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Background: RAD51, a critical protein for DNA repairment, has been found to associate
with multiple cancer types, but, so far, a systematic pan-cancer analysis of RAD51 has not
been done yet.

Methods: Data were obtained from multiple open databases and genetic alteration, gene
expression, survival association, functional enrichment, stemness, mutation association,
immunity association, and drug therapy association of RAD51were analyzed. A
prognostic model of RAD51 for overall glioma was constructed as an example
application of RAD51 as a biomarker.

Results: RAD51 was overexpressed in 28 types of cancers and was associated with
worse overall survival in 11 cancer types. RAD51 correlated genes were enriched in cell
cycle terms. RAD51 was associated with cancer stemness, tumor mutational burden, and
multiple immunomodulators in different cancer types. RAD51 expression was different
across immune subtypes in 11 cancer types. RAD51 was closely associated with cancer
immune microenvironments in some cancer types. Proliferating T cells was the cell type
that expressed highest RAD51 across most of the cancer samples analyzed. RAD51
expression had an AUC of over 0.5 in 12 of the 23 ICB subcohorts. The Tumor Immune
Dysfunction and Exclusion of 9 cancer types were different between RAD51 high and low
groups. RAD51 expression showed negative correlations with the sensitivity of most
drugs. A prognostic nomogram was constructed with a high confidence.

Conclusion: RAD51 is a clinical valuable biomarker for multiple cancer types, regarding
its potential power for diagnosis, prognosis, and therapeutic prediction.

Keywords: pan-cancer, RAD51, diagnosis, prognosis, therapeutic prediction

INTRODUCTION

Cancer is a major public health issue in the world. Affected by the COVID-19 pandemic, the
diagnosis, and treatment of cancer were hampered and delayed, resulting in a short-term decrease in
cancer incidence this year but might also lead to a potential increase in advanced-stage cancers and
higher mortality in the next few years (1). Given the complexity of cancer development, there may
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be common mechanisms shared across different cancer types,
hence, pan-cancer analysis of genes of interest, especially those
genes that might play common roles in multiple cancer types,
can contribute to clinical cancer diagnosis, prognosis, and
therapies. The Cancer Genome Atlas (TCGA), Genotype-
Tissue Expression (GTEx), and the Chinese Glioma Genome
Atlas (CGGA) (2-4), as well as other available open databases,
provide gene expression and clinical data of different cancer
types, enabling pan-cancer analysis for understanding these
genes across multiple cancer types.

Cancer arises from mutation. Genome instability and
mutation have been thought to be a hallmark of cancer (5). In
non-cancer cells, homologous recombination (HR) is essential
for the maintenance of genome stability. HR repairs most DNA
lesions through the complementarity of the DNA sequence. A
critical step of the HR repairment is the binding of single-
stranded DNA (ssDNA) to RAD51 protein near the repair
sites (6, 7). This process has been found to be critical in the
tumorigenesis of some cancer types. For instance, first found in
breast cancer, the product of the breast cancer-associated gene 2
(BRCA2) mediates the chaperoning of RAD51 onto replication
protein A (RPA)-coated ssDNA (8), thereby promoting cancer
development. Therefore, HR-deficient in normal tissues has been
suggested to be a potential mechanism for tumorigenesis (9).

An early clinical study showed that, for lung cancer patients,
overexpression of RAD51 resulted in significantly worse survival
(10), which inferred the potential prognostic value of RAD51 for
cancer patients. Data suggested that the overexpression of
RAD51 might promote cancer resistance to chemotherapy and
radiotherapy (11-13). RAD51 was found to mediate the
resistance of triple-negative breast cancer stem cells to
the PARP Inhibitor (14). However, it remains unknown if the
alteration in resistance results in the survival association of
RADS1, but the bioinformatics study in the general prognostic
power of RAD51 in some cancer types have been reported. For
example, RAD51 was reported as prognostic biomarkers for
colon cancer (15) and pancreatic cancer (16). In addition, data
has suggested that RAD51 might associate with cancer immunity
(17). In breast cancer and liver cancer, the role of RAD51 as a
biomarker for immune cell infiltration has been reported (18,
19). However, so far, a systematic pan-cancer analysis of RAD51
has not been done yet. Therefore, this study aimed to investigate
the clinical value of RAD51 for 33 cancer types, regarding the
potential of RAD51 as diagnostic, prognostic, and immune
therapy predictive biomarkers. The graphical abstracts were
shown in Supplementary Materials.

METHODS
RNA-Seq and Clinical Data Acquisition

Clinical and genomic data of glioma cohorts were downloaded
from The Cancer Genome Atlas (TCGA), Genotype-Tissue
Expression (GTEx), and the Chinese Glioma Genome Atlas
(CGGA) in May 2021, in which the methods of acquisition
and application complied with the guidelines and policies.

Mutation Analysis

Mutation analyses were conducted using the cBioPortal (20) and
the Open Targets Platform (21). The mutation or variant data
were obtained from the TCGA PanCancer Atlas Studies and the
UniProt. The 3D structure of the RAD51 protein was obtained
from the RCSB PDB/PDB-101 [PDB 5nwl (22)].

