA (HYPHEN
BioMed, Neuville sur Oise, France), and MMP9 and MMP2
activities by zymography, as previously described (57). Early
renal damage was evaluated with 24-hour urine albuminuria to
creatinine ratio (UACR). Albumin is measured by a
turbidimetric immunoassay (Roche, Germany), and urine
creatinine was measured with a colorimetric assay (Roche,
Indianapolis, IN) in a Hitachi Automatic Analyzer 7600
(Roche/Hitachi, Kobe, Japan). Plasma and urinary electrolytes
(sodium and potassium) were evaluated with methods previously
described (58).

Determination of Serum Lipocalins AGP1,
LCN2, and LCN2-MMP9 in PA Subjects
We measured the serum levels of lipocalins AGP1, LCN2, and
LCN2-MMP9 proteins (26) by commercial ELISA immunoassay
for AGP1 (Human a1-Acid Glycoprotein Immunoassay,
DAGP00, USA R&D Systems, Inc.) according to the
manufacturer’s protocol, LCN2 (DLCN20, R&D Systems,
Frontiers in Immunology | www.frontiersin.org 3
Minneapolis, MN), LCN2-MMP9 (DM9L20, R&D Systems,
Minneapolis, MN).

Isolation and Characterization of Urinary
Extracellular Vesicles From PA Subjects
Urinary EVs (uEVs) were isolated by a sequential ultracentrifugation
protocol previously described by Barros et al. (26). Urinary creatinine
was used to normalize samples of uEVs (59, 60). Isolated uEVs were
characterized as previously described (26, 31) and according to the
International Society for Extracellular Vesicles guidelines (27) using
transmission electron microscopy (TEM), nanoparticle tracking
analysis (NTA), and western blot with characteristic EV proteins (61).

TEM was performed with 15 ml of uEVs suspension were
absorbed onto a 200 mesh carbon-coated copper grid for 1 min.
Samples were negatively stained with 2% uranyl acetate solution
for 1 min. Grids were visualized in a Phillips Tecnai transmission
electron microscope at 80 kV and images were acquired using a
SIS-CCD Camera Megaview G2 (62). The concentration and size
of uEVs were determined by nanotracking analyses (NTA)
performed in a low-volume flow cell (LVFC) of a NanoSight
NS300 and NTA 3.2 software (Malvern Instruments Ltd,
Malvern, UK). Camera level and detection threshold was
optimized to identify individual particles and minimum
background noise during recordings (camera level = 12-14;
detection threshold = 3-5; flow speed = 50). Particles were
tracked by passing a laser beam through the liquid sample and
the scattered light was detected and captured in short videos by a
sCMOS camera (3 videos of 20 seconds each). The Brownian
motion of particles was determined, and the distance moved by
the detected particles will be used to calculate the diameter (mean
and mode size) and concentration of vesicles using the Stokes-
Einstein equation (63).

Western Blot of Exosome Markers
TSG101 and CD9 Proteins
Similar quantities of EVs were resuspended in Laemmli buffer
and then separated by SDS polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to nitrocellulose membranes (Bio-
Rad, CA, USA), blocked with 5% skim milk in PBS-Tween20
(PBST) 0.1% (vol/vol) for 1 hour and probed with primary rabbit
monoclonal anti-TSG101 (1:10.000 Ab125011, Abcam, MS,
USA), rabbit monoclonal anti-CD9 (1:500 (D801A) cat#13174;
Cell Signaling Technology, MA, USA). After washing,
membranes were incubated with horseradish peroxidase-
conjugated goat anti-rabbit IgG-HRP (1:10.000; ab6939;
Abcam, USA) for 1 hour at RT. Proteins were detected using
chemiluminescence (ECL Western Blotting substrate reagent,
Pierce, USA) in a Chemi-Doc MP imaging system (Bio-Rad,
CA, USA).

Urinary EV RNA Isolation
RNA from the extracellular vesicle was isolated by organic
extraction using the Trizol® reagent according to the
manufacturer’s instructions. Two microliters of each RNA
sample were pipetted on the NanoQuant Plate™ of the
Infinite® M200 PRO spectrophotometer (TECAN; Männedorfl;
November 2021 | Volume 12 | Article 768734
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Switzerland) to quantify the RNA concentration (A260 nm) and
purity (A260/A280 nm ratio) using Tecan i-control™ software.

