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Engineering deceleration and 
acceleration of soliton emitted 
from Airy pulse with quadratic 
phase modulation in optical fibers 
without high-order effects
Lifu Zhang1, Kun Liu1, Haizhe Zhong1, Jinggui Zhang1,2, Jianqin Deng3, Ying Li1 & 
Dianyuan Fan1

Soliton propagation direction can be engineered in optical fibers in the presence of high-order effects 
(HOEs). It is well known that Raman effects can decelerate the soliton. Here we investigate the 
manipulation of the deceleration or acceleration of soliton emitted from Airy pulse whose spectrum 
is imposed an initial quadratic phase modulation (QPM) in optical fibers in the absence of HOEs. We 
show that, under the action of the anomalous second-order dispersion (SOD) and Kerr nonlinearity, 
Airy pulse with QPM is able to emit soliton with acceleration or deceleration depending on whether 
the QPM is negative or positive, and at a rate that is determined by the magnitude of QPM. The 
reason is that the acceleration behaviors of incident Airy pulse is altered depending on whether 
SOD and QPM have the same or opposite signs. Our study shows the possibility of controlling and 
manipulating the soliton propagation and interaction in optical fibers without HOEs, by purposely 
choosing appropriate QPM parameter of an Airy pulse.

Airy wave packet is first found by Berry and Balazs as solution of the Schrödinger equation in the context 
of quantum mechanics1. It is impossible to realize practically because Airy wave packet carries infinite 
energy. As a result, it does not attract attention. Since truncated Airy beam with finite energy, which 
is also the solution of the Schrodinger equation2, was realized experimentally3 in 2007, it has drawn 
considerable attention4–6 because of its unique features such as quasi-non-diffraction, self-healing and 
transverse self-accelerattion2,3,7. These features make Airy beams useful for a variety of applications in 
optics, e.g., curved plasma channel generation in air8,9, light bullets generation10–12, all optical routing13, 
small particle manipulation14,15, high resolution microscopy16,17, and more.

Truncated Airy pulse, the counterparts of spatial truncated Airy beam, is capable of resisting disper-
sion and self-healing. In addition, Airy pulse propagates with their acceleration resulting from a change 
group velocity that manifests as self-acceleration or self-deceleration of the intensity peak of the pulse18. 
Truncated Airy pulse can be generated by launching the Gaussian pulse into a fiber with only third-order 
dispersion (TOD), and its acceleration or deceleration can be controlled by changing the sign of TOD19,20. 
It can also be produced by imparting a cubic spectral phase on an incident pulse through other pulse 
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shaping techniques21. Extensive studies have been devoted to disclose the propagation dynamics of trun-
cated Airy pulse from linear10,11,18,22–26 to nonlinear27–35 regimes. In linear optics, it was used for the 
realization of linear spatiotemporal light bullets10,11. The impact of the periodic dispersion modulation22, 
an initial frequency chirp23, and the second-order dispersion (SOD) as well as TOD24–26 on Airy pulse 
propagation has been reported. In the nonlinear regime, it is able to shed solitons under the effect of 
Kerr nonlinearity27. Zhang et al. investigated the modulation instability of Airy pulse28. Airy pulse can 
also be exploited to control supercontinumm generation29, self-focusing30, soliton self-frequency shift31,32, 
and soliton pair generation33.

In our previous work [23], we investigate the propagation dynamics of Airy pulse with an initial fre-
quency chirp (FC). It was demonstrated that the joint action of the SOD and FC with the same sign leads 
to enhanced dispersion in the pulse shape; on the other hand, when the pulse dynamics is determined 
by SOD with a sign opposite to that of the FC, the Airy pulse first undergoes an initial compression, 
then reaches a breakup area, and then regenerates a new Airy pattern with an opposite acceleration. As 
FC is imposed on the incident Airy pulse, its temporal shape remains the same, while its spectral shape 
changes from Gaussian to Airy, and the direction of Airy tails is determined by the sign of the FC23. 
However, the situation changes oppositely when the spectrum of Airy pulse was imparted an additional 
quadratic phase modulation (QPM). Airy pulse with an initial QPM still keeps its spectral shape invar-
iant, but its temporal shape will be distorted. In this paper, we are devoted to study the propagation 
dynamics of truncated Airy pulse with an initial QPM in linear and nonlinear regimes.