RNA-Seq Data Analysis and Plotting

All the analyses and plotting, including ROC plot, survival KM
plot, nomogram construction, etc., were implemented by R
foundation for statistical computing (2020) version 4.0.3 and
ggplot2 (v3.3.2).

Multiple Data Overexpression Analysis
Multiple data sets of the gene overexpression and DNA copy
number gain of RAD51 were accessed and analyzed using the
Oncomine (23).

RAD51 Associated Genes

Enrichment Analysis

Top 100 RADS51 correlated genes were identified using the
GEPIA (24). The protein-protein interaction network of
the top 100 RADS51 correlated genes was constructed using the
STRING (25). The minimum required interaction score was set
at the “high confidence” (>0.9). The active interaction source was
set at “Experiments and Databases”. All the enrichment analyses
were conducted using the Metascape (26).

Immunofluorescence Staining

of Cancer Cells

Immunofluorescence staining of the subcellular distribution of
RAD51 within the nucleus, endoplasmic reticulum (ER), and
microtubules of A431 squamous carcinoma cells, U-2 OS
osteosarcoma cells, and GBM cells was obtained from the
Human Protein Atlas (HPA) (27).

Immunohistochemistry Staining
Immunohistochemistry staining images of RAD51 in cancer and
non-cancer tissues were accessed from the HPA. Antibody
HPA039310 was used to stain RAD51 except for stomach and
stomach cancer (antibody CAB010381). The sample details and
the general pathological annotations and results were provided
by HPA.

The Cell Cycle Association Analysis

Plots of single-cell RNA-sequencing data from the FUCCI U-2
osteosarcoma cell line were accessed and analyzed using the HPA.
The temporal RAD51 mRNA expression patterns were characterized
in individual cells using the Fluorescent Ubiquitination-based Cell
Cycle Indicator (FUCCI) U-2 OS cell line.

Stemness and Mutation Level Analysis

The OCLR algorithm was used to calculate the mRNAsi for the
evaluation of cancer stemness. The tumor mutational burden
(TMB) and microsatellite instability (MSI) were used to evaluate
the mutation levels of samples.
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Immunomodulators Association
Immunomodulators association of RAD51 across cancer types
were analyzed using TCGA data and the TISIDB (28).

Immune Subtypes Association

Associations between RAD51 expression and immune subtypes
across human cancers were analyzed using TCGA data and
the TISIDB.

Immune Cell Infiltration Analysis

The immune cell infiltration level was calculated using the TCGA
cohort. The XCELL algorithms were used to estimate the
immune cell infiltration levels (29).

Single-Cell Sequencing Data Acquisition
and Analysis

The single-cell data were accessed and analyzed using the
TISCH (30).

Immune Therapy Prediction

Immune checkpoint blockade (ICB) of RAD51 low (0-25%) and
high (75-100%) groups were compared across multiple cancer
types. Potential ICB response was predicted using the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm (31).
TCGA data were analyzed.

Drug Sensitive Analysis

The GSCALite (32) was used to evaluate the area under the dose-
response curve (AUC) values for drugs and gene expression
profiles of RAD51 in different cancer cell lines. Drug sensitivity
and gene expression profiling data of cancer cell lines in GDSC
and CTRP were integrated for investigation. The Spearman
correlation analysis was performed to analyze the association
of expression of RAD51 and the small molecule drug
sensitivity (ICsp).

Chemotherapy Prediction

The ROC plotter (33) was used to analyze associations of RAD51
transcriptome levels with therapeutic responses in breast cancer,
ovarian cancer, glioma (female), and colon cancer (non-
chemotherapy) cohorts.

Statistical Analysis

Wilcox test or Kruskal-Wallis test was applied to compare gene
expression differences. Kaplan-Meier analysis, log-rank test, and
Cox regression test were used to conduct survival analysis.
Pearson’s correlation test was conducted to evaluate the
correlation of two variables except for the drug-sensitive
analysis. A P<0.05 was considered to be statistically significant.

RESULTS

Mutation of RAD51 in Cancers
The first section of this study was to explore whether RAD51
genetic alterations were associated with cancers. The alteration

frequency bar plot showed that the total alteration frequencies of
most of the cancer types were lower than 2.5%. Only cervical
adenocarcinoma (6.52% of 46 cases), pleural mesothelioma
(5.15% of 87 cases), mature B-Cell neoplasms (4.17% of 48
cases), and endometrial carcinoma (3.24% of 586 cases) had
alteration frequencies of over 2.5%, but these cancer types had a
relatively low case number except for the endometrial carcinoma
(Figure 1A). Survival data suggested that altered RAD51 resulted
in a worse overall survival in cancer patients, but the case
number for altered groups was relatively small and the p-value
was relatively large (Figure 1B). To further investigate the
mutation of RAD51 in cancers, the TCGA mutation data was
plotted and only 48 mutations were found, with 46 missense and
2 truncated mutations (Figure 1C), as shown in the 3D protein
structure (Figure 1D). We also collected variant data from the
Uniprot database and 10 disease-associated variants were found,
but with only one variant associated with cancers (Figure 1E).
Based on these results, this study suggested that, as an essential
protein for the maintenance of genome stability, RAD51 had a
low frequency of gene alterations. Thus, gene alterations of
RAD51 might not be the major reason that drives cancers.