Expression of miR-21-5p and Let-7i-5p in
Urinary Extracellular Vesicles
Reverse transcription of miRNA samples was performed using
the TaqMan™ Advanced miRNA cDNA Synthesis Kit (A28007),
according to the manufacturer’s instructions. The expression of
miRNAs (Hsa-miR-21-5p and Hsa-let-7i-5p) were evaluated
with TaqMan™ Advanced miRNA Assay (A25576) and the
TaqMan™ Fast Advanced Master Mix (4444557, Applied
Biosystems) in the RotorGene 6000 thermocycler (Corbett
Research, Sydney, Australia). The amplification reactions were
performed as follows: Enzyme activation at 95°C for 20 seconds
and 40 cycles of 95°C for 3 seconds, anneal/extend at 60°C for 30
seconds. RNU6 snRNA was used as an internal normalization
control (TaqMan™ MicroRNA Assay, ID001973). The fold
changes of miRNA expression were calculated using the
relative cycle threshold (2−DDCt) method and further
normalized by the spot urinary creatinine. Unpaired Kruskal-
Wallis test was performed to identify differences in PA patients
versus EH and healthy controls.

Statical Analyses
Clinical, biochemical, and expression data are expressed as
median [Q1-Q3]. Data normality was determined by
Kolmogorov-Smirnov test. For parametric and non-parametric
comparisons between two sets of data, an unpaired Student t-test
or a Mann-Whitney test were performed. To assess differences
between groups of data and an independent variable, a one-way
Analysis of Variance (ANOVA) or Kruskal Wallis was
performed using a Tukey or Dunn post hoc test, respectively.
Associations were performed by linear regression by Pearson or
Spearman regression according to data normality.

Receiver operating characteristic (ROC) analysis was used to
test the ability of lipocalins (LCN2, AGP1) and uEV-associated
miRNAs (miR-21-5p and Let-7i-5p) to discriminate PA patients
Frontiers in Immunology | www.frontiersin.org 4
from EH and control subjects. A p value < 0.05 was considered
statistically significant. Data were analyzed using GraphPad
Prism v9.1 (GraphPad, CA, USA) or SPSS v21 (IBM,
USA) software.
RESULTS

Clinical and Biochemical Characteristics
of Subjects With PA
We identified 11 PA subjects (8.3%) in our cohort of study
according to the PA criteria described in the Methods section.
Clinical and biochemical baseline characteristics are shown in
Table 1. PA, EH, and CTL groups were similar in age, gender,
and body mass index. Systolic (140 [125-153] vs. 134 [123-139]
vs 116 [110-121] mmHg, p<0.05) and diastolic blood pressure
(89 [76-98] vs. 87 [81-93] vs. 75 [71-78] mmHg, p <0.05) were
higher in the PA and EH group compared to healthy controls,
respectively (Figure 1).

Serum aldosterone was higher in PA in respect to EH, but
similar to the control group (12.7 [10.4-13.7] vs. 7.8 [6.1-8.4] vs.
9.8 [6.9-12.5] ng/dL, p <0.0001). PRA was significantly lower in
PA in respect to EH and controls (0.8 [0.5-0.9] vs. 1.9 [1.4-2.8]
vs. 1.8 [1.3-2.3] ng/mL*h, p <0.0001). The ARR was higher in PA
than EH and controls (17.9 [13.7-20.8] vs. 4.1 [2.6-5.4] vs. 5.4
[3.2-7.3], p<0.0001) (Table 1, Figure 2). No differences were
found in plasma and urinary sodium and potassium electrolytes,
nor in the fractional excretion of potassium (FEK) or the
fractional excretion of sodium (FENa) in PA, EH, and
controls (Table 1).

Evaluation of Parameters Associated With
Inflammation, Endothelial, and Renal
Dysfunction in PA Subjects
We found similar plasma levels of hs-CRP (1.4 [1.1-2.0] vs 2.1
[0.5-4.0] vs 1.1 [0.9-2.9] mg/L, p NS) and Interleukin 6 (IL-6)
TABLE 1 | Clinical and biochemical parameters of subjects identified as control, EH, and primary aldosteronism.