Results
Linear propagation of Airy pulse with an initial QPM. For linear propagation, the amplitude of 
Airy pulse U Z T( , ) satisfies the following linear partial differential equation36:
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Equation  (1) is readily solved by use of the Fourier-transform method. The general solution of Eq.  (1) 
is give by

U Z T U i s Z d1
2

0 exp
2 2

2

∫π ω
ω

ω( , ) = ( , )









,

( )

∼
−∞

∞

where U 0 ω( , )
∼  is the Fourier transform of the incident field at Z 0=  and is obtained by using

U U T i T dT0 0 exp 3∫ω ω( , ) = ( , ) ( ) . ( )
∼

−∞

∞

For Airy pulse with an initial QPM p, its spectrum expression is written as follow
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By inverse Fourier transform of Eq. (4), the expression of temporal shape is given by
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Equation (5) shows the temporal shape of input Airy pulse with a QPM exhibits Airy distribution as 
well. Figure 1(a) depicts the temporal shape of such Airy pulse as a function of QPM parameter p. It is 
symmetric about the line p 0= , indicating the Airy pulse shapes are same for positive and negative 
QPM only if the absolute value of p is equal. As the QPM was imposed on the incident Airy pulse, the 
Airy pattern changes as follows: first, its multipeak is delayed by an amount that increases with p , at the 
same time its peak intensity decreases; second, the oscillations of tails damp. The Airy pulse shapes are 
shown in Fig.  1(b) for some representative values of p. When p 0= , the oscillations are deep, with 
intensity dropping to zero between successive oscillation. For the case of p 0≠ , the peak of pulse is 
shifted toward right by the same amount only if the value of p  is equal, manifests through the overlap-
ping of the shapes of Airy pulse with negative and positive QPM; and QPM induced peak intensity 
decrease is accompanied by the disappearance of oscillatory structure.

The spectral shape does not change because of linear propagation. Substituting Eq.  (5) into Eq.  (2), 
we obtain
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When p 0=  and = −s 1, Eq. (6) covers the expression for spatial Airy beam2. According to the analyt-
ical expression of Eq. (6), Fig. 2 shows the temporal evolution of Airy pulse as a function of propagation 
distance for different values of QPM in the anomalous and normal dispersion regimes. When the QPM 
is not imposed on the incident Airy pulse, the propagation dynamics of Airy pulse is completely the same 
for the cases of anomalous ( = −s 1, Fig. 2(b)) and normal (s 1= , Fig. 2(e)) dispersions. However, the 
temporal evolution of Airy pulse changes considerably as an initial QPM was imparted on the input Airy 
pulse. In the normal dispersion regime (s 1= ), for the case of positive QPM p 2=  shown in Fig. 2(d), 
the Airy pulse first experiences an initial compression and displays acceleration, then reaches its maxi-
mum intensity, and then continues to propagate with deceleration. While for the case of negative QPM 
= −p 2 shown in Fig. 2(f), the Airy pulse is quickly distorted and always deceleration. A comparison 

of Figs. 2(a,d) (or Figs. 2(c,f)) shows the opposite occurs in the anomalous dispersion regime ( = −s 1). 
It can be found from Eq. (7) that as sp 0> , the value of p sZ2 −  first decreases (or increase) from p2  to 
zero and then increases with an increasing propagation distance Z for the case of normal s 1=  (or 
anomalous = −s 1) dispersion and positive (or negative) QPM. Therefore, the output Airy pulse at 
propagation distance Z sp2= , U sp T Ai T aT2 exp( , ) = ( ) ( ), is equal to Airy pulse without QPM at 
Z 0= , U T0( , ). While for sp 0< , the value of p sZ2 −  is always positive (negative) and increases (or 
decreases) from p2  with an increase in the propagation distance for anomalous = −s 1 (or normal s 1= ) 
dispersion. Moreover, the dispersion effects is enhanced for sp 0< .