The Diagnostic Value of RAD51

Across Cancers

This study hypothesized that although gene alterations of
RAD51 might not be the major reason that drives cancers, the
expression of RAD51 might associate with cancers. This study
compared the expression of RAD51 across all tumor types and
normal tissues using TCGA and GTEx data to determine the
overexpression of RAD51 in cancers. A list of the cancer type
abbreviations can be found in S-Table 1. Results showed that
RADS51 was significantly overexpressed in 28 types of cancer.
Mesothelioma (MESO) and uveal melanoma (UVM) have no
comparable normal tissue, while acute myeloid leukemia
(LAML) was the only cancer type that expressed lower RAD51
in cancer than in normal tissues (Figure 2A). To further
compare cancer-noncancer at a better control, paired cancer
noncancer samples from the same patients of available cancer
types were also compared. Results showed that 15 cancer types
were found to significantly overexpress RAD51 (Figure 2B). The
anatomy plot of the gene expression profile of RAD51 across all
tumor samples and paired normal tissues in females and males
showed that RAD51 was overexpressed in cancer in most of the
organs (Figure 2C). To evaluate the diagnostic value of RAD51
in these 28 types of cancers significantly overexpressing RAD5I,
diagnostic ROCs were plotted for these cancer types except for
cholangiocarcinoma (CHOL), pheochromocytoma and
paraganglioma (PCPG), and uterine carcinosarcoma (UCS)
because of the low normal tissue numbers. Results showed that
the AUCs of 15 cancer types were over 0.9. The AUCs of 5 cancer
types were between 0.8-0.9. The AUCs of 3 cancer types were
between 0.7-0.8. The AUC of testicular germ cell tumors (TGCT)
was 0.685 (Figure 2D). These results suggested that RAD51 had
an excellent diagnostic value for 18 cancer types (AUC>0.8),
and had an acceptable diagnostic value for 3 cancer
types (0.7<AUC<0.8).
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FIGURE 1 | Gene alteration of RAD51 in cancers. (A) The RAD51 genetic alteration frequencies of different types of cancers. (B) The KM plot and log-rank analysis
of the overall survival of cancer patients with or without RAD51 genetic alterations. (C) Mutation profile with the mutation frequencies of RAD51 in cancers. (D) The

3D structure of RAD51 protein with mutation sites (green) (PDB 5nwi). (E) Variants landscaped plot with mutated location and mutated amino acid. Top axis: amino
acid position; gray curve: all mutations; red curve: disease-associated mutations; bottom plot: detailed location of the mutation (1, 2, 4, 6, 7, and 9: The disorder of

The Validation of the Diagnostic Value of
RAD51 Across Cancers

To validate the diagnostic value of RAD51 in cancers, the
Oncomine was used to compare RAD51 expression or DNA
copy number across analyses in different cancer types
respectively. Results showed that bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC),
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), brain tumor (GBM&LGG), head and neck squamous
cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC),
ovarian serous cystadenocarcinoma (OV), lung cancer

(LUAD&LUSC), prostate adenocarcinoma (PRAD), skin
cutaneous melanoma (SKCM), and stomach adenocarcinoma
(STAD) had significant RAD51 overexpression or RAD51 DNA
copy number gain across 8, 18, 5,11, 11, 7,9, 13, 3, 5, 8, 6, 3, and
7 analyses respectively. Detailed analysis results and references
were provided in S-Figure 1. These data validated the diagnostic
value of RAD51 in most of the cancer types mentioned above. To
investigate the expression of RAD51 at the protein level, we
compared RAD51 protein staining of cancer and noncancer
tissue across 15 tissue types. Representative images showed
that 13 tissue types had a stronger staining signal of RAD51 in
cancer than non-cancer tissues, including breast, liver, colon,
cervix, stomach, pancreas, prostate, kidney, ovary, lung, glioma,
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FIGURE 2 | The diagnostic value of RAD51 in cancers. (A) The gene expression profile of RAD51 across all tumor samples and normal tissues. TCGA and
GETx data were plotted. (B) Paired sample expression profile of RAD51 across all tumor samples and normal tissues. TCGA data were plotted. The full
names of the cancer type abbreviations can be found in 8-Table 1. (C) Anatomy plot of the gene expression profile of RAD51 across all tumor samples and
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head and neck cancer, and skin cancer and melanoma. Testis
cancer had strong RAD51 staining but some cell components of
the normal testis tissue also had strong signals. In the lymph
node, high-grade non-Hodgkin’s type lymphoma had a strong
RAD51 signal as normal lymph node, but low-grade non-
Hodgkin’s type and Hodgkin’s type lymphoma had a weaker
RADS51 signal (Figure 3). To notice, these RAD51 protein
staining data were subjected to sample size, interindividual
differences, and variations due to primary diseases, age, sex,
etc, hence they were compared for reference only.