CONTROL EH PA

N 13 17 11
Age (years old) 37 [28-47] 39 [29-47] 48 [37-53]
Man (%) 46 58 55
BMI (kg/m2) 26.1 [24.7-27.7] 27.7 [24.4-29.7] 28.5 [27.5-29.1]
SBP (mmHg) 116 [110-121] 134 [123-139] b 140 [125-153]a

DBP (mmHg) 75 [71-78] 87 [81-93] 89 [76-98]a

Serum aldosterone (ng/dl) 9.8 [6.9-12.5] 7.8 [6.1-8.4] 12.7 [10.4-13.7]a

Plasma renin activity (ng/mL*h) 1.8 [1.3-2.3] 1.9 [1.4-2.8] 0.8 [0.5-0.9]a,b

ARR 5.4 [3.2-7.3] 4.1 [2.6-5.4] 17.9 [13.7-20.8]a,b

Plasma sodium (mEq/l) 140 [139-141] 141 [140-142] 140 [139-142]
Plasma potassium (mEq/l) 4.1 [3.9-4.4] 4.2 [3.8-4.5] 4.2 [3.9-4.4]
Urinary sodium (mEq/24 h) 136 [73-202] 162 [114-216] 125 [99-176]
Urinary potassium (mEq/24 h) 47 [31-62] 54 [39-66] 53 [41-67]
Sodium excreted fraction (%) 0.63 [0.53-0.83] 0.64 [0.34-0.78] 0.57 [0.51-0.88]
Potassium excreted fraction (%) 7.2 [5.6-8.2] 7.9 [5.1-9.3] 8.0 [7.4-8.7]
November 2021 | Volume 1
Data are presented as amedian and interquartile range [Q1-Q3]. BMI, Body Mass Index; PAS, Systolic Pressure; PAD, Diastolic Pressure; ARR, Aldosterone/Plasmatic Renin Activity Ratio.
aDifferent from the HE group and bthe control group. Analysis was performed using Kruskal-Wallis, p < 0.05, and c2 test, p < 0.05.
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(3.0 [1.5-3.1] vs. 3.2 [2.7-3.9] vs. 3.0 [1.7-3.2] pg/ml, p NS) in PA
from those found in EH and controls, respectively. Endothelial
markers PAI-1, MMP9 and MMP2 were also evaluated, showing
no differences in PA respect to EH or control subjects (Table 2,
Figure 3). Renal dysfunction was evaluated with the urinary
albumin to creatinine ratio (UACR) (3.2 [2.0-4.6] vs. 3.6 [1.5-5.4]
vs. 4.3 [1.9-6.6] mg/gr Crea) which was also similar in PA and
EH and Controls (Table 2).

Determination of Serum AGP1, LCN2,
and LCN2-MMP9 in PA Subjects
We detected higher levels of AGP1 in PA (934.1 [736.5-1255] vs
62.50 [47.1-365.9] and 60.7 [18,0-609,0] ug/ml, p<0.01)
compared to EH and controls subjects. LCN2 and LCN2-
MMP9 were similar between the groups (p NS) (Table 3).
Total LCN2 was found to be higher in EH with respect to the
control group, meanwhile, PA was similar to EH but did not
reach a significant difference when compared to the control
(Figure 4). We observed significant associations of AGP1 with
Frontiers in Immunology | www.frontiersin.org 5
Aldosterone (rho = 0.34, p <0.05), with PRA (rho = -0.44,
p <0.01) and with ARR (rho = 0.38; p <0.05) (Figure 5).

Characterization and Quantification of
Urinary Extracellular Vesicles
We isolated uEVs from all subjects in this study. Figure 6 shows
a representative image of isolated uEVs with a donut-shape
morphology by TEM (Figure 6A), a characteristic plot size/
concentration from NTA with the main peak near to 150 nm
(Figure 6B), and the western-blot of EV markers CD9 and
TSG101 (Figure 6C). No differences were observed in
concentration, mean and mode size of uEVs measured by
NTA in PA, EH, and controls (Table 4 and Figure 7).