To verify the analytical results shown in Figs.  1 and 2, we model Airy pulse with an initial QPM 
propagation with the Eq.  (1) in an optical fiber by using the well-known split-step Fourier method36. 
Figures 3(a,b) show the temporal evolutions of Airy pulse for the cases of sp 2=  and = −sp 2, respec-
tively. When sp 2= , the propagation process of Airy pulse shown in Fig.  3(a) is the same as those 
obtained analytically shown in Figs. 2(c,d). Figure 3(b) corresponding to the case of = −sp 2 is the same 
as those obtained analytically shown in Figs. 2(a,f). This indicated that the numerical simulations con-
firm the novel propagation dynamics of Airy pulses with an initial QPM predicted by analytical analysis. 
In addition, Figs.  3(c–h) display a comparison of pulse shapes between analytical (red dash lines) and 
numerical (black solid lines) results at some representative propagation distances for sp 2=  and = −sp 2. 

Figure 1. (a) Temporal evolution of Airy pulse as function of QPM parameter p. (b) Airy pulse shapes for 
some representative values of p.
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All red dash lines overlap with black solid lines. Once again, we get very good qualitative agreement 
between analytical results and numerical solutions of Eq. (1).

Figure 3(c) shows the Airy pulse shape at Z 2= ; it should be compared with Fig. 3(g) where the pulse 
shape at Z 6=  is shown. The pulse shapes are the same for both propagation distances. To get a better 
understanding of the impact of initial QPM on the Airy pulse linear propagation, Figs. 4(a,b) show the 
maximum intensity (MI) and the position of MI (PMI) as a function of propagation distances for several 
values of sp. When >sp 0, the curve of MI for ≥Z sp2  is a copy of the curve for sp 0= ; in the first 
Z sp2<  propagation distance, the MI increases and reaches maximum intensity. When <sp 0, the curve 
can be obtained by shifting the curve of sp 0=  toward left by an amount of sp2 . This is indicated that 
positive or negative QPM is able to advance or delay the Airy pattern breakdown during its propagation 
in linear media with normal or anomalous dispersion. It can be concluded from Fig. 4(b) in which the 
PMI is shown. This behavior can be understood in terms of the SPM-induced chirp as follows. When 
>sp 0, the dispersion-induced phase modulation adds to the initial QPM because the two contributions 

have the same sign. The situation changes for the case of <sp 0. In this case, the contribution of the 
dispersion-induced phase modulation is of a kind opposite to that of initial QPM. As seen from Fig. 4 
and Eq. (7), QPM becomes zero at a distance Z p2= . As a result, Airy pulse has no QPM (Fig. 3(e)).

Nonlinear propagation of Airy pulse with an initial QPM. Under the action of Kerr nonlinearity, 
the Airy pulse without QPM was distorted in the form of soliton shedding and dispersion background 
during propagation27. In the above discussion, we only consider the impact of QPM on the linear prop-
agation of Airy pulse and find some new propagation behaviors. Do these unique linear properties make 
the nonlinear propagation of Airy pulse with QPM different from that of Airy pulse without QPM? 
Moreover, we move our attention on the nonlinear propagation of Airy pulse with an initial QPM. 
Figure  5 shows the temporal evolutions of Airy pulse with different values of QPM as a function of 

Figure 2. Temporal evolution of Airy pulse with different initial QPM (a,d) p 2= , (b,e) p 0=  and (c,f) 
= −p 2 in the anomalous (left column) and normal (right column) dispersion regimes.
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propagation distances in the anomalous dispersion regime. When p 0= , the soliton is shed from the 
main lobe of Airy pulse located in the vicinity of T 0≈  and propagates along a straight line (white dash 
line), indicating its velocity is not changed during propagation27,34. This is completely changed in the case 
of p 0≠ . The main effect of QPM is to shift the shedding soliton peak linearly with propagation distance 
Z. The shedding soliton is delayed or advanced depending on whether the sign of p is minus or plus. 
When p is positive, the QPM slows down the shedding soliton, and the soliton peak is delayed by an 
amount that increases linearly with distance. The opposite occurs as p is negative. The initial QPM leads 
to shedding soliton with an enhanced rate of acceleration or deceleration that is determined by the sign 
and amplitude of p. These results can also be applied for the case of spatial Airy beam with QPM. In 
addition, soliton shedding from Airy beams can also been manipulated at nonlinear interface by rotating 
the interface with an inclination angle37.