The Prognostic Value of RAD51 Across
Cancers

This study was also interested in the prognostic value of RAD51 in
cancers. Thus, univariate overall survival Cox regression analysis of
RAD51 was conducted across 33 cancer types. Results showed that
RADS51 was significantly associated with worse overall survivals in
11 cancer types, while RAD51 was associated with better overall
survivals in rectum adenocarcinoma (READ) and thymoma
(THYM) (Figure 4A). KM plot and log-rank analysis of high (50-
100%) and low (0-50%) RAD51 patients of significant cancer types
in Cox regression were also used to further observe the association
of RAD51 and the overall survival of patients. The KM plotting of
high and low RAD51 patients showed that 9 cancer types remained

FIGURE 3 | Representative protein staining images of RAD51 in cancer and
normal tissues. The images were downloaded from the Human Protein Atlas
(HPA). Antibody HPA039310 was used to stain RAD51 except for stomach
and stomach cancer (antibody CAB010381). The sample details and the
general pathological results were provided by HPA.

significant in log-rank analysis (Figure 4B). To evaluate the
prognostic value of RAD51 in the 11 types of cancers where
RAD51 was significantly associated with worse overall survival,
time-dependent prognostic ROCs were plotted. Results showed that
the AUCs of adrenocortical carcinoma (ACC), kidney
chromophobe (KICH), mesothelioma (MESO), and prostate
adenocarcinoma (PRAD) were over 0.8 (at least for one of the
prediction AUCs). AUCs of kidney renal papillary cell carcinoma
(KIRP), brain lower-grade glioma (LGG), pancreatic adenocarcinoma
(PAAD), and pheochromocytoma&paraganglioma (PCPG) were over
0.7 (at least for one of the prediction AUCs) (Figure 4C). These results
suggested that RAD51 had an excellent prognostic value for the 5
cancer types (AUC>0.8), and had an acceptable prognostic value for
the 4 cancer types (0.7<AUC<0.8).

Potential Functions of RAD51 in Cancers
To predict the potential role RAD51 plays in cancers, RAD51
correlated expressing genes were identified, as shown in S-
Table 2. A protein-protein interaction network was
constructed using the STRING to display the potential
association of RAD51 and these genes (Figure 5A). The top
100 correlated genes were further analyzed in the enrichment
study. The GO biological processes enrichment results showed
that RAD51 was mainly associated with terms related to the cell
cycle, such as “DNA replication”, “DNA repair”, and
“cytokinesis” (Figure 5B). The KEGG pathways enrichment
showed that the “cell cycle” was the most enriched pathway
(Figure 5C). In addition, this study also conducted an
immunologic signature enrichment analysis using the GSEA
GSEA Molecular Signatures Database. Results revealed that
these genes were potentially associated with CD8 T-cells, CD4
T-cells, B cells, and cytokines, such as IL4 and IL6 (Figure 5D).
The immunofluorescence staining of the subcellular distribution
of RAD51 within the nucleus, endoplasmic reticulum (ER), and
microtubules of A431 squamous carcinoma cells, U-2 OS
osteosarcoma cells, and GBM cells showed that RADS51 is
mostly expressed in nucleoli rim, which accounted for its
association to the cell cycle (Figure 5E). The cell cycle of the
U-2 OS osteosarcoma cell line was analyzed as a cancer cell
example to observe the change of RAD51 expressed during the
cell cycle. Results showed that RAD51 kept raising at the early
stage of the cell cycle and started to recover after about 9 hours.
Thus, the S-tr phase expressed the highest RAD51 (Figure 5F).
The alteration of RAD51 during the cell cycle further indicated
its critical role in regulating the cell cycle of cancer cells.
Moreover, the correlations of RAD51 to cancer stemness,
TMB, and MSI were also analyzed across different cancer
types. Results showed that RAD51 was positively correlated
with the stemness of 27 types of cancer. Among these cancer
types, RAD51 was strongly correlated to the stemness in 8 cancer
types, such as breast invasive carcinoma (BRCA), esophageal
carcinoma (ESCA), lung cancer (LUAD&LUSC), and stomach
adenocarcinoma (STAD), where the coefficients were over 0.5
(Figure 5G). In TMB and MSI analysis, most of the cancer types
were not correlated to the RAD51 level, except for the TMB of 6
cancer types which were weakly correlated to the RAD51 level
(Figures 5H-I).
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FIGURE 4 | The prognostic value of RAD51 in cancers. (A) Univariate Cox regression analysis of RAD51 for overall survival in different cancer types. (B) The overall
survival KM plot and log-rank analysis of high (50-100%) and low (0-50%) RAD51 patients of significant cancer types in Cox regression. (C) Time-dependent overall
survival ROC of RAD51 in significantly risky cancer types in Cox regression (1-, 3-, and 5-year survival).