Expression of miR-21-5p and Let-7i-5p in
Urinary Extracellular Vesicles
We identified a low expression of miR-21-5p in uEVs in PA and
EH in the control group. No difference was detected of miR-21-
5p between the PA and EH group (Table 5). Concerning Let-7i-
A B DC

FIGURE 1 | Clinical characteristics of subjects with PA. (A) Age (years old). (B) Body mass index (BMI; kg/m2) (C) Systolic blood pressure (SBP; mmHg). SBP was
higher in PA and EH subjects in the CTL group. (D) Diastolic blood pressure (DBP; mmHg). DBP was higher in PA and EH subjects in the CTL group. Comparison
between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as median and interquartile range [Q1-Q3], N.S: No
significative difference, *p < 0.05, **p < 0.01, ***p < 0.001.
A B C

FIGURE 2 | Biochemical characteristics of subjects with PA. (A) Serum aldosterone concentration (ng/dL). Serum aldosterone levels were higher in PA subjects in
the EH group. (B) Plasmatic renin activity (PRA; ng/mL*h). Plasmatic renin activity was lower in PA subjects in both the EH and CTL groups. (C) Aldosterone to renin
ratio (ARR). ARR was higher in PA subjects in both the EH and CTL groups. Comparison between groups was performed by unpaired one-way ANOVA or Kruskal-
Wallis test. Data are presented as median and interquartile range [Q1-Q3], N.S, No significative difference; ***p < 0.001, ****p < 0.0001.
November 2021 | Volume 12 | Article 768734
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5p, we did not detect any differences between all groups (Table 5
and Figure 8).

Receiver Operating Characteristic Curve
Analyses for AGP1 and miR-21-5p
Receiver operating characteristic (ROC) analysis showed that a
serum AGP1 concentration of 647.9 mg/ml had the best
sensitivity (90%) and specificity (83%) to discriminate PA from
EH and control subjects. In this analysis, the area under the curve
(AUC) for AGP1 was 0.90 (IC 95 [0.79 – 1.00], p <0.001)
(Figure 9) and for miR-21-5p (AUC 0.63 [0.40-0.86], p NS].
The ROC curve for both AGP1 + EV-miR-21-5p showed a
sensitivity of 90% and specificity of 85% with an AUC of 0.94 (IC
95 [0.85 – 1.00], p<0.001) (Figure 9).
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

In the present study, we evaluated the concentration of lipocalins
AGP1 and LCN2, and the expression of miR-21-5p and Let-7i-
5p in uEVs as potential biomarkers of PA. We observed a higher
concentration of AGP1 in PA subjects, which is associated with
the critical variables used to screen PA, as plasma aldosterone,
renin, and ARR. Further to these novel findings, we noted a low
expression of miR-21-5p in PA subjects, which is interesting
since it supports a combinate model for the identification of PA
conditions. We suggest that both AGP1 and miR-21-5p are
associated with the pathogenic course of the primary
aldosteronism and can be useful in the design of a novel
diagnostic algorithm for PA. There is also a widely accepted
TABLE 2 | Evaluation of parameters associated with inflammation, endothelial and renal damage in PA subjects, EH, and controls.

CONTROL EH PA

Hs-CRP (mg/l) 1.1 [0.9-2.9] 2.1 [0.5-4.0] 1.4 [1.1-2.0]
IL-6 (pg/ml) 3.0 [1.7-3.2] 3.2 [2.7-3.9] 3.0 [1.5-3.1]
PAI-1 (ng/ml) 14.0 [11.5-19.5] 15.8 [11.4-21.2] 21.1 [7.3-24.4]
MMP9 (activity FC) 1.2 [0.8-2.2] 1.4 [1.2-2.4] 1.4 [1.0-1.5]
MMP2 (activity FC) 1.2 [1.0-1.5] 1.2 [1.0-1.9] 1.1 [1.0-1.3]
Urinary albumin (mg/g creatinine) 4.3 [1.9-6.6] 3.6 [1.5-5.4] 3.2 [2.0-4.6]
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hs-PCR, High sensitivity C reactive protein; IL-6, Interleukin-6; PAI-1, Plasminogen activator inhibitor-1; MMP9, Matrix metalloproteinase-9 activity (fold change); MMP2, Matrix
metalloproteinase-2 activity (fold change); LCN2, Serum LCN2 concentration; LCN2-MMP9, Serum LCN2-MMP9 concentration; LCN2+MMP9, Serum LCN2+LCN2-MMP9
concentration; AGP1, Serum AGP1 concentration. Data are presented as a median and interquartile range [Q1-Q3]. Statistical analyses were performed using Kruskal-Wallis (Dunn´s)
with significance p < 0.05.
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FIGURE 3 | Evaluation of parameters associated with inflammation, endothelial and renal dysfunction in PA subjects. (A) High sensitivity C reactive protein (hsPCR;
mg/L). (B) Plasminogen activator inhibitor – 1 (PAI-1; ng/mL). (C) Metalloproteinase 9 (fold change activity). (D) Metalloproteinase 2 (fold change activity). No
differences of parameters associated with inflammation, endothelial and renal dysfunction were found between groups. Comparison between groups was performed
by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as a median and interquartile range [Q1-Q3], N.S, No significative difference.
TABLE 3 | Determination of serum AGP1A, LCN2, and LCN2-MMP9 in PA subjects.