Figure 3. Temporal evolution of Airy pulse for the case of (a) sp 2=  and (b) = −sp 2. Comparison of pulse 
shape for Airy pulse between analytical (red dash lines) and numerical (black solid lines) results for (c,e,g) 
sp 2=  and (d,f,h) = −sp 2 for several propagation distances.
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The MI of Airy pulse is plotted in Fig. 6 as a function of propagation distance for several values of 
QPM. Figure 6(a) shows the MI of Airy pulse with negative QPM. Under the combined contributions of 
anomalous GVD and self phase modulation (SPM), the main lobe of the Airy pulse undergoes an initial 
narrowing stage, leading to a quickly increasing of MI. As the MI reaches its maximum value, a soliton 
is formed out of the centered energy about the main lobe. The propagation distance required for shed-
ding soliton decreases with an increasing p. When <p 0, the shedding soliton experiences more succes-
sive collisions with side lobes because of its acceleration. As a result, the MI first exhibits a strenuous 
oscillatory structure and then reaches periodically stable evolution. However, for >p 0, collisions between 
the shedding soliton with side lobes gradually decreases with increasing p owing to the shedding soliton 
with deceleration. Moreover, the MI first exhibits a weak oscillation and then changes periodically. The 
soliton shed from Airy pulse with positive QPM achieves stability faster (after shorter propagation dis-
tance) than that emitted from Airy pulse with negative QPM, as the shedding soliton experiences less 
collisions with side lobes in the case of Airy pulse with positive QPM. The oscillations period is almost 
unchanged. It can also be seen from Figs. 5(c,f) that, for larger p , some weak solitons with acceleration 
or deceleration appear except for the intensive accelerating or decelerating soliton.

Discussion
It is well known that the Raman effects or other high-order effects are able to decelerate the soliton. Can 
the soliton propagation direction be controlled in the absent of high-order effects? Our study indicates 
that the deceleration or acceleration of soliton can be manipulated for the nonlinear propagation of Airy 
pulse with QPM imposed by purposely choosing the magnitude and sign of its initial QPM. The Airy 
pulse imparted a QPM leads to novel linear and nonlinear dynamics. Although all analysis is performed 
in one dimensional media, all findings should hold in one and two dimensional spatial propagation cases 
in Kerr nonlinear media.

In summary, we have investigated the propagation dynamics of an Airy pulse with an initial QPM in 
an optical fiber by means of numerically simulation and analytically analysis. We obtain the expression 
for the linear propagation of Airy pulse with an initial QPM, and find that its propagation dynamics 
depends considerably on whether the QPM parameter p and fiber dispersion parameter s have the same 

Figure 4. (a) Maximum intensity (MI) and (b) position of MI (PMI) are plotted as a function of 
propagation distance Z for several values of sp when Airy pulse with an initial QPM imposed propagates in 
the linear regime.
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Figure 5. Temporal evolution of Airy pulse is plotted as a function of propagation distance for several 
values of QPM p. 

Figure 6. Maximum intensity is plotted as a function of propagation distance for several values of QPM p.
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or opposite signs. When >sp 0, the Airy pulse with an initial QPM first experiences an initial compres-
sion, then reaches its maximum intensity, and then continues to propagate with the same acceleration. 
The Airy pulse with an initial QPM is always dispersed during propagation in the case of <sp 0. Under 
the combined effects of anomalous dispersion and Kerr nonlinearity, Airy pulse with an initial QPM is 
able to emit solitons with acceleration or deceleration depending on the sign of p, and at a rate deter-
mined by the magnitude of p.

Methods
The propagation of Airy pulse in an optical fiber is carried out by numerically solving the well-known 
the nonlinear Schrödinger equation (NLSE) using the split-step Fourier method36. To simplify the model 
and broaden the applicability of the results, we normalize all the variables including the field that is 
normalized so that its peak input value is unity. The coordinates are normalized as follows: temporal 
coordinate T  is normalized to the incident pulse width T 0, propagation distance Z is measured in units 
of the dispersion length L TD 0

2
2β= / , where 2β  is the group velocity dispersion (GVD) parameter. The 

normalized NLSE then takes the form36
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Here the parameter N T P0
2

0 2γ β= / , represents the strength of the Kerr nonlinearity, where P0 and 
γ are the input peak power and the nonlinear coefficient respectively. = −s 1 ( = +s 1) denotes anom-
alous (normal) GVD. It should be pointed out that, for Airy pulse with multi-peak structure, the width 
of the main lobe of Airy pulse T 0 is usually used as a temporal scale.
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