Associations of RAD51 and
Immunomodulators in Cancers

Pan-cancer analyses aimed at depicting the immunological role of
RADS51 are critical in determining the types of cancers that may
benefit from anti-RAD51 immunotherapy or immunotherapy
prediction by RAD5I1. Results of correlation analysis of RAD51 and
immunomodulators revealed that RAD51 might be associated with
multiple immunomodulators in different cancer types. Strikingly,
RAD51was positively correlated with a majority of
immunomodulators in thyroid carcinoma (THCA) and kidney renal

clear cell carcinoma (KIRC). RAD51 was negatively correlated with a
majority of Immunol inhibitors, Immunol stimulators, and Chemokine
receptors in esophageal carcinoma (ESCA) and glioblastoma multiforme
(GBM). RAD51 was negatively correlated with many MHC molecules in
multiple cancer types, such as adrenocortical carcinoma (ACC) and lung
cancer (LUAD&LUSC). RAD51 was also positively correlated with most
MHC molecules in liver hepatocellular carcinoma (LIHC) and low-
grade glioma (LGG). Therefore, this study suggested RAD51 might
associate with the immune regulation in these cancer types. From the
other dimension of the correlation, KDR, CCL14, CXCLI12, IL6R,
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FIGURE 5 | Potential functions of RAD51 in cancers. Top 100 RAD51 correlated genes were identified using the GEPIA based on all cancer and normal tissue datasets
compared in Figure 1A. (A) Protein-protein interaction network of top 100 RAD51 correlated genes. (B) GO Biological Processes enrichment analysis of top 100 RAD51
correlated genes. (C) KEGG Pathway enrichment analysis of top 100 RAD51 correlated genes. (D) Immunologic signatures enrichment analysis of top 100 RAD51 correlated
genes. All the enrichment analyses and enrichment network constructions were conducted using the Metascape. (E) Immunofluorescence staining of the subcellular distribution
of RAD51 within the nucleus, endoplasmic reticulum (ER), and microtubules of A431 squamous carcinoma cells, U-2 OS osteosarcoma cells, and GBM cells. (F) Plots of single-
cell RNA-sequencing data from the FUCCI U-2 OS osteosarcoma cell line, showing the correlation between RAD51 mRNA expression and cell cycle progression. (G) The
correlation of OCLR scores and RAD51 in TCGA cancer data. OCLR algorithm was used to calculate the mRNAsi (OCLR scores) for the evaluation of stemness. (H) The
correlation of tumor mutational burden (TMB) and RAD51 in TCGA cancer data. (1) The correlation of microsatellite instability (MSI) and RAD51 in TCGA cancer data.

TNFSF13, and CX3CR1 were negatively correlated with RAD51 in ~ Associations of RAD51 and Immune

multiple cancer types, while LAG3, CD276, MICB, ULBP1, TAPL,and ~ Subtypes of Cancers

TAP2 were positively correlated with RAD51 in most cancer types, ~ To investigate whether RAD51 can potentially affect immune
indicating that these molecules can be potential immunotherapy targets ~ subtypes (Immune Landscape) of cancers, this study also
of RADS51 across cancer types. Detailed results of the correlations were  analyzed associations between RAD51 expression and immune
displayed in S-Figure 2. subtypes across human cancers. Results showed that expression
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of RAD51 was significantly different across immune subtypes in
11 cancer types. In most of the cancer types, the C3
(inflammatory) immune subtype expressed lower RAD51 than
the other immune subtypes (S-Figure 3). Thus, RAD51 might
potentially be an exclusion biomarker for the inflammatory
immune subtype in these cancer types.

Associations of RAD51 and Immune Cell
Infiltration Across Cancers

To further study the association of RAD51 and cancer immune
microenvironments, immune cell infiltration levels were
estimated using the XCELL algorithm. The correlation analysis
of RAD51 and immune cell infiltration levels revealed that
RAD51 might be closely associated with cancer immune
microenvironments in some cancer types. RAD51 was
negatively associated with stroma scores in 22 cancer types.
LGG was the only cancer type whose stroma score was weakly
and positively correlated to RAD51. For microenvironmental
scores, RAD51 was negatively associated with the scores in 14
cancer types, while in 3 cancer types, RAD51 was positively
associated with the microenvironmental scores. On the other
hand, RAD51 was positively correlated to immune scores in 6
cancer types but negatively correlated to immune scores in 9
cancer types. In detail, generally, RAD51 was negatively
associated with most of the XCELL scores except for T cell
CD4+ (Th1 and TH2) and common lymphoid progenitor scores.
where RAD51 was positively correlated to T cell CD4+ Thl, T
cell CD4+ TH2, and common lymphoid progenitor scores in
most of the cancer types, especially T cell CD4+ TH2 which was
strongly correlated with RAD51 in most of the cancer types. In 5
cancer types, RAD51 was strongly and negatively associated with
the majority of the XCELL scores, while in 3 cancer types,
RAD51 was strongly and positively associated with the
majority of the XCELL scores. Most strikingly, in thymoma
(THYM), most of the immune cell scores were strongly and
positively associated with RAD51, but most of the stroma cell
scores were strongly and negatively associated with RAD51.
Detailed results of the correlations were displayed in S-Figure 4.