CONTROL EH PA

AGP1 (mg/ml) 60.7 [18-609] 62.5 [47.1-365.9]a,c 934.1 [736.5-1255]a,b

LCN2 (ng/ml) 96 [61-117] 104 [88-133] 123 [80-131]
LCN2-MMP9 (ng/ml) 28 [16-43] 45 [29-65] 52 [29-75]
Total LCN2 (ng/ml) 107 [81-162] 179 [156-202]c 190 [172-214]b
AGP1, Serum AGP1 concentration. LCN2, Serum LCN2 concentration; LCN2-MMP9, Serum LCN2-MMP9 concentration; Total LCN2, sum of free LCN2 and LCN2-MMP9 complex.
Data are presented as a median and interquartile range [Q1-Q3]. Statistical analyses were performed using Kruskal-Wallis (Dunn´s) with significance p <0.05. aPA different from the EH
group, bPA different from the control group, and cEH different from the control group.
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consensus regarding a positive screening for PA is an ARR >30
ng/dL per ng/mL/h, with suppressed renin (PRA<1.0 ng/mL*h
or DRC <10 uUI/ml) and an aldosterone concentration >15 ng/
dL. Some studies have been identified that can improve the
detection of milder forms of primary aldosteronism when using
less conservative ARR thresholds with suppressed renin activity
and plasma aldosterone levels >9 ng/dL (5, 53, 54), which is in
agreement with the outcome of this study.

We found similar levels of hs-CRP and IL-6 as markers of
inflammation in PA subjects, which were similar to EH and
control groups, according to previous studies (12, 64). Similarly,
endothelial damage markers (PAI-1, MMP9, and MMP2) and
Frontiers in Immunology | www.frontiersin.org 7
renal function markers (Urinary albumin (UACR)) do not show
any significant changes in PA compared with EH and controls. It
suggests these subjects, currently classified as subclinical PA (54,
65) do not have chronic inflammation, vascular compromise, or
renal function impairment as is seen in overt or classic PA.
Hence, is highly necessary novel and sensitive biomarkers aimed
to detect subclinical PA and avoid complications associated with
the renal and extra-renal effects reported in classic PA.

This perspective is the first to report findings that show a
higher serum AGP1 concentration in PA than EH and controls
subjects (Figure 4). We also observed a significant association of
AGP1 with classic screening parameters for PA (e.g., aldosterone,
A B DC