The RAD51 Expression of Immune Cells

in Cancers

As most of the above analysis demonstrated that RAD51 level in
cancer was associated with immune cells, especially T cells, to
further understand the distribution of RAD51 in tissue samples,
single-cell expression data were collected and explored to
compare the RAD51 expression in different cell types
(including cancer cells and non-cancer cells) across multiple
cancer types. Interestingly, results revealed that proliferating T
cells was the cell type that expressed the highest RAD51 across
most of the cancer samples analyzed. Generally, although with
limited malignant cells containing samples, results showed that
malignant cells expressed relatively high RAD51 than the other
cells but the expression was much lower than that in proliferating
T cells. Therefore, this study proposed that the levels of RAD51
in these cancer types depended on proliferating T cells if there is
a large proportion of this type of T cells. These results account for
the previous suggestion that RAD51 was closely associated the T

cell activities. Detailed results of the RAD51 expressions of cells
were displayed in S-Figure 5.

The Predictive Value of RAD51 for Immune
Therapy of Cancers

This study evaluated the biomarker relevance of RAD51 by
comparing RAD51 expression with standardized biomarkers
based on their predictive power of response outcomes and
overall survival of ICB sub-cohorts. Results showed that
RADS51 expression had AUCs of over 0.5 in 12 of the 23 ICB
subcohorts. Data suggested that RAD51 exhibited an even higher
predictive value than TMB, T.Clonality, and B. Clonality, which
had AUC values of over 0.5 in only 7, 9, and 6 ICB sub-cohorts
respectively. However, the predictive value of RAD51 was similar
to the MSI score, which had AUCs over 0.5 in 12 ICB subcohorts,
but the predictive value of RAD51 was lower than CD27A, TIDE,
IFNG, and CD8 (S-Figure 6A). To further evaluate the value of
RAD51 for clinical immune therapy, this study compared
immune checkpoint blockade (ICB) responses of RAD51 low
(0-50%) and high (50-100%) samples across different cancer
types. Potential ICB response was predicted using the Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm. The
calculation showed that the TIDE of 9 cancer types was
significantly different between RAD51 high and low groups.
For example, in thyroid carcinoma (THCA), 33 out of 128
(25.7%) patients in the RAD51 high group were predicted to
respond to ICB treatment, while 42 out of 128 (32.8%) patients in
the RAD51 low group were predicted to respond to ICB
treatment. Thymoma (THYM), lung squamous cell carcinoma
(LUSC), and breast invasive carcinoma (BRCA) had relatively
large p-value, thus they were not as striking (S-Figure 6B). These
results suggested that, in thyroid carcinoma (THCA), lung
adenocarcinoma (LUAD), liver hepatocellular carcinoma
(LIHC), overall glioma, and kidney renal clear cell carcinoma
(KIRC), patients with a lower RAD51 expression were much
more likely to respond to ICB immunotherapy. Therefore, this
study proposed that RAD5I1 can be a predictive factor for ICB
therapy in these cancer types.

The Predictive Value of RAD51 for Drug
Therapy of Cancers

Gene expressions influence clinical responses to drug treatment
and these genes are potential biomarkers for drug screening. To
investigate whether the RADS51 level was associated with drug
sensitivity, the expression of RAD51 was performed by
Spearman correlation analysis with the drug sensitivity (ICs)
to multiple anti-cancer drugs from the GDSC and CTRP
databases. Drug sensitivity and gene expression profiling data
of cancer cell lines in GDSC and CTRP were integrated for
investigation. Results showed that RAD51 expression was
negatively correlated with sensitivities of most drugs. In GDSC,
NPK76-1I-72-1, PIK-93, and Vorinostat were the top three most
negatively correlated drugs, while Trametinib was the only
positively correlated drug (S-Figure 7A). In CTRP, the
sensitivities of almost all drugs were negatively correlated with
RAD?5 (S-Figure 7B). These data suggested that RAD51 can be a
biomarker for the prediction of drug therapy. In addition, this
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study also analyzed the association of RAD51 and chemotherapy
by plotting the expression of RAD51 in responder and
nonresponder, chemotherapy predictive ROC plot, and
chemotherapy response in RAD51 quartiles expression groups
in four cancer types. Results showed that in breast invasive
carcinoma (BRCA) and colon adenocarcinoma (COAD), the
chemotherapy responder group expressed lower RAD51 than the
non-responder group respectively. However, in ovarian serous
cystadenocarcinoma (OV) and glioblastoma multiforme (GBM),
the chemotherapy responder group expressed higher RAD51
than the non-responder group (S-Figure 7C). These data
indicated that RAD51 had potential chemotherapy predictive
value but predictive patterns might vary from different
cancer types.