FIGURE 4 | Determination of serum AGP1, LCN2, LCN2-MMP9, and in PA subjects. (A) Serum AGP1 concentration (µg/mL). We detected higher levels of AGP1 in
PA subjects in both EH and CTL groups. (B) Serum LCN2 concentration (ng/mL). LCN2 concentration was similar between groups (C) Serum LCN2-MMP9
concentration. LCN2-MMP9 concentration was similar between groups (ng/mL). (D) Serum LCN2 + LCN2-MMP9 concentration (ng/mL). Serum levels of LCN2 +
LCN2-MMP9 were higher in EH subjects in the CTL group. LCN2 + LCN2-MMP9 concentration was similar between PA and EH subjects and PA and CTL subjects.
Comparison between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as a median and interquartile range [Q1-Q3].
N.S, No significative difference, *p < 0.05, **p < 0.01.
FIGURE 5 | Heat map of AGP1 associations with serum Aldosterone, PRA, and ARR in PA, EH, and CTL subjects. Positive associations are presented in blue
gradient with the respective r (rho) value. Similarly, negative associations are presented in the red gradient. We observed a significant association between AGP1
concentration and the 3 relevant biochemical parameters in primary aldosteronism screening. Association studies were performed by Spearman test, p < 0.05.
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FIGURE 7 | Quantification of uEVs by NTA. (A) Urinary creatinine normalized uEVs concentration (uEVs particles/mg creatinine). (B) Mean diameter of uEVs
particle size distribution (nm). (C) Mode diameter of uEVs particle size distribution (nm). uEVs concentration and diameter were similar between groups. Comparison
between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis test. Data are presented as a median and interquartile range [Q1-Q3]. N.S: No
significant difference.
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PRA, and ARR) (Figure 5). Moreover, we found by
discriminative analyses by ROC curves that AGP1 can identify
PA from HE&CTL subjects with high sensitivity and specificity.
All these results suggest that circulating AGP1 protein is a novel
and potential biomarker of PA, which was also suggested for
Frontiers in Immunology | www.frontiersin.org 8
AGP1 protein in urinary exosomes (26). Since AGP1 is a protein
from the family lipocalin associated with the acute phase
response with immunomodulatory properties (66, 67), affected
by glucocorticoids (68–70) and mineralocorticoids (71), we
suggest that AGP1 expression is modified by high aldosterone
A B C

FIGURE 6 | Characterization and quantification of urinary EVs. (A). Identification of uEVs by Transmission Electron Microscopy (TEM) (indicated by black arrows).
(B) Representative size distribution plot from uEVs using a NanoSight NS300 instrument. (C). Western blot of classic extracellular vesicles markers TSG101 and CD9.
TABLE 4 | Characterization by NTA of urinary extracellular vesicles.

CONTROL EH PA

uEV (particle/g crea) 1.63x1011 [1.14 x1011-1.95 x1011] 2.21 x1011 [1.55 x1011-2.63 x1011] 2.0 x1011 [1.18 x1011- 3.89 x1011]
uEV mean size (nm) 142 [129-149] 141 [138-161] 145 [139-152]
uEV mode size (nm) 121 [109-129] 130 [117-169] 135 [122-155]
November 2
Statistical analyses were performed using Kruskal-Wallis (Dunn´s) with significance p <0.05.
TABLE 5 | Expression of miR-21-5p and Let-7i-5p in urinary extracellular vesicles.

CONTROL EH PA

miR-21-5p (RU/Crea) 2194 [143.5-12311] 34.1 [5.1-101.7]c 7.3 [0.6-667.5]b

Let7i-5p (RU/Crea) 157.2 [16.7- 374.5] 70.1 [14.9 -515.4] 26.7 [0.2-684.9]
021 | Volume 12
RU/Crea, Relative units/mg creatinine. Statistical analyses were performed using Kruskal-Wallis (Dunn´s) with significance p <0.05. bPA different from the control group, and cEH different
from the control group.
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FIGURE 8 | Expression of miR-21-5p and Let-7i-5p in uEVs. (A) miR-Let7i-5p expression in uEVs normalized by urinary creatinine (RU/mg creatinine). No
differences in miR-Let7i-5p levels were found between groups. (B) miR-21-5p expression in uEVs normalized by urinary creatinine (RU/mg creatinine). uEVs miR-21-
5p expression was higher in PA and EH subjects respect CTL group. Comparison between groups was performed by unpaired one-way ANOVA or Kruskal-Wallis
test. Data are presented as a median and interquartile range [Q1-Q3]. N.S: No significative difference, *p < 0.05.

FIGURE 9 | Regression model and Receiver operating characteristic (ROC) curve. ROC curve for serum AGP1 levels (black) and serum AGP1 levels + uEVs
associated miR-21-5p (red) can discriminate the PA condition from EH and CTL groups.
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levels through MR activation, having a dual role as a potential
biomarker of PA, and possible mediator of the tissue response to
high aldosterone. Further clinical and animal model or in-vitro
studies using MR antagonists should be performed to support
this hypothesis.