The Application of RAD51 in Overall
Glioma Prognosis

To demonstrate the practicable clinical application of RAD5I,
this study focused on one type of cancer glioma, and develop
strategies for the application of RAD51 in overall glioma
prognosis. The above results indicated that RAD51 was
significantly associated with the survival of LGG but not GBM.
Glioma has been classified into four grades based on histology
and clinical criteria: grade I, II, III, and IV (34). Grade I glioma,
which usually occurs in children, is generally beneficial and can
be cured by surgical resection. Grade I glioma has been believed
to be different from grade II-IV glioma, which primarily occurs
in adults. Grade II and III gliomas are often referred to as “low-
grade glioma (LGG)” while grade IV glioma is referred to as
“highest grade glioma”, “glioblastoma”, or “glioblastoma
multiforme (GBM)” (35). In this context, this study found that
not only overall glioma expressed significantly higher RAD51
than normal brain tissues, but also higher-grade gliomas
expressed significantly higher RADS51 than lower-grade
gliomas (S-Figure 8A). Sankey’s diagram of overall glioma
data from TCGA (LGG+GBM) showed that RAD51 levels
might associate with the survival of patients (S-Figure 8B).
The KM plotting of high and low RAD51 patients of overall
glioma showed that RAD51 was significantly associated with
overall survival in TCGA (LGG+GBM) cohort (n=332) (S-Figure 8C).
To validated this conclusion, three independent external glioma cohorts
were analyzed, incuding CGGA_mRNAseq_693 primary (n=404),
CGGA_mRNAseq_325 primary (n=222), and CGGA_mRNA-
array_301 primary (n=262). Results showed that in all three of these
validation cohorts, the RAD51 high group had a significantly lower
survival rate compared to the RAD51 low group respectively.
Therefore, the survival association of RAD51 in overall glioma was
confirmed (S-Figures 8D-F).

Construction of RAD51 Survival Prediction
Model for Glioma

To screen risk factors for the clinical survival prediction model for
glioma, this study conducted a univariate Cox analysis of overall
survival and clinical variables including RAD51 expression, PRS
type, Grade, gender, age, radiotherapy, Temozolomide (TMZ)
treatment, IDH mutation, 1p19q codeletion, and MGMTp
methylation. Results revealed that RAD51 expression, PRS type,

Grade, Age, IDH mutation, 1p19q codeletion, and MGMTp
methylation were significantly associated with the overall
survival of glioma patients (Figure 6A). To rule out the
potential inter-association of these factors, a multivariate Cox
regression analysis for these variables was conducted. Results
showed that RAD51 expression, PRS type, Grade, Age, TMZ
treatment, IDH mutation, and 1p19q codeletion were
significantly and independently provided prediction confidence
for overall survival of glioma (Figure 6B). Based on multivariate
Cox analysis, a nomogram was constructed for the prediction of
1-, 3-, 5- year survival of overall glioma patients (Figure 6C). The
prediction results of the nomogram calibration curves of 1-, 3-, 5-
year overall survival was generally consistent with all patients’
observation results (Figure 6D).

DISCUSSION

In this study, the bioinformatic data supported the potential values
of RAD51 for clinical cancer management, regarding cancer
diagnosis, prognosis, and therapeutic prediction. Most of the
similar studies exploring cancer biomarkers focused on one
cancer type (36, 37), while this study screened for 33 cancer
types. Pan-cancer analysis has been reported previously (38-40) as
a bioinformatic methodology to screen cancer types that are
interesting to be further explored. One strength of the study is
the use of TCGA and the analysis of different cancers, enabling us
to have an overview of the biomarker value of RAD51 in cancers.

Although the function of RAD51 in cell growth has been well
defined (41), the association of RAD51 and human diseases has
not been studied wildly and the clinical use of RAD51 as a
biomarker for cancer has not been developed. Only a few studies
reported the potential association of RAD51 and human
diseases. The mutation of RAD51 was thought to be associated
with some dysfunction in the human body. For example, RAD51
mutation has been found to be associated with the disorder in
congenital mirror movements (42) and Fanconi anemia (43, 44).
For cancers, only breast cancer was suggested to be associated
with the mutation of RAD51 (45, 46). The RADS51 genetic
analysis of this study suggested that RAD51 genetic alterations
might not be the major factor that drives the development of
cancers, because the genetic alteration rate of RAD51 in cancers
was relatively low. For most cancer cases, RAD51 did not have
genetic alterations but had abnormal expression levels.
Considering that the purpose of this study is to provide
evidence for clinical applications, topics that have a wider
range of applications would be more interested in this study.
Therefore, this study focused mostly on the expression level of
RADS1 rather than the genetic alteration of RAD51.

On one hand, the present study demonstrated that RAD51
has good diagnostic power for multiple cancer types because
RADS51 was overexpressed in these cancer types compared to
normal tissues. RADS51, as a critical protein that regulated DNA
repair, was supposed to be overexpressed in proliferating cells.
Cancer cells adapt cellular metabolism to cope with their high
proliferation rate (47), hence, it is reasonable that cancer cells
have a higher expression of RAD51 than normal cells. Data of
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FIGURE 6 | Construction of a prognostic model of RAD51 for overall glioma. The CGGA-mRNAseq_693 cohort was used to construct the model. (A) Univariate
Cox regression analysis of overall survival of glioma patients. (B) Multivariate Cox regression analysis of overall survival of glioma patients. (C) Nomogram for the
prediction of overall survival of glioma patients. (D) Calibration plots of the nomogram.

this study showed that RAD51 is mostly expressed in nucleoli
rim and the cell cycle analysis in this study showed that, at the
early phase of the cell cycle, RAD51 increased dramatically. This
is the phase when most DNA repairments happen (48). The
enrichment results suggested that most of the co-expressed genes
of RAD51 were associated with the cell cycle. Based on the
understanding of the known function of RAD51, RAD51 is not
likely to be an upstream driver for the cell cycle, but a

downstream gene that is activated by

the cell cycle activities

and the requirement of cells for DNA repairments. In this

context, new approaches to pharmacologically inhibit RAD51
can not inhibit the cells proliferation of cancer cells. However,
the upregulation of the RAD51 indicates that more DNA error
occurs in the cells that recruit more DNA repairers. Since genetic
instability is one of the hallmarks of cancer, the DNA repairer,
RAD?5I, as a biomarker for the distinguishment of cancerness of
a cell, appears to be particularly reliable. Results showed that
RAD51 was significantly overexpressed in 28 types of cancer.
Acute myeloid leukemia (LAML) is the only one expressed lower
RAD?5I in cancer than in normal tissues. These data suggested
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that RAD51 have a common cancer-noncancer expression
pattern for most of the cancer types and can potentially be a
diagnostic biomarker for most of these cancer types.

On the other, RAD51 can be used as a prognostic biomarker for
certain cancer types as the expression of RAD51 was found
associated with patients’ survival. The study of RAD51 as
biomarkers is a rather popular topic in the field. The prognostic
value of RAD51 has been reported in colon cancer (15), pancreatic
cancer (16), breast cancer (19), and liver cancer (18). Here, this
study additionally reported the survival association of RAD51 in 8
cancer types, enlarging the cancer type range that RAD51 might be
applied in prognosis. Different from most of the previous pan-
cancer studies, to further expand the clinical significance of this
paper, a prognostic model of RAD51 for glioma was constructed as
an example application of RAD51 for these cancer types. The
prognostic power of RAD51 in glioma has not been reported, as
in most of the studies, high- and low-grade glioma were studied
separately. However, strictly, GBM (high-grade glioma) and LGG
(low-grade glioma) are all gliomas. LGG is Grade II and III gliomas,
while GBM is grade IV glioma. This study had shown that RAD51
had strong prognostic power for overall glioma. The nomogram
demonstrated the practical and practicality and feasibility of the use
of RAD51 for overall glioma prognosis.

One of the deeply explored fields of this study is the
association of RAD51 and cancer immunity. An interesting
finding was that RADS51 was distinguished and highly
expressed in T cells in the cancer samples. This might confuse
us that whether the level of RAD51 was only dependent on the T
cells infiltration levels. This study proposed that the levels of
RAD51 in some cancer types depended on proliferating T cells if
there is a large proportion of T cells, but for most samples, T cells
have a relatively low proportion and the major expression of
RAD51 was from cancer cells. Nevertheless, the striking finding
of these results was the association of T cells and RAD51 in
cancers, which was consistent with previous studies (49-51).

Another inference of the RAD51 T cell association is that RAD51
might potentially affect immune therapy. As one of the major cells in
the immune defense system against cancer, T cells play essential
roles in cancer immunity. T cells move through tissues, scanning for
MHC-peptide complexes that specifically activate their T cell
receptors and can also sense a variety of signals that can alert
them to cancer (52). Therefore, T cells are an important part of
immune therapy. Results in this study suggested that RAD51 can be
a predictive factor for the response to immune therapy in multiple
cancer types. RAD51 was closely correlated with immune cell
infiltrations and immune-molecule expressions. In the past few
years, immunotherapy has been developed for cancer treatment and
has achieved significant improvements in cancer therapies (53).
Immunotherapy treats cancer via immune checkpoint blockade
(ICB). For example, the programmed cell death protein 1 (PD-1)
blockade has been found to be effective in the treatment of multiple
cancer types (54-57). However, the effectiveness of ICB treatment
may vary from patient to patient (57). Thus, one of the most
critical challenges for ICB treatment that need to be overcome is
the identification of discrepancies between different genomic
subtypes in their response to ICB treatment. In this study, the

analysis demonstrated the potential use of RAD51 as a sign of
the multiple cancer types immune microenvironment and RAD51
can be a potential predictive biomarker for the response to immune
therapy. In addition, targeting RAD51 was reported to enhance
chemosensitivity of adult T-cell leukemia-lymphoma cells by
reducing DNA double-strand break repair. This study
demonstrated that RAD51 might potentially associate with the
drug sensitivities of multiple anti-cancer drugs. Many of the
analyzed drugs can inhibit the proliferation or impede the cell
cycle of cancer cells. As mentioned above, RAD51 might not be
the upstream target but a reliable biomarker to predict the
sensitivity of the drugs. However, these results require further
validation in the future.

CONCLUSION

RADS1 is a clinical valuable biomarker for multiple cancer types,
regarding its potential power for diagnosis, prognosis, and
therapeutic prediction.
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