Similarly, we measured free LCN2 and LCN2 conjugated with
matrix metalloproteinase 9 protein as a potential biomarker of PA
(72). We found an increase only in total LCN2 (the sum of free and
complexed LCN2) in EH, but it did not reach a significant
difference in PA when compared with the control or EH. LCN2
is a proinflammatory molecule upregulated in obese individuals or
patients with cardiometabolic syndrome, as also has been described
Frontiers in Immunology | www.frontiersin.org 9
in classic PA (73, 74) and is suggested as an MR sensitive protein
(75, 76). LCN2 expression is influenced by several factors including
obesity, salt intake, aging, infection, and inflammatory status (72,
74, 77–79). Since these subjects have a middle or subclinical PA,
with no clear evidence of inflammation, renal/vascular damage
(Figure 3), or concomitant cardiometabolic disease, we
hypothesize the LCN2 fails to increase in these PA subjects since
they require a concomitant hit as inflammation (78, 79), obesity
(high adipose tissue) (74), or high salt intake (72) to increase the
circulating LCN2 levels.

We studied the urinary extracellular vesicles as a source of
potential biomarkers for PA (26, 30). In the present study, uEVs
November 2021 | Volume 12 | Article 768734
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showed similar particle concentration and size in PA subjects
with respect to EH and controls (Table 4). Previous studies in PA
show similar findings in uEVs concentration (26) but differ from
studies in circulating EVs in PA (75, 76), where they reported an
increased concentration of circulating EVs in the serum of PA
patients when compared with essential hypertensives and
Frontiers in Immunology | www.frontiersin.org 10
attributed it to an enhanced biological response of the
endothelium to aldosterone in vivo (75), which has also been
observed in vitro (80–82). These differences could be related to
the PA classification, overt PA versus subclinical PA, and also the
different biofluids used to quantify the impact of high
aldosterone in EV concentration, serum versus urine, which is
TABLE 6 | Target genes of miR-21-5p and Let-7i-5p, biological process associate and its predicted renal and global effect.

miRNA Gene
target

Biological process Predicted effect Global effect

Hsa-miR-21-5p IL1B
IL12A
IL10

- regulation of lymphocyte mediated immunity
- regulation of adaptive immune response

promote an inflammatory state
characterized by vascular infiltration of
immune cells

Increase inflammation

COL10A1
COL12A1
COL13A1
COL1A1
COL4A1

- collagen catabolic process
- extracellular matrix disassembly

degradation and reorganization of
extracellular matrix scaffold

Hypertrophy or hyperplasia of cardiac
myocytes and vascular smooth
muscle cells (VSMCs)

NEDD4 protein polyubiquitination Regulates ENaC function by controlling
the number of channels at the cell
surface

Increase plasma volume

SLC12A2 - Mediates sodium and chloride reabsorption.
- Plays a vital role in the regulation of ionic balance
and cell volume

Increased renal Na+ reabsorption Increase plasma volume

TIAM1 GEFs mediate the exchange of guanosine
diphosphate (GDP) for guanosine triphosphate (GTP).

Regulator involved in the activation of
Rac1 induced by salt loading and
aldosterone.

Salt sensitive hypertension

YWHAZ positive regulation of signal transduction by binding
to phosphoserine-containing proteins

14-3-3 proteins modulate the
expression of epithelial Na+ channels

Increase plasma volume

Hsa-let-7i-5p TGFBR1 Is a multifunctional cytokine affecting many cell types
and tissue remodeling processes, including
angiogenesis and organ fibrosis.
TGF-b mediates tissue fibrosis associated with
inflammation and tissue injury.

TGF-b
increased fibroblast activation,
proliferation, and excessive
extracellular matrix (ECM) production

increased fibroblast activation,
proliferation, and excessive ECM
production.
Increase fibrosis

AQP2 renal water homeostasis increasing the retention of water and
sodium

Increase plasma volume

COL1A1
COL1A2
COL24A1
COL3A1

extracellular matrix organization degradation and reorganization of
extracellular matrix scaffold

hypertrophy or hyperplasia of cardiac
myocytes and vascular smooth
muscle cells (VSMCs)

DNMT3A
DNMT3B

- DNA methylation on cytosine within a CG sequence
- S-adenosylmethioninamine metabolic process
- methylation-dependent chromatin silencing
- regulation of gene expression by genetic imprinting

Increased promoter methylation of
HSD11B2 gene

Decreased cortisol to cortisone
metabolism; High F/E ratio

IL10
IL12A
IL13
IL15
IL17RA
IL6
IL6R
IL8

- positive regulation of cytokine production
- inflammatory response

promote an inflammatory state
characterized by vascular infiltration of
immune cells

Increase inflammation

NEDD4 protein polyubiquitination Regulates ENaC function by controlling
the number of channels at the cell
surface

Increase plasma volume

ORM1
ORM2

- acute-phase response
- response to stress

Functions as transport protein in the
blood stream.

Increase due to acute inflammation

SCNN1A - sodium ion homeostasis Increased renal Na+ reabsorption Increase plasma volume
SLC12A1 - It plays a key role in concentrating urine and

accounts for most of the NaCl resorption
Increased renal Na+ reabsorption Increase plasma volume

YWHAZ
YWHAE

- mediate signal transduction by binding to
phosphoserine-containing proteins.

14-3-3 proteins modulate the
expression of epithelial Na+ channels

Increase plasma volume
Novembe
Gene target identification for identified miRNAs was performed using 5 miRNA gene target databases: miRmap, miRWalk, TargetScan, miRanda, and RNA22.
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associated with distinct mechanisms and the rates of EV
shedding that have different tissues (e.g., vascular endothelium
vs renal epithelia).

Based on previous reports, we measured the expression of two
miRNA in urinary EVs, miR-21-5p, and Let-7i-5p, as potential
biomarkers of PA. We observed that uEV-associated miR-21-5p
expression in uEVs from PA were lower than controls (Figure 8)
and similar to EH, however a trend to lower levels was observed
in PA. This result suggests that uEV-miR-21-5p is
downregulated and associated with pathophysiological
mechanisms depending on both high BP and PA conditions.
miR-21-5p expression is regulated by cytokines, inflammatory
modulators (e.g., NF1, AP1), and steroids. Downregulation of
miR-21-5p would affect the downstream target genes related
with inflammation (83) as IL-1B gene, aldosterone effect as
NEDD4, YWHAZ, SCL12A2 genes, and fibrotic processes (42,
84) as COL1A and COL4A1 genes (Table 6). Prospective animal
models and in vitro studies with miR-21-5p are necessary to gain
depth of understanding about the role of this miRNA in high
aldosterone conditions in renal epithelia, as occurs in PA.

With respect to uEV-associated Let-7i-5p, we did not observe
any differences in Let-7i-5p expression in all groups. Let-7i has
been found in either urine (31) and plasma exosomes (44) and is
associated with RAAS, mediating inflammation and fibrosis, in
both in vitro models and experimental models of kidney disease
(51, 85). Let-7i regulates downstream target genes TGFBR1, IL6,
IL10, COL1A1, COL3A1, DNMT3A, NEDD4, ORM1, VIM,
FN1, ACTIN, SCL12A1, and YWHAZ, among others (85–87)
(Table 6). In the current study, we did not find differences in
inflammation parameters, and were unable to measure other
important parameters related to fibrosis in these PA subjects,
such as the procollagen type 1 protein (PINP, COL1A1).

The ROC curves analyses with AGP1 and miR-21-5p as
significant variables associated with PA subjects, support a
simple (AGP1) or combinate model (AGP1 + miR-21-5p) to
discriminate PA with significant AUC of 90% or 94%,
respectively. This AUC is similar to previous reports on AGP1
in uEVs (92%), which support free or uEV-associated AGP1 as
potential biomarkers of PA (26).

In summary, we found higher levels of serum AGP1 and
lower uEV-miR-21-5p expression in subjects classified as PA
with respect to EH and controls. Besides the high discriminatory
Frontiers in Immunology | www.frontiersin.org 11
capacity identified by ROC curves, the association of AGP1 with
aldosterone, PRA, and ARR, place both as potential biomarkers
of PA. Further studies examining the possible role of AGP1 and
miR-21-5p as a mediator of the pathogenic course of PA
are encouraged.